1
|
Murr M, Freuling C, Pérez-Bravo D, Grund C, Mettenleiter TC, Römer-Oberdörfer A, Müller T, Finke S. Immune response after oral immunization of goats and foxes with an NDV vectored rabies vaccine candidate. PLoS Negl Trop Dis 2024; 18:e0011639. [PMID: 38408125 PMCID: PMC10919857 DOI: 10.1371/journal.pntd.0011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/07/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Vaccination of the reservoir species is a key component in the global fight against rabies. For wildlife reservoir species and hard to reach spillover species (e. g. ruminant farm animals), oral vaccination is the only solution. In search for a novel potent and safe oral rabies vaccine, we generated a recombinant vector virus based on lentogenic Newcastle disease virus (NDV) strain Clone 30 that expresses the glycoprotein G of rabies virus (RABV) vaccine strain SAD L16 (rNDV_GRABV). Transgene expression and virus replication was verified in avian and mammalian cells. To test immunogenicity and viral shedding, in a proof-of-concept study six goats and foxes, representing herbivore and carnivore species susceptible to rabies, each received a single dose of rNDV_GRABV (108.5 TCID50/animal) by direct oral application. For comparison, three animals received the similar dose of the empty viral vector (rNDV). All animals remained clinically inconspicuous during the trial. Viral RNA could be isolated from oral and nasal swabs until four (goats) or seven days (foxes) post vaccination, while infectious NDV could not be re-isolated. After four weeks, three out of six rNDV_GRABV vaccinated foxes developed RABV binding and virus neutralizing antibodies. Five out of six rNDV_GRABV vaccinated goats displayed RABV G specific antibodies either detected by ELISA or RFFIT. Additionally, NDV and RABV specific T cell activity was demonstrated in some of the vaccinated animals by detecting antigen specific interferon γ secretion in lymphocytes isolated from pharyngeal lymph nodes. In conclusion, the NDV vectored rabies vaccine rNDV_GRABV was safe and immunogenic after a single oral application in goats and foxes, and highlight the potential of NDV as vector for oral vaccines in mammals.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Conrad Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Pérez-Bravo
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Chen X, Liao B, Ren T, Liao Z, Huang Z, Lin Y, Zhong S, Li J, Wen S, Li Y, Lin X, Du X, Yang Y, Guo J, Zhu X, Lin H, Liu R, Wang J. Adjuvant activity of cordycepin, a natural derivative of adenosine from Cordyceps militaris, on an inactivated rabies vaccine in an animal model. Heliyon 2024; 10:e24612. [PMID: 38293396 PMCID: PMC10826310 DOI: 10.1016/j.heliyon.2024.e24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.
Collapse
Affiliation(s)
- Xin Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Boyu Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Tianci Ren
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhipeng Liao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zijie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yujuan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shouhao Zhong
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiaying Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shun Wen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yingyan Li
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohan Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xingchen Du
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuhui Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Jiubiao Guo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaohui Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Haishu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| | - Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518118, China
| |
Collapse
|
3
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Debnath A, Pathak DC, D'silva AL, Batheja R, Ramamurthy N, Vakharia VN, Chellappa MM, Dey S. Newcastle disease virus vectored rabies vaccine induces strong humoral and cell mediated immune responses in mice. Vet Microbiol 2020; 251:108890. [PMID: 33074114 DOI: 10.1016/j.vetmic.2020.108890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Rabies is a devastating disease affecting almost all mammalian animal species including humans. Vaccines are available to combat the disease. Protection against the disease is rendered by assessing the humoral immune response. Recent reports suggest the role of cell mediated immune response (CMI) in assessing vaccine efficacy. In the present study, two live vectored vaccine candidates containing glycoprotein G of rabies virus were generated using the mesogenic Newcastle disease virus (NDV) strain R2B and another with NDV with an altered fusion protein cleavage site as backbones. The efficacy of these vaccine candidates on testing in experimental mouse model indicated generation of robust humoral and CMI responses. The recombinant NDV containing the altered fusion protein cleavage site with glycoprotein G showed the highest CMI response in mice indicating its usage as a potential live vectored vaccine candidate against the disease.
