1
|
Chutiwitoonchai N, Akkarawongsapat R, Chantawarin S, Jiarpinitnun C, Liwnaree B, Teeravechyan S, Soodvilai S. Antiviral effect of pinostrobin, a bioactive constituent of Boesenbergia rotunda, against porcine epidemic diarrhea virus. Antiviral Res 2024; 234:106073. [PMID: 39716668 DOI: 10.1016/j.antiviral.2024.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Global swine industry has long been severely affected by the periodic outbreaks of porcine epidemic diarrhea (PED), a deadly infectious disease in piglets caused by the porcine epidemic diarrhea virus (PEDV). Currently, available vaccines and antiviral drugs could not provide effective prevention and treatment of PEDV infection in pigs. In this study, Boesenbergia rotunda (B. rotunda) extract and its major bioactive flavonoid, pinostrobin, were demonstrated to exhibit remarkable anti-PEDV activities with EC50 values of 0.33 ± 0.02 μg/ml and 2.71 ± 0.12 μM, and selectivity indices (SI) of 11.93 and > 184.55, respectively. Results based on a time-of-addition assay showed that pinostrobin blocked PEDV infection mainly at the early stages of infection. More specifically, pinostrobin reduced cell-cell fusion mediated by the viral spike protein, suggesting that the compound may target the virus fusion step. We also synthesized pinostrobin derivatives and explored the impact of pinostrobin structural features to the observed anti-PEDV activity. Results indicated the importance of the hydroxyl group and substituent on the phenyl ring. In summary, this study highlights the potential of B. rotunda extract and its bioactive compound, pinostrobin, as candidates for the development of antiviral drugs to more effectively control PEDV infection.
Collapse
Affiliation(s)
- Nopporn Chutiwitoonchai
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | | | - Suphat Chantawarin
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chutima Jiarpinitnun
- Department of Chemistry and Center for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Benjamas Liwnaree
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Zhang Y, Zhang N, Zhang Y, Li Y, Yang N, Cai Y, Tan C, Zhao J, Li W, Liu Y, Rui X, Wu J, Fu Y, Liu G. Potassium molybdate blocks APN-dependent coronavirus entry by degrading receptor via PIK3C3-mediated autophagy. J Virol 2024:e0144924. [PMID: 39641621 DOI: 10.1128/jvi.01449-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Swine enteric coronaviruses pose a significant challenge to the global pig industry, inflicting severe diarrhea and high mortality rates among piglets, and resulting in substantial economic losses. In our clinical practice, we observed that the addition of potassium molybdate (PM) to the feed could dramatically reduce diarrhea and diarrhea-related mortality in piglets. However, the underlying mechanisms remain elusive and merit further investigation. In this study, we revealed that PM effectively inhibited the infection of both aminopeptidase N (APN)-dependent coronaviruses, transmissible gastroenteritis virus (TGEV), and porcine respiratory coronavirus (PRCV), both in vitro and ex vivo. Specifically, PM was found to block TGEV and PRCV penetration by degrading the cell receptor APN through the upregulation of phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) expression. In addition, knockdown and knockout of PIK3C3 resulted in the attenuation of PM-induced autophagy, thereby rescuing APN expression and viral infection. Correspondingly, replenishment of PIK3C3 in PIK3C3-null ST cells restored PM-mediated APN degradation and successfully blocked viral entry. Furthermore, our findings demonstrated that PM promoted the assembly of the PIK3C3-BECN1-ATG14 complex, leading to induced autophagic degradation by upregulating PIK3C3 Ser249 phosphorylation. In vivo experiments further confirmed that PM-induced PIK3C3-mediated autophagic degradation of APN, thereby limiting the pathogenicity of TGEV. In summary, our study for the first time identified the mechanism by which PM blocked TGEV and PRCV internalization by degrading the cell receptor APN via PIK3C3-mediated autophagy. This study provides valuable insights and potential strategies for preventing APN-restricted coronavirus infection.IMPORTANCEAminopeptidase N (APN) is one of the most important host receptors of coronavirus. Modulating APN expression can represent a novel approach for controlling APN-dependent coronaviruses and their variants infection. Here we found that a chemical compound potassium molybdate (PM) negatively regulates APN expression by inducing phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3)-mediated autophagy against APN-dependent coronavirus internalization, including transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV). Furthermore, PM can promote PIK3C3-BECN1-ATG14 complex assembly to induce autophagic degradation of APN by upregulating PIK3C3 Ser249 phosphorylation. Lastly, results from pig experiments also confirmed that PM can trigger PIK3C3-mediated autophagic degradation of APN to restrict TGEV pathogenicity in vivo without toxicity. Our findings underscore the promising potential of PM as an effective agent against APN-dependent coronavirus and potentially emerging viral disease entry.
Collapse
Affiliation(s)
- Yunhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Na Zhang
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yifei Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- Nutritional Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Chen Tan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Liege, Belgium
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanyuan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xue Rui
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Junfei Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuguang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, China
- Hainan Key Laboratory of Tropical Animal Breeding and Infectious Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
3
|
Lv L, Luo H, Zhang M, Wu C, Jiang Y, Tong W, Li G, Zhou Y, Li Y, Wang Z, Liu C. Comprehensive transcriptomic analysis identifies cholesterol transport pathway as a therapeutic target of porcine epidemic diarrhea coronavirus. Virus Res 2024; 350:199502. [PMID: 39580000 PMCID: PMC11625352 DOI: 10.1016/j.virusres.2024.199502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus. Subsequently, we conducted a comprehensive transcriptomic analysis on these cell lines. Through integrating differential expression gene analysis with weighted gene co-expression network analysis, we identified the key pathways that are correlated with the PEDV entry. Our analysis revealed a strong correlation between cholesterol, sterols, and lipid transport with PEDV entry, suggesting a potential role for cholesterol transport in the PEDV entry. For further investigation, we treated Huh7, Vero and LLC-PK1 cells with a cholesterol transport inhibitor, ezetimibe, and observed a significant inhibition of PEDV entry and subsequent viral replication in these cells. Interestingly, pre-treating Huh7 cells with ezetimibe resulted in an increase in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses. Moreover, we found that cholesterol could facilitate the entry of PEDV into Huh7 and Vero cells, and this promoting effect can be blocked by ezetimibe. These findings suggest that targeting cholesterol transport specifically inhibits PEDV entry into susceptible cells. Our study offers novel insights into the mechanism of PEDV entry and the development of new therapeutic strategies against this economically important virus.