Collapse
Affiliation(s)
- Ashis Debnath
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Dinesh C Pathak
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Ajai Lawrence D'silva
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Rahul Batheja
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Narayan Ramamurthy
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India
| | - Vikram N Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, USA
| | - Madhan Mohan Chellappa
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India.
| | - Sohini Dey
- Recombinant DNA Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, India.
| |
Collapse
|
5
|
New Rabies Vaccines for Use in Humans. Vaccines (Basel) 2019; 7:vaccines7020054. [PMID: 31226750 PMCID: PMC6631309 DOI: 10.3390/vaccines7020054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although vaccines are available, rabies still claims more than 55,000 human lives each year. In most cases, rabies vaccines are given to humans after their exposure to a rabid animal; pre-exposure vaccination is largely reserved for humans at high risk for contacts with the virus. Most cases of human rabies are transmitted by dogs. Dog rabies control by mass canine vaccination campaigns combined with intensive surveillance programs has led to a decline of human rabies in many countries but has been unsuccessful in others. Animal vaccination programs are also not suited to control human rabies caused by bat transmission, which is common in some Central American countries. Alternatively, or in addition, more widespread pre-exposure vaccination, especially in highly endemic remote areas, could be implemented. With the multiple dose regimens of current vaccines, pre-exposure vaccination is not cost effective for most countries and this warrants the development of new rabies vaccines, which are as safe as current vaccines, but achieve protective immunity after a single dose, and most importantly, are less costly. This chapter discusses novel rabies vaccines that are in late stage pre-clinical testing or have undergone clinical testing and their potential for replacing current vaccines.
Collapse
|
6
|
Yao S, Li Y, Zhang Q, Zhang H, Zhou L, Liao H, Zhang C, Xu M. Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathog Dis 2019; 76:5025657. [PMID: 29860490 DOI: 10.1093/femspd/fty049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Rabies vaccine administration is the most effective method to prevent the occurrence of rabies disease. However, administration of rabies vaccine without adjuvant always shows low efficiency. As a member of superantigen, staphylococcal enterotoxin C2 (SEC2) non-specifically activates T-cells at extremely low concentration. It enlightens us that SEC2 may be used as an adjuvant. We carried out the experiment that the mice received twice immunization with rabies vaccine in the presence or absence of SEC2 at 1-week interval. Serum and splenocytes from immunized mice were collected to measure the level of rabies-specific-IgG and the cell that secretes IFN-γ or IL-4. The promotion of antigen-specific splenocytes proliferation was also detected. Besides, a challenge test was performed to evaluate the protective efficiency of SEC2. It was shown that mice immunized with vaccine combined with SEC2 generated more specific anti-rabies-antibodies. The results for production of IFN-γ and IL-4, as well as the proliferation of splenocytes from immunized mice indicated SEC2 promoted the specific immune responses induced by rabies vaccine. Moreover, immunization of mice with vaccine combined with SEC2 provided efficient protection against the lethal rabies exposure. Taken together, our findings indicated that SEC2 can be served as an adjuvant for rabies vaccines.