Collapse
Affiliation(s)
- Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Chuntao Wu
- Office of Academic Research, Dongying Vocational Institute, Dongying 257091, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Hao Z, Dong X, Zhang Z, Qin Z. A Nanobody of PEDV S1 Protein: Screening and Expression in Escherichia coli. Biomolecules 2024; 14:1116. [PMID: 39334881 PMCID: PMC11430113 DOI: 10.3390/biom14091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that it primarily causes infection by binding the S protein to the CD13 (APN) receptor on the membrane of porcine intestinal epithelial cells. The S1 region contains three neutralization epitopes and multiple receptor-binding domains, which are closely related to viral antigenicity and ad-sorption invasion. Nanobodies are a type of single-domain antibody that have been discovered in recent years. They can be expressed on a large scale through prokaryotic expression systems, which makes them cost-effective, stable, and less immunogenic. This study used a phage display library of nanobodies against the PEDV S1 protein. After three rounds of selection and enrichment, the DNA sequence of the highly specific nanobody S1Nb1 was successfully obtained. To obtain soluble nanobody S1Nb1, its DNA sequence was inserted into the vector Pcold and a solubility-enhancing SUMO tag was added. The resulting recombinant vector, Pcold-SUMO-S1Nb1, was then transformed into E. coli BL21(DE3) to determine the optimal expression conditions for the nanobody. Following purification using Ni-column affinity chromatography, Western blot analysis confirmed the successful purification of S1Nb1 carrying the solubility-enhancing tag. ELISA results demonstrated a strong affinity between the S1Nb1 nanobody and PEDV S1 protein.
Collapse
Affiliation(s)
| | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Z.H.); (X.D.); (Z.Z.)
| |
Collapse
|
5
|
Zhao Y, Tang T, Zhao W, Fu W, Li T. Inhibition of PEDV viral entry upon blocking N-glycan elaboration. Virology 2024; 594:110039. [PMID: 38492520 DOI: 10.1016/j.virol.2024.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
Porcine Epidemic Diarrhea Virus (PEDV) poses a significant threat to the global swine industry, demanding a thorough understanding of its cellular invasion mechanism for effective interventions. This study meticulously investigates the impact of O- and N-linked glycans on PEDV proteins and host cell interaction, shedding light on their influence on the virus's invasion process. Utilizing CRISPR-Cas9 technology to inhibit cell surface O- and N-linked glycan synthesis demonstrated no discernible impact on virus infection. However, progeny PEDV strains lacking these glycans exhibited a minor effect of O-linked glycans on virus infection. Conversely, a notable 40% reduction in infectivity was observed when the virus surface lacked N-linked glycans, emphasizing their pivotal role in facilitating virus recognition and binding to host cells. Additionally, inhibition studies utilizing kifunensine, a natural glycosidase I inhibitor, reaffirmed the significant role of N-linked glycans in virus infection. Inhibiting N-linked glycan synthesis with kifunensine substantially decreased virus entry into cells and potentially influenced spike protein expression. Assessment of the stability and recovery potential of N-linked glycan-deficient strains underscored the critical importance of N-glycans at various stages of the virus lifecycle. In vivo experiments infecting piglets with N-glycan-deficient strains exhibited milder clinical symptoms, reduced virus excretion, and less severe pathological lesions compared to conventional strains. These findings offer promising translational applications, proposing N-glycosylation inhibitors as potential therapeutic interventions against PEDV. The utilization of these inhibitors might mitigate virus invasion and disease transmission, providing avenues for effective antiviral strategies and vaccine development. Nonetheless, further research is warranted to elucidate the precise mechanisms of N-linked glycans in PEDV infection for comprehensive clinical applications.
Collapse
Affiliation(s)
- Yong Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China, No.1, Mingxian South Road, Taigu District, Shanxi Province, 030801.
| | - Tao Tang
- Cangzhou Hospital Of Integrated TCM-WM Hebei, No.31, Huanghe Road, Cangzhou City, Hebei Province, 061013, China.
| | - Wenchang Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China, No.1, Mingxian South Road, Taigu District, Shanxi Province, 030801.
| | - Weiguang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China, No.1, Mingxian South Road, Taigu District, Shanxi Province, 030801.
| | - Tao Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China, No.1, Mingxian South Road, Taigu District, Shanxi Province, 030801.
| |
Collapse
|
6
|
Luo H, Liang Z, Lin J, Wang Y, Liu Y, Mei K, Zhao M, Huang S. Research progress of porcine epidemic diarrhea virus S protein. Front Microbiol 2024; 15:1396894. [PMID: 38873162 PMCID: PMC11169810 DOI: 10.3389/fmicb.2024.1396894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a single-stranded RNA virus with a capsid membrane that causes acute infectious gastrointestinal disease characterized by vomiting, diarrhea, and dehydration in swine. Piglets are more susceptible to PEDV than adults, with an infection rate reaching 90% and a fatality rate as high as 100%. Moreover, PEDV has a rapid transmission rate and broad transmission range. Consequently, PEDV has caused considerable economic losses and negatively impacted the sustainability of the pig industry. The surface spike (S) glycoprotein is the largest structural protein in PEDV virions and is closely associated with host cell fusion and virus invasion. As such, the S protein is an important target for vaccine development. In this article, we review the genetic variation, immunity, apoptosis-induction function, virulence, vaccine potential, and other aspects of the PEDV S protein. This review provides a theoretical foundation for preventing and controlling PEDV infection and serves as a valuable resource for further research and development of PEDV vaccines.
Collapse
Affiliation(s)
- Haojian Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junjie Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yiqiao Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yingying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Kun Mei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Hua Sheng Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
7
|
Zheng Y, Feng J, Yu Y, Ling M, Song Y, Xie H, Zhang M, Li W, Wang X. Anti-Coronavirus Potential of Polyether Ionophores: The New Application of Veterinary Antibiotics in Livestock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10640-10654. [PMID: 38661066 DOI: 10.1021/acs.jafc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Coronaviruses have consistently posed a major global concern in the field of livestock industry and public health. However, there is currently a lack of efficient drugs with broad-spectrum antiviral activity to address the challenges presented by emerging mutated strains or drug resistance. Additionally, the method for identifying multitarget drugs is also insufficient. Aminopeptidase N (APN) and 3C-like proteinase (3CLpro) represent promising targets for host-directed and virus-directed strategies, respectively, in the development of effective drugs against various coronaviruses. In this study, maduramycin ammonium demonstrated a broad-spectrum antiviral effect by targeting both of the proteins. The binding domains 4 Å from the ligand of both target proteins shared a structural similarity, suggesting that screening and designing drugs based on these domains might exhibit broad-spectrum and highly effective antiviral activity. Furthermore, it was identified that the polyether ionophores' ability to carry zinc ion might be one of the reasons why they were able to target APN and exhibit antiviral effect. The findings of this experiment provide novel perspectives for future drug screening and design, while also offering valuable references for the utilization of polyether ionophores in the management of livestock health.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanbin Song
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang 310003, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Li Z, Chen Y, Li L, Xue M, Feng L. Different Infectivity of Swine Enteric Coronaviruses in Cells of Various Species. Pathogens 2024; 13:174. [PMID: 38392912 PMCID: PMC10891669 DOI: 10.3390/pathogens13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Swine enteric coronaviruses (SECoVs), including porcine deltacoronavirus (PDCoV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), have caused high mortality in piglets and, therefore, pose serious threats to the pork industry. Coronaviruses exhibit a trend of interspecies transmission, and understanding the host range of SECoVs is crucial for improving our ability to predict and control future epidemics. Here, the replication of PDCoV, TGEV, and PEDV in cells from different host species was compared by measuring viral genomic RNA transcription and protein synthesis. We demonstrated that PDCoV had a higher efficiency in infecting human lung adenocarcinoma cells (A549), Madin-Darby bovine kidney cells (MDBK), Madin-Darby canine kidney cells (MDCK), and chicken embryonic fibroblast cells (DF-1) than PEDV and TGEV. Moreover, trypsin can enhance the infectivity of PDCoV to MDCK cells that are nonsusceptible to TGEV. Additionally, structural analyses of the receptor ectodomain indicate that PDCoV S1 engages Aminopeptidase N (APN) via domain II, which is highly conserved among animal species of different vertebrates. Our findings provide a basis for understanding the interspecies transmission potential of these three porcine coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Mei Xue
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
9
|
Rosas-Murrieta NH, Rodríguez-Enríquez A, Herrera-Camacho I, Millán-Pérez-Peña L, Santos-López G, Rivera-Benítez JF. Comparative Review of the State of the Art in Research on the Porcine Epidemic Diarrhea Virus and SARS-CoV-2, Scope of Knowledge between Coronaviruses. Viruses 2024; 16:238. [PMID: 38400014 PMCID: PMC10892376 DOI: 10.3390/v16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review presents comparative information corresponding to the progress in knowledge of some aspects of infection by the porcine epidemic diarrhea virus (PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronaviruses. PEDV is an alphacoronavirus of great economic importance due to the million-dollar losses it generates in the pig industry. PEDV has many similarities to the SARS-CoV-2 betacoronavirus that causes COVID-19 disease. This review presents possible scenarios for SARS-CoV-2 based on the collected literature on PEDV and the tools or strategies currently developed for SARS-CoV-2 that would be useful in PEDV research. The speed of the study of SARS-CoV-2 and the generation of strategies to control the pandemic was possible due to the knowledge derived from infections caused by other human coronaviruses such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS). Therefore, from the information obtained from several coronaviruses, the current and future behavior of SARS-CoV-2 could be inferred and, with the large amount of information on the virus that causes COVID-19, the study of PEDV could be improved and probably that of new emerging and re-emerging coronaviruses.