Collapse
Affiliation(s)
- Songyuan Yao
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianru Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Libao Zhou
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Hui Liao
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| |
Collapse
|
7
|
Respiratory syncytial virus F and G protein core fragments fused to HBsAg-binding protein (SBP) induce a Th1-dominant immune response without vaccine-enhanced disease. Int Immunol 2018; 31:199-209. [DOI: 10.1093/intimm/dxy078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022] Open
|
8
|
Ramos-Vega A, Rosales-Mendoza S, Bañuelos-Hernández B, Angulo C. Prospects on the Use of Schizochytrium sp. to Develop Oral Vaccines. Front Microbiol 2018; 9:2506. [PMID: 30410471 PMCID: PMC6209683 DOI: 10.3389/fmicb.2018.02506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Although oral subunit vaccines are highly relevant in the fight against widespread diseases, their high cost, safety and proper immunogenicity are attributes that have yet to be addressed in many cases and thus these limitations should be considered in the development of new oral vaccines. Prominent examples of new platforms proposed to address these limitations are plant cells and microalgae. Schizochytrium sp. constitutes an attractive expression host for vaccine production because of its high biosynthetic capacity, fast growth in low cost culture media, and the availability of processes for industrial scale production. In addition, whole Schizochytrium sp. cells may serve as delivery vectors; especially for oral vaccines since Schizochytrium sp. is safe for oral consumption, produces immunomodulatory compounds, and may provide bioencapsulation to the antigen, thus increasing its bioavailability. Remarkably, Schizochytrium sp. was recently used for the production of a highly immunoprotective influenza vaccine. Moreover, an efficient method for transient expression of antigens based on viral vectors and Schizochytrium sp. as host has been recently developed. In this review, the potential of Schizochytrium sp. in vaccinology is placed in perspective, with emphasis on its use as an attractive oral vaccination vehicle.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Carlos Angulo
- Grupo de Inmunología and Vacunología, Centro de Investigaciones Biológicas del Noroeste, La Paz, Mexico
| |
Collapse
|
9
|
Surenaud M, Lacabaratz C, Zurawski G, Lévy Y, Lelièvre JD. Development of an epitope-based HIV-1 vaccine strategy from HIV-1 lipopeptide to dendritic-based vaccines. Expert Rev Vaccines 2018; 16:955-972. [PMID: 28879788 DOI: 10.1080/14760584.2017.1374182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Development of a safe, effective and globally affordable Human Immunodeficiency Virus strain 1 (HIV-1) vaccine offers the best hope for future control of the HIV-1 pandemic. However, with the exception of the recent RV144 trial, which elicited a modest level of protection against infection, no vaccine candidate has shown efficacy in preventing HIV-1 infection or in controlling virus replication in humans. There is also a great need for a successful immunotherapeutic vaccine since combination antiretroviral therapy (cART) does not eliminate the reservoir of HIV-infected cells. But to date, no vaccine candidate has proven to significantly alter the natural history of an individual with HIV-1 infection. Areas covered: For over 25 years, the ANRS (France Recherche Nord&Sud Sida-HIV hépatites) has been committed to an original program combining basic science and clinical research developing an epitope-based vaccine strategy to induce a multiepitopic cellular response against HIV-1. This review describes the evolution of concepts, based on strategies using HIV-1 lipopeptides towards the use of dendritic cell (DC) manipulation. Expert commentary: Understanding the crucial role of DCs in immune responses allowed moving from the non-specific administration of HIV-1 sequences with lipopeptides to DC-based vaccines. These DC-targeting strategies should improve HIV-1 vaccine efficacy.