Collapse
Affiliation(s)
- Nora H. Rosas-Murrieta
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Alan Rodríguez-Enríquez
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
| | - Irma Herrera-Camacho
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Lourdes Millán-Pérez-Peña
- Centro de Química, Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (A.R.-E.); (I.H.-C.); (L.M.-P.-P.)
| | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular y Virología, Instituto Mexicano del Seguro Social (IMSS), Metepec 74360, Mexico;
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México 38110, Mexico;
| |
Collapse
|
10
|
Li Z, Chen X, Ma C, Du X, Zhang Y. Angiotensin converting enzyme 2 does not facilitate porcine epidemic diarrhea virus entry into porcine intestinal epithelial cells and inhibits it-induced inflammatory injury by promoting STAT1 phosphorylation. Virus Res 2024; 340:199300. [PMID: 38092254 PMCID: PMC10761916 DOI: 10.1016/j.virusres.2023.199300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
ACE2 has been confirmed to be a functional receptor for SARS-CoV and SARS-CoV-2, but research on animal coronaviruses, especially PEDV, are still unknown. The present study investigated whether ACE2 plays a role in receptor recognition and subsequent infection during PEDV invasion of host cells. IPEC-J2 cells stably expressing porcine ACE2 did not increase the production of PEDV-N but inhibited its expression. Porcine ACE2 knockout cells was generated by CRISPR/Cas9 genome editing in IPEC-J2 cells. The expression of PEDV-N did not decrease but slightly increased. The Co-IP results showed that there was no significant association between ACE2 and PEDV-S. There were no obvious interaction between PEDV-S, PEDV-E, PEDV-M and porcine ACE2 promoters, but PEDV-N could inhibit the activity of ACE2 promoters. PEDV-N degraded STAT1 and prevented its phosphorylation, thereby inhibiting the expression of interferon-stimulated genes. Repeated infection of PEDV further confirmed the above results. PEDV activated ACE-Ang II-AT1R axis, while ACE2-Ang (1-7)-MasR axis activity was decreased and inflammatory response was intensified. However, excess ACE2 can reverse this reaction. These results reveal that ACE2 does not facilitate PEDV entry into cells, but relieves PEDV-induced inflammation by promoting STAT1 phosphorylation.
Collapse
Affiliation(s)
- Zhiqiang Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueqing Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Du
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Li X, Wu Y, Yan Z, Li G, Luo J, Huang S, Guo X. A Comprehensive View on the Protein Functions of Porcine Epidemic Diarrhea Virus. Genes (Basel) 2024; 15:165. [PMID: 38397155 PMCID: PMC10887554 DOI: 10.3390/genes15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Porcine epidemic diarrhea (PED) virus (PEDV) is one of the main pathogens causing diarrhea in piglets and fattening pigs. The clinical signs of PED are vomiting, acute diarrhea, dehydration, and mortality resulting in significant economic losses and becoming a major challenge in the pig industry. PEDV possesses various crucial structural and functional proteins, which play important roles in viral structure, infection, replication, assembly, and release, as well as in escaping host innate immunity. Over the past few years, there has been progress in the study of PEDV pathogenesis, revealing the crucial role of the interaction between PEDV viral proteins and host cytokines in PEDV infection. At present, the main control measure against PEDV is vaccine immunization of sows, but the protective effect for emerging virus strains is still insufficient, and there is no ideal safe and efficient vaccine. Although scientists have persistently delved their research into the intricate structure and functionalities of the PEDV genome and viral proteins for years, the pathogenic mechanism of PEDV remains incompletely elucidated. Here, we focus on reviewing the research progress of PEDV structural and nonstructural proteins to facilitate the understanding of biological processes such as PEDV infection and pathogenesis.
Collapse
Affiliation(s)
- Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Yiwan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Zhibin Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| | - Gen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (X.L.); (Y.W.); (Z.Y.); (G.L.); (J.L.)
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China
| |
Collapse
|
12
|
Chen H, Zhao P, Zhang C, Ming X, Zhang C, Jung YS, Qian Y. Veratramine inhibits porcine epidemic diarrhea virus entry through macropinocytosis by suppressing PI3K/Akt pathway. Virus Res 2024; 339:199260. [PMID: 37923169 PMCID: PMC10661853 DOI: 10.1016/j.virusres.2023.199260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by α-coronavirus porcine epidemic diarrhea virus (PEDV). At present, no effective vaccine is available to prevent the disease. Therefore, research for novel antivirals is important. This study aimed to identify the antiviral mechanism of Veratramine (VAM), which actively inhibits PEDV replication with a 50 % inhibitory concentration (IC50) of ∼5 µM. Upon VAM treatment, both PEDV-nucleocapsid (N) protein level and virus titer decreased significantly. The time-of-addition assay results showed that VAM could inhibit PEDV replication by blocking viral entry. Importantly, VAM could inhibit PEDV-induced phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) activity and further suppress micropinocytosis, which is required for PEDV entry. In addition, PI3K inhibitor LY294002 showed anti-PEDV activity by blocking viral entry as well. Taken together, VAM possessed anti-PEDV properties against the entry stage of PEDV by inhibiting the macropinocytosis pathway by suppressing the PI3K/Akt pathway. VAM could be considered as a lead compound for the development of anti-PEDV drugs and may be used during the viral entry stage of PEDV infection.
Collapse
Affiliation(s)
- Huan Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Pu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Caisheng Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Ming
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Yingjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China; One Health Laboratory, Jiangsu Province Foreign Expert Workstation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
13
|
Wang J, Liu H, Yang Y, Tan Y, Sun L, Guo Z, Zeng X, Wang Z, Li S, Yin L, Yin D, Shen X, Dai Y, Liu X, Ruan J, Li X, Zhao S, Peng G, Pan X, Wang C, Xie S. Genome-scale CRISPR screen identifies TRIM2 and SLC35A1 associated with porcine epidemic diarrhoea virus infection. Int J Biol Macromol 2023; 250:125962. [PMID: 37499712 DOI: 10.1016/j.ijbiomac.2023.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Porcine epidemic diarrhoea (PED) caused by the porcine epidemic diarrhoea virus (PEDV) is the most devastating disease in the global pig industry due to its high mortality rate in piglets. The host factors critical for PEDV replication are poorly understood. Here, we designed a pooled African green monkey genome-scale CRISPR/Cas9 knockout (VeroCKO) library containing 75,608 single guide RNAs targeting 18,993 protein-coding genes. Subsequently, we use the VeroCKO library to identify key host factors facilitating PEDV infection in Vero E6 cells. Several previously unreported genes associated with PEDV infection are highly enriched post-PEDV selection. We discovered that knocking out the tripartite motif 2 (TRIM2) and the solute carrier family 35 member A1 (SLC35A1) inhibited PEDV replication. Virtual screening and molecular docking approaches showed that chem-80,048,685 (M2) s ignificantly inhibited PEDV attachment and late replication by impeding SLC35A1. Furthermore, we found that knocking out SLC35A1 in Vero E6 cells upregulated a disintegrin and metalloprotease protein-17 (ADAM17) by splicing porcine aminopeptidase N (pAPN) and angiotensin-converting enzyme 2 (ACE2) ectodomains to reduce PEDV-infection in a CMP-Sialic Acid (CMP-SA) cell entry-independent manner. These findings provide a new perspective for a better understanding of host-pathogen interactions and new therapeutic targets for PEDV infection.
Collapse
Affiliation(s)
- Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hailong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yubei Tan
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Limeng Sun
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Zishi Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Zeng
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zichang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yin
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongdong Yin
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xuehuai Shen
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yin Dai
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Guiqing Peng
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaocheng Pan
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
14
|
Luo H, Lv L, Yi J, Zhou Y, Liu C. Establishment of Replication Deficient Vesicular Stomatitis Virus for Studies of PEDV Spike-Mediated Cell Entry and Its Inhibition. Microorganisms 2023; 11:2075. [PMID: 37630636 PMCID: PMC10457912 DOI: 10.3390/microorganisms11082075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a highly contagious and virulent enteric coronavirus that causes severe enteric disease in pigs worldwide. PEDV infection causes profound diarrhea, vomiting, and dehydration in pigs of all ages, resulting in high mortality rates, particularly among neonatal piglets. The spike glycoprotein (S) of PEDV plays a crucial role in binding to the host cell receptor and facilitating fusion between the viral and host membranes. Pseudotyped viral particles featuring the PEDV S protein are valuable tools for investigating virus entry, identifying neutralizing antibodies, and developing small molecules to impede virus replication. In this study, we used a codon-optimized PEDV S protein to generate recombinant pseudotyped vesicular stomatitis virus (VSV) particles (rVSV-ΔG-EGFP-S). The full-length S protein was efficiently incorporated into VSV particles. The S protein pseudotyped VSV exhibited infectivity towards permissive cell lines of PEDV. Moreover, we identified a new permissive cell line, JHH7, which showed robust support for PEDV replication. In contrast to the SARS-CoV-2 spike protein, the removal of amino acids from the cytoplasmic tail resulted in reduced efficiency of viral pseudotyping. Furthermore, we demonstrated that 25-hydroxycholesterol inhibited rVSV-ΔG-EGFP-S entry, while human APN facilitated rVSV-ΔG-EGFP-S entry through the use of ANPEP knockout Huh7 cells. Finally, by transducing swine intestinal organoids with the rVSV-ΔG-EGFP-S virus, we observed efficient infection of the swine intestinal organoids by the PEDV spike-pseudotyped VSV. Our work offers valuable tools for studying the cellular entry of PEDV and developing interventions to curb its transmission.
Collapse
Affiliation(s)
- Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Jingxuan Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (H.L.); (L.L.); (J.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Zhou C, Liu Y, Wei Q, Chen Y, Yang S, Cheng A, Zhang G. HSPA5 Promotes Attachment and Internalization of Porcine Epidemic Diarrhea Virus through Interaction with the Spike Protein and the Endo-/Lysosomal Pathway. J Virol 2023; 97:e0054923. [PMID: 37222617 PMCID: PMC10308931 DOI: 10.1128/jvi.00549-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.
Collapse
Affiliation(s)
- Chuanjie Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Nguyen TL, Le TPT, Dinh TT, Nguyen-Ho HV, Mai QG, Vo-Nguyen HV, Tran TL, Tran HX, Tran-Van H. Investigation of variants in genetics and virulence of Porcine Epidemic Diarrhea Virus after serial passage on Vero cells. J Virol Methods 2023:114755. [PMID: 37244432 DOI: 10.1016/j.jviromet.2023.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.
Collapse
Affiliation(s)
- Tan-Liem Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thu-Phuong Thi Le
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Thuan-Thien Dinh
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hai-Vy Nguyen-Ho
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Quoc-Gia Mai
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hai-Vy Vo-Nguyen
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Thuoc Linh Tran
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company, 28 VSIP, Street no. 06, Vietnam-Singapore Industrial Park, Thuan An City, Binh Duong Province, Vietnam
| | - Hieu Tran-Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, University of Science Hochiminh City, Vietnam; Vietnam National University Hochiminh City, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam.
| |
Collapse
|
17
|
Si F, Song S, Yu R, Li Z, Wei W, Wu C. Coronavirus accessory protein ORF3 biology and its contribution to viral behavior and pathogenesis. iScience 2023; 26:106280. [PMID: 36945252 PMCID: PMC9972675 DOI: 10.1016/j.isci.2023.106280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Coronavirus porcine epidemic diarrhea virus (PEDV) is classified in the genus Alphacoronavirus, family Coronaviridae that encodes the only accessory protein, ORF3 protein. However, how ORF3 contributes to viral pathogenicity, adaptability, and replication is obscure. In this review, we summarize current knowledge and identify gaps in many aspects of ORF3 protein in PEDV, with emphasis on its unique biological features, including membrane topology, Golgi retention mechanism, potential intrinsic disordered property, functional motifs, protein glycosylation, and codon usage phenotypes related to genetic evolution and gene expression. In addition, we propose intriguing questions related to ORF3 protein that we hope to stimulate further studies and encourage collaboration among virologists worldwide to provide constructive knowledge about the unique characteristics and biological functions of ORF3 protein, by which their potential role in clarifying viral behavior and pathogenesis can be possible.
Collapse
Affiliation(s)
- Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture of Rural Affairs, and Key Laboratory of Animal Disease Prevention of Guangdong Province, Guangzhou 510640, P.R. China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Zhen Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, P.R. China
| | - Wenqiang Wei
- Department of Microbiology, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chao Wu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Saleem W, Ren X, Van Den Broeck W, Nauwynck H. Changes in intestinal morphology, number of mucus-producing cells and expression of coronavirus receptors APN, DPP4, ACE2 and TMPRSS2 in pigs with aging. Vet Res 2023; 54:34. [PMID: 37055856 PMCID: PMC10100624 DOI: 10.1186/s13567-023-01169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
19
|
Fan B, Zhou J, Zhao Y, Zhu X, Zhu M, Peng Q, Li J, Chang X, Shi D, Yin J, Guo R, Li Y, He K, Fan H, Li B. Identification of Cell Types and Transcriptome Landscapes of Porcine Epidemic Diarrhea Virus-Infected Porcine Small Intestine Using Single-Cell RNA Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:271-282. [PMID: 36548460 DOI: 10.4049/jimmunol.2101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yongxiang Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Mingjun Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinjian Chang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Danyi Shi
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Jie Yin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; and
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Xu Q, Wang F, Jiao W, Zhang M, Xing G, Feng H, Sun X, Hu M, Zhang G. Virtual Screening-Based Peptides Targeting Spike Protein to Inhibit Porcine Epidemic Diarrhea Virus (PEDV) Infection. Viruses 2023; 15:v15020381. [PMID: 36851595 PMCID: PMC9965349 DOI: 10.3390/v15020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/14/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Due to the rapid mutation of porcine epidemic diarrhea virus (PEDV), existing vaccines cannot provide sufficient immune protection for pigs. Therefore, it is urgent to design the affinity peptides for the prevention and control of this disease. In this study, we made use of a molecular docking technology for virtual screening of affinity peptides that specifically recognized the PEDV S1 C-terminal domain (CTD) protein for the first time. Experimentally, the affinity, cross-reactivity and sensitivity of the peptides were identified by an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR) test, separately. Subsequently, Cell Counting Kit-8 (CCK-8), quantitative real-time PCR (qRT-PCR), Western blot and indirect immunofluorescence were used to further study the antiviral effect of different concentrations of peptide 110766 in PEDV. Our results showed that the P/N value of peptide 110766 at 450 nm reached 167, with a KD value of 216 nM. The cytotoxic test indicated that peptide 110766 was not toxic to vero cells. Results of the absolute quantitative PCR revealed that different concentrations (3.125 μM, 6.25 μM, 12.5 μM, 25 μM, 50 μM, 100 μM, 200 μM) of peptide 110766 could significantly reduce the viral load of PEDV compared with the virus group (p < 0.0001). Similarly, results of Western blot and indirect immunofluorescence also suggested that the antiviral effect of peptide 110766 at 3.125 is still significant. Based on the above research, high-affinity peptide 110766 binding to the PEDV S1-CTD protein was attained by a molecular docking technology. Therefore, designing, screening, and identifying affinity peptides can provide a new method for the development of antiviral drugs for PEDV.
Collapse
Affiliation(s)
- Qian Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Wenqiang Jiao
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Mengting Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Hua Feng
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Xuefeng Sun
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
| | - Gaiping Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yang ling, Xianyang 712100, China
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116# Huayuan Road, Zhengzhou 450002, China
- Longhu Modern Immunology Laboratory, Zhengzhou 450046, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
21
|
Identification and Characterization of Cell Lines HepG2, Hep3B217 and SNU387 as Models for Porcine Epidemic Diarrhea Coronavirus Infection. Viruses 2022; 14:v14122754. [PMID: 36560758 PMCID: PMC9785011 DOI: 10.3390/v14122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genera alphacoronavirus, causes acute watery diarrhea and dehydration in suckling piglets and results in enormous economic losses in the swine industry worldwide. Identification and characterization of different cell lines are not only invaluable for PEDV entry and replication studies but also important for the development of various types of biological pharmaceuticals against PEDV. In this study, we present an approach to identify suitable permissive cell lines for PEDV research. Human cell lines were screened for a high correlation coefficient with the established PEDV infection model Huh7 based on RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE). Experimentally testing permissiveness towards PEDV infection, three highly permissive human cell lines, HepG2, Hep3B217, and SNU387 were identified. The replication kinetics of PEDV in HepG2, Hep3B217, and SNU387 cells were similar to that in Vero and Huh7 cells. Additionally, the transcriptomes analysis showed robust induction of transcripts associated with the innate immune in response to PEDV infection in all three cell lines, including hundreds of inflammatory cytokine and interferon genes. Moreover, the expression of inflammatory cytokines and interferons were confirmed by qPCR assay. Our findings indicate that HepG2, Hep3B217, and SNU387 are suitable cell lines for PEDV replication and innate immune response studies.
Collapse
|
22
|
Death Receptor DR5 as a Proviral Factor for Viral Entry and Replication of Coronavirus PEDV. Viruses 2022; 14:v14122724. [PMID: 36560727 PMCID: PMC9783156 DOI: 10.3390/v14122724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of Coronaviridae, causes high mortality in newborn piglets, and has caused significant economic losses in the pig industry. PEDV infection can induce apoptosis, both caspase-dependent and caspase-independent, but the details of apoptosis remain clarified. This study investigated the effect of death receptor DR5 on PEDV infection and its relationship with PEDV-induced apoptosis. We found that DR5 knockdown reduced viral mRNA and protein levels of PEDV, and the viral titer decreased from 104.5 TCID50 to 103.4 TCID50 at 12 hpi. Overexpression of DR5 significantly increased the viral titer. Further studies showed that DR5 facilitates viral replication by regulating caspase-8-dependent apoptosis, and the knockdown of DR5 significantly reduced PEDV-induced apoptosis. Interestingly, we detected a biphasic upregulation expression of DR5 in both Vero cells and piglets in response to PEDV infection. We found that DR5 also facilitates viral entry of PEDV, especially, incubation with DR5 antibody can reduce the PEDV binding to Vero cells. Our study improves the understanding of the mechanism by which PEDV induces apoptosis and provides new insights into the biological function of DR5 in PEDV infection.
Collapse
|
23
|
Zhang Y, Chen Y, Zhou J, Wang X, Ma L, Li J, Yang L, Yuan H, Pang D, Ouyang H. Porcine Epidemic Diarrhea Virus: An Updated Overview of Virus Epidemiology, Virulence Variation Patterns and Virus-Host Interactions. Viruses 2022; 14:2434. [PMID: 36366532 PMCID: PMC9695474 DOI: 10.3390/v14112434] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is a member of the coronavirus family, causing deadly watery diarrhea in newborn piglets. The global pandemic of PEDV, with significant morbidity and mortality, poses a huge threat to the swine industry. The currently developed vaccines and drugs are only effective against the classic GI strains that were prevalent before 2010, while there is no effective control against the GII variant strains that are currently a global pandemic. In this review, we summarize the latest progress in the biology of PEDV, including its transmission and origin, structure and function, evolution, and virus-host interaction, in an attempt to find the potential virulence factors influencing PEDV pathogenesis. We conclude with the mechanism by which PEDV components antagonize the immune responses of the virus, and the role of host factors in virus infection. Essentially, this review serves as a valuable reference for the development of attenuated virus vaccines and the potential of host factors as antiviral targets for the prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
24
|
A Review of Bioactive Compounds against Porcine Enteric Coronaviruses. Viruses 2022; 14:v14102217. [PMID: 36298772 PMCID: PMC9607050 DOI: 10.3390/v14102217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
Pig diarrhea is a universal problem in the process of pig breeding, which seriously affects the development of the pig industry. Porcine enteric coronaviruses (PECoVs) are common pathogens causing diarrhea in pigs, currently including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV). With the prosperity of world transportation and trade, the spread of viruses is becoming wider and faster, making it even more necessary to prevent PECoVs. In this paper, the host factors required for the efficient replication of these CoVs and the compounds that exhibit inhibitory effects on them were summarized to promote the development of drugs against PECoVs. This study will be also helpful in discovering general host factors that affect the replication of CoVs and provide references for the prevention and treatment of other CoVs.
Collapse
|
25
|
Luo Q, Zhang C, Chen Y, Chen H, Yang Y. Alpiniae oxyphyllae fructus polysaccharide 3 inhibits porcine epidemic diarrhea virus entry into IPEC-J2 cells. Res Vet Sci 2022; 152:434-441. [PMID: 36126510 DOI: 10.1016/j.rvsc.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is deadly for suckling piglets and is a significant threat to most pig farms. Alpiniae oxyphyllae fructus polysaccharide 3 (AOFP3) shows antiviral activity against PEDV. However, the anti-PEDV mechanism of AOFP3 is unknown. Entering the host cell is important for viral infection, and many drugs play antiviral roles by inhibiting this process. To understand the antiviral mechanism of AOFP3 against PEDV, the effect of AOFP3 on PEDV entering IPEC-J2 cells was investigated in the present study. Real-time PCR and immunofluorescence were used to study the effect of AOFP3 on PEDV binding and penetrating IPEC-J2 cells. The effect of PEDV on AOFP3 attachment to IPEC-J2 cells was also investigated. Afterward, the effect of AOFP3 on PEDV spike (S) protein binding to porcine aminopeptidase was tested by using coimmunoprecipitation, and the effect of AOFP3 on the cholesterol level of IPEC-J2 cells was detected. The results showed that AOFP3 competitively inhibited PEDV adsorption on IPEC-J2 cells by blocking PEDV S protein binding to porcine aminopeptidase in IPEC-J2 cells. Furthermore, AOFP3 decreased PEDV penetration into host cells by decreasing the cholesterol level in IPEC-J2 cells.
Collapse
Affiliation(s)
- Qiyuan Luo
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Chenglong Zhang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yun Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China.
| | - Huricha Chen
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| | - Yuhui Yang
- Institute of Traditional South Chinese Veterinary Pharmacology, College of Animal Science and Technology, Hainan University, Haikou 570228, PR China
| |
Collapse
|
26
|
CCR4-NOT Complex 2—A Cofactor in Host Cell for Porcine Epidemic Diarrhea Virus Infection. Genes (Basel) 2022; 13:genes13091504. [PMID: 36140672 PMCID: PMC9498821 DOI: 10.3390/genes13091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there is no consensus on the primary receptor associated with the PEDV invasion of host cells. An increasing number of studies have reported that PEDV invading host cells may require collaboration between multiple receptors and to better understand the virus-host interaction during PEDV entry, surface plasmon resonance (SPR) assays are performed to investigate relevant host factors interacting with PEDV spike-1 protein (S1) in Vero and IPEC-J2 cell membranes. Subsequently, the rabbit anti-PEDV S1 polyclonal antibody is used as bait to recognize the complexes of IPEC-J2 membrane proteins with or without PEDV infection, followed by detection using liquid chromatography with tandem mass spectrometry (LC-MS-MS). Our results show that 13 and 10 proteins interacting between the S1 protein and plasma membrane protein of Vero or IPEC-J2 can be identified. More specifically, a total of 11 differentially expressed interacting proteins were identified in IPEC-J2 membrane proteins after PEDV infection, compared to the uninfected group. Furthermore, we found that the differentially interacting protein CCR4-NOT complex 2 (CNOT2), identified in PEDV S1 with plasma membrane proteins of Vero cells, is involved in viral infection. The results show that the knockout of CNOT2 significantly inhibits PEDV replication in vitro. These data provide novel insights into the entry mechanism of PEDV.
Collapse
|
27
|
Huang CY, Draczkowski P, Wang YS, Chang CY, Chien YC, Cheng YH, Wu YM, Wang CH, Chang YC, Chang YC, Yang TJ, Tsai YX, Khoo KH, Chang HW, Hsu STD. In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM. Nat Commun 2022; 13:4877. [PMID: 35986008 PMCID: PMC9388967 DOI: 10.1038/s41467-022-32588-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious swine disease caused by porcine epidemic diarrhea virus (PEDV). PED causes enteric disorders with an exceptionally high fatality in neonates, bringing substantial economic losses in the pork industry. The trimeric spike (S) glycoprotein of PEDV is responsible for virus-host recognition, membrane fusion, and is the main target for vaccine development and antigenic analysis. The atomic structures of the recombinant PEDV S proteins of two different strains have been reported, but they reveal distinct N-terminal domain 0 (D0) architectures that may correspond to different functional states. The existence of the D0 is a unique feature of alphacoronavirus. Here we combined cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) to demonstrate in situ the asynchronous S protein D0 motions on intact viral particles of a highly virulent PEDV Pintung 52 strain. We further determined the cryo-EM structure of the recombinant S protein derived from a porcine cell line, which revealed additional domain motions likely associated with receptor binding. By integrating mass spectrometry and cryo-EM, we delineated the complex compositions and spatial distribution of the PEDV S protein N-glycans, and demonstrated the functional role of a key N-glycan in modulating the D0 conformation. Hsu and co-workers integrate cryo-electron tomography, cryo-electron microscopy and mass spectrometry to reveal the structural polymorphism of a pig coronavirus spike protein within intact viral particles, and how glycosylation modulates the conformational changes pertinent to host recognition.
Collapse
|
28
|
Lin F, Zhang H, Li L, Yang Y, Zou X, Chen J, Tang X. PEDV: Insights and Advances into Types, Function, Structure, and Receptor Recognition. Viruses 2022; 14:v14081744. [PMID: 36016366 PMCID: PMC9416423 DOI: 10.3390/v14081744] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has been endemic in most parts of the world since its emergence in the 1970s. It infects the small intestine and intestinal villous cells, spreads rapidly, and causes infectious intestinal disease characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and causing massive economic losses to the pig industry. The entry of PEDV into cells is mediated by the binding of its spike protein (S protein) to a host cell receptor. Here, we review the structure of PEDV, its strains, and the structure and function of the S protein shared by coronaviruses, and summarize the progress of research on possible host cell receptors since the discovery of PEDV.
Collapse
Affiliation(s)
- Feng Lin
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Linquan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yang Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaodong Zou
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence:
| |
Collapse
|
29
|
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. Int J Mol Sci 2022; 23:ijms23073953. [PMID: 35409315 PMCID: PMC8999375 DOI: 10.3390/ijms23073953] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Swine enteric coronavirus (SeCoV) causes acute gastroenteritis and high mortality in newborn piglets. Since the last century, porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV) have swept farms all over the world and caused substantial economic losses. In recent years, porcine delta coronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV) have been emerging SeCoVs. Some of them even spread across species, which made the epidemic situation of SeCoV more complex and changeable. Recent studies have begun to reveal the complex SeCoV–host interaction mechanism in detail. This review summarizes the current advances in autophagy, apoptosis, and innate immunity induced by SeCoV infection. These complex interactions may be directly involved in viral replication or the alteration of some signal pathways.
Collapse
Affiliation(s)
- Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yawei Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Q.Y.); (X.L.); (Y.S.); (W.Z.); (Y.L.); (F.Z.); (K.W.); (S.F.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C. & L.Y.)
| |
Collapse
|
30
|
Current Status of Genetically Modified Pigs That Are Resistant to Virus Infection. Viruses 2022; 14:v14020417. [PMID: 35216010 PMCID: PMC8874825 DOI: 10.3390/v14020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Pigs play an important role in agriculture and biomedicine. The globally developing swine industry must address the challenges presented by swine-origin viruses, including ASFV (African swine fever virus), PRRSV (porcine reproductive and respiratory syndrome virus), PEDV (porcine epidemic diarrhea virus), PRV (pseudorabies virus), CSFV (classical swine fever virus), TGEV (transmissible gastroenteritis virus), et al. Despite sustained efforts by many government authorities, these viruses are still widespread. Currently, gene-editing technology has been successfully used to generate antiviral pigs, which offers the possibility for increasing animal disease tolerance and improving animal economic traits in the future. Here, we summarized the current advance in knowledge regarding the host factors in virus infection and the current status of genetically modified pigs that are resistant to virus infection in the world. There has not been any report on PEDV-resistant pigs, ASFV-resistant pigs, and PRV-resistant pigs owing to the poor understanding of the key host factors in virus infection. Furthermore, we summarized the remaining problems in producing virus-resistant pigs, and proposed several potential methods to solve them. Using genome-wide CRISPR/Cas9 library screening to explore the key host receptors in virus infection may be a feasible method. At the same time, exploring the key amino acids of host factors in virus infection with library screening based on ABEs and CBEs (Bes) may provide creative insight into producing antiviral pigs in the future.
Collapse
|
31
|
Zeng W, Ren J, Li Z, Jiang C, Sun Q, Li C, Li W, Li W, He Q. Levistolide A Inhibits PEDV Replication via Inducing ROS Generation. Viruses 2022; 14:v14020258. [PMID: 35215851 PMCID: PMC8878026 DOI: 10.3390/v14020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) variant strains adversely affect the production of pigs globally. Vaccines derived from PEDV traditional strains impart less protection against the variant strains. Moreover, sequence diversity among different PEDV variant strains is also complicated. This necessitates developing alternative antiviral strategies for defending against PEDV. This study explored a natural product, Levistolide A (LA), to possess antiviral activity against PEDV. LA was found to suppress PEDV replication in a dose-dependent manner. And the inhibitory effect of LA against PEDV was maintained in the course of time. In terms of viral RNA and protein production, LA also showed a strong inhibitory effect. In addition, LA was indicated to inhibit PEDV from attaching to the cellular membrane or penetrating the cells. Further study revealed that LA can induce the generation of reactive oxygen species (ROS), and the corresponding inhibitor, NAC, was found to antagonize the effect of LA on inhibiting PEDV replication. This illustrated that the LA-induced ROS generation played an important role in its anti-PEDV activity. LA was also identified to stimulate ER stress, which is an important consequence of ROS production and was proven to be able to inhibit PEDV replication. To conclude, this study revealed that LA can inhibit PEDV replication via inducing ROS generation.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhonghua Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (C.J.); (Q.S.); (C.L.); (W.L.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
32
|
Vu TTH, Yeom M, Moon H, Tran TN, Le VP, Song D. Characteristics and Pathogenicity of the Cell-Adapted Attenuated Porcine Epidemic Diarrhea Virus of the Non-S INDEL Cluster. Pathogens 2021; 10:pathogens10111479. [PMID: 34832634 PMCID: PMC8618312 DOI: 10.3390/pathogens10111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
The high antigenic diversity of porcine epidemic diarrhea virus (PEDV) means that porcine epidemic diarrhea (PED) is a challenge for the global pig industry. Understanding the circulation of the virus to determine an optimal vaccine strategy is important in controlling the disease. In this study, we describe the genetic diversity of circulating PEDV based on the full sequences of spike genes of eight positive samples collected in Vietnam since 2018. Additionally, we developed a live attenuated vaccine candidate from the cell-adapted PEDV2 strain, which was continuously passaged until level 103 in VERO-CCL81 cells. PEDV2-p103, which belongs to the emerging non-S INDEL cluster, exhibited low virus shedding, did not induce lesions in the small intestine of challenged piglets, and had a high titer in the VERO-CCL81 cell at 48 h post-infection. These results suggest that the PEDV2-p103 strain could be a potential oral attenuated vaccine, and its immunogenicity and efficacy should be further assessed through in vivo tests.
Collapse
Affiliation(s)
- Thi Thu Hang Vu
- College of Pharmacy, Korea University, Sejong 30019, Korea; (T.T.H.V.); (M.Y.)
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong 30019, Korea; (T.T.H.V.); (M.Y.)
| | - Hyoungjoon Moon
- College of Healthcare & Biotechnology, Semyung University, Jecheon 27136, Korea;
- Research Unit, Green Cross Veterinary Products, Yongin 17066, Korea
| | - Thi Nhan Tran
- R&D laboratory, AVAC Vietnam Company Limited, Hung Yen 163530, Vietnam;
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131001, Vietnam
- Correspondence: (V.P.L.); (D.S.)
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong 30019, Korea; (T.T.H.V.); (M.Y.)
- Correspondence: (V.P.L.); (D.S.)
| |
Collapse
|
33
|
Jung K, Saif LJ. Replication of porcine deltacoronavirus is limited in the gastrointestinal tract of neonatal piglets co-infected simultaneously or 16 hours prior with virulent porcine epidemic diarrhea virus. Vet Microbiol 2021; 261:109206. [PMID: 34411994 DOI: 10.1016/j.vetmic.2021.109206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause acute diarrhea/vomiting in neonatal pigs and share similar tissue or cellular tropisms in the gastrointestinal tract. We investigated if or how these two swine enteric coronaviruses interact with each other in gnotobiotic (Gn) piglets. Seventeen 9-10-day-old Gn piglets were randomly assigned to 5 groups and inoculated with PEDV strain PC21A [9.3 log10 genomic equivalents (GE)/pig] and/or PDCoV strain OH-FD22 (8.6 log10 GE/pig) as follows: dually with PEDV and PDCoV [16 h later (n = 4) or simultaneously (n = 3)] or singly with PEDV (n = 4), PDCoV (n = 4), or mock (n = 3). No enhanced clinical disease or fecal PEDV shedding were observed in dually inoculated pigs compared with PEDV or PDCoV singly inoculated pigs, coinciding with no significant differences in jejunal VH:CD ratios and PEDV antigen-positive scores at post-inoculation days (PIDs) 3-4 among the groups. These observations indicate no increased severity of PEDV infectivity by PDCoV co-infection. Notably, compared with PDCoV singly inoculated pigs, low to moderate fecal PDCoV RNA titers were detected only at PID 1 in both dually inoculated pig groups. At PIDs 2-4, however, there was no detectable PDCoV RNA in the feces, coinciding with no or few PDCoV antigen-positive cells in the small and large intestine of the dually inoculated pigs at PIDs 3-4. These observations indicate a possible interference or inhibition of PDCoV replication in the gastrointestinal tract of pigs co-infected with PEDV and may influence PDCoV infection in PEDV co-infected pigs.
Collapse
Affiliation(s)
- Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
34
|
Bioinformatics Analysis of Spike Proteins of Porcine Enteric Coronaviruses. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6689471. [PMID: 34307666 PMCID: PMC8266444 DOI: 10.1155/2021/6689471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
This article is aimed at analyzing the structure and function of the spike (S) proteins of porcine enteric coronaviruses, including transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV) by applying bioinformatics methods. The physical and chemical properties, hydrophilicity and hydrophobicity, transmembrane region, signal peptide, phosphorylation and glycosylation sites, epitope, functional domains, and motifs of S proteins of porcine enteric coronaviruses were predicted and analyzed through online software. The results showed that S proteins of TGEV, PEDV, SADS-CoV, and PDCoV all contained transmembrane regions and signal peptide. TGEV S protein contained 139 phosphorylation sites, 24 glycosylation sites, and 53 epitopes. PEDV S protein had 143 phosphorylation sites, 22 glycosylation sites, and 51 epitopes. SADS-CoV S protein had 109 phosphorylation sites, 20 glycosylation sites, and 43 epitopes. PDCoV S protein had 124 phosphorylation sites, 18 glycosylation sites, and 52 epitopes. Moreover, TGEV, PEDV, and PDCoV S proteins all contained two functional domains and two motifs, spike_rec_binding and corona_S2. The corona_S2 consisted of S2 subunit heptad repeat 1 (HR1) and S2 subunit heptad repeat 2 (HR2) region profiles. Additionally, SADS-CoV S protein was predicted to contain only one functional domain, the corona_S2. This analysis of the biological functions of porcine enteric coronavirus spike proteins can provide a theoretical basis for the design of antiviral drugs.
Collapse
|
35
|
Expression of the human or porcine C-type lectins DC-SIGN/L-SIGN confers susceptibility to porcine epidemic diarrhea virus entry and infection in otherwise refractory cell lines. Microb Pathog 2021; 157:104956. [PMID: 34022357 DOI: 10.1016/j.micpath.2021.104956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes great economic losses in the porcine industry. Although the functional receptor for the virus has not been identified, multiple isolates are able to infect different cell lines. Recently, it has been shown that the human C-type lectin DC-SIGN/L-SIGN (hDC-SIGN/L-SIGN) can promote entry of several coronaviruses. Here we examined whether hDC-SIGN/L-SIGN and its porcine homolog (pDC-SIGN) are entry determinants for PEDV. Expression of hDC-SIGN/L-SIGN or pDC-SIGN in refractory cells dramatically increased infection by a recombinant PEDV expressing green fluorescent protein. In both cases, lectin-mediated infection was inhibited by mannan or anti-hDC-SIGN/L-SIGN or pDC-SIGN antibodies; however, d-galactose had no effect on the virus-infected cells. Our results demonstrate that hDC-SIGN/L-SIGN or pDC-SIGN can mediate the cellular entry and propagation of PEDV, which provides a new theoretical basis for further understanding the infection mechanism of PEDV, and will be helpful for the development of novel therapeutic agents.
Collapse
|
36
|
Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021; 48:347-360. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing technology has dramatically influenced swine research by enabling the production of high-quality disease-resistant pig breeds, thus improving yields. In addition, CRISPR/Cas9 has been used extensively in pigs as one of the tools in biomedical research. In this review, we present the advancements of the CRISPR/Cas9 system in swine research, such as animal breeding, vaccine development, xenotransplantation, and disease modeling. We also highlight the current challenges and some potential applications of the CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Erwei Zuo
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China.
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
37
|
Tanihara F, Hirata M, Nguyen NT, Le QA, Wittayarat M, Fahrudin M, Hirano T, Otoi T. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim Biotechnol 2021; 32:147-154. [PMID: 31558095 DOI: 10.1080/10495398.2019.1668801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD163 is a putative fusion receptor for virus of porcine reproductive and respiratory syndrome (PRRS). In this study, we introduced a CRISPR/Cas9 system [guide RNAs (gRNAs) with Cas9 protein] targeting the CD163 gene into in vitro-fertilized porcine zygotes by electroporation to generate CD163-modified pigs. First, we designed four types of gRNAs that targeted distinct sites in exon 7 of the CD163 gene. Cas9 protein with different gRNAs was introduced into in vitro-fertilized zygotes by electroporation. When the electroporated zygotes were allowed to develop to blastocysts in vitro and the genome editing efficiency was evaluated using these blastocysts, three (gRNA1, 2, and 4) of the four gRNAs tested successfully edited the CD163 gene. To generate CD163-knockout pigs, a total of 200 electroporated zygotes using these three gRNAs were transferred into the oviducts of oestrous-synchronized surrogate and the surrogate gave birth to eight piglets. Subsequent sequence analysis revealed that one of the piglets carried no wild-type sequence in CD163 gene. The other seven piglets carried only wild-type sequence. Thus, we successfully generated a CD163-edited pig by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes, although further improvement is required to generate genetically modified pigs with high efficiency.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Bogor, Indonesia
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
38
|
Liu Q, Gerdts V. Transmissible Gastroenteritis Virus of Pigs and Porcine Epidemic Diarrhea Virus (Coronaviridae). ENCYCLOPEDIA OF VIROLOGY 2021. [PMCID: PMC7157468 DOI: 10.1016/b978-0-12-809633-8.20928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Kirchdoerfer RN, Bhandari M, Martini O, Sewall LM, Bangaru S, Yoon KJ, Ward AB. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein. Structure 2020; 29:385-392.e5. [PMID: 33378641 PMCID: PMC7962898 DOI: 10.1016/j.str.2020.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/12/2020] [Accepted: 12/07/2020] [Indexed: 11/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus responsible for significant morbidity and mortality in pigs. A key determinant of viral tropism and entry, the PEDV spike protein is a key target for the host antibody response and a good candidate for a protein-based vaccine immunogen. We used electron microscopy to evaluate the PEDV spike structure, as well as pig polyclonal antibody responses to viral infection. The structure of the PEDV spike reveals a configuration similar to that of HuCoV-NL63. Several PEDV protein-protein interfaces are mediated by non-protein components, including a glycan at Asn264 and two bound palmitoleic acid molecules. The polyclonal antibody response to PEDV infection shows a dominance