Collapse
Affiliation(s)
- Mathieu Surenaud
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Christine Lacabaratz
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France
| | - Gérard Zurawski
- a INSERM, U955 , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,d Baylor Institute for Immunology Research , Dallas , TX , USA
| | - Yves Lévy
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| | - Jean-Daniel Lelièvre
- a INSERM, U955 , Créteil , France.,b Faculté de médecine , Université Paris Est , Créteil , France.,c Vaccine Research Institute (VRI) , Créteil , France.,e AP-HP, Hôpital H. Mondor - A. Chenevier, Service d'Immunologie Clinique et Maladies Infectieuses , Créteil , France
| |
Collapse
|
10
|
Liu X, Lv J, Fang Y, Zhou P, Lu Y, Pan L, Zhang Z, Ma J, Zhang Y, Wang Y. Expression and Immunogenicity of Two Recombinant Fusion Proteins Comprising Foot-and-Mouth Disease Virus Structural Protein VP1 and DC-SIGN-Binding Glycoproteins. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7658970. [PMID: 29119112 PMCID: PMC5651091 DOI: 10.1155/2017/7658970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/17/2022]
Abstract
Improving vaccine immunogenicity by targeting antigens to dendritic cells has recently emerged as a new design strategy in vaccine development. In this study, the VP1 gene of foot-and-mouth disease virus (FMDV) serotype A was fused with the gene encoding human immunodeficiency virus (HIV) membrane glycoprotein gp120 or C2-V3 domain of hepatitis C virus (HCV) envelope glycoprotein E2, both of which are DC-SIGN-binding glycoproteins. After codon optimization, the VP1 protein and the two recombinant VP1-gp120 and VP1-E2 fusion proteins were expressed in Sf9 insect cells using the insect cell-baculovirus expression system. Western blotting showed that the VP1 protein and two recombinant VP1-gp120 and VP1-E2 fusion proteins were correctly expressed in the Sf9 insect cells and had good reactogenicity. Guinea pigs were then immunized with the purified proteins, and the resulting humoral and cellular immune responses were analyzed. The VP1-gp120 and VP1-E2 fusion proteins induced significantly higher specific anti-FMDV antibody levels than the VP1 protein and stronger cell-mediated immune responses. This study provides a new perspective for the development of novel FMDV subunit vaccines.
Collapse
Affiliation(s)
- Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuzhen Fang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanzhen Lu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Junwu Ma
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
11
|
Per os infectivity factors: a complicated and evolutionarily conserved entry machinery of baculovirus. SCIENCE CHINA-LIFE SCIENCES 2017; 60:806-815. [PMID: 28755302 DOI: 10.1007/s11427-017-9127-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023]
Abstract
Baculoviruses are a family of arthropod-specific large DNA viruses that infect insect species belonging to the orders Lepidoptera, Hymenoptera and Diptera. In nature, occlusion-derived viruses (ODVs) initiate baculovirus primary infection in the midgut epithelium of insect hosts, and this process is largely dependent on a number of ODV envelope proteins designated as per os infectivity factors (PIFs). Interestingly, PIF homologs are also present in other invertebrate large DNA viruses, which is indicative that per os infection is an ancient and phylogenetically conserved entry mechanism shared by these viruses. Here, we review the advances in the knowledge of the functions of individual PIFs and recent discoveries about the PIF complex, and discuss the evolutionary implications of PIF homologs in invertebrate DNA viruses. Furthermore, future research highlights on the per os infection mechanism are also prospected.
Collapse
|
12
|
Liu R, Wang J, Yang Y, Khan I, Zhu N. Rabies virus lipopeptide conjugated to a TLR7 agonist improves the magnitude and quality of the Th1-biased humoral immune response in mice. Virology 2016; 497:102-110. [PMID: 27449478 DOI: 10.1016/j.virol.2016.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/23/2016] [Indexed: 12/17/2022]
Abstract
In this study, we conjugated the rabies-derived lipopeptide CE536 to a TLR7 agonist, imiquimod, and evaluated its adjuvanticity. The synthetic construct (Lipo-I) targeted to TLR7, induced dendritic cell phenotypic maturation and production of both type I interferon and pro-inflammatory cytokines more efficiently than unconjugated TLR7 ligands or lipopeptide alone. The immunostimulatory effects of the conjugate were apparently the result of IκBα degradation and sustained p38 and JNK phosphorylation. The analysis of IgG isotypes and T cell differentiation showed that IgG2a dominant Th1-biased humoral and CD8(+) IFN-γ T cell responses were induced by Lipo-I. Lipo-I could facilitate the rabies vaccine to induce the production of an earlier and more vigorous rabies virus neutralizing antibody. In the post-exposure test, the Lipo-I adjuvanted vaccine provided a 73.3% survival rate, while the traditional vaccine bestowed only a 26.7% survival. Therefore, Lipo-I is a promising adjuvant for the development of more effective rabies vaccines.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jingbo Wang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Yang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Inamullah Khan
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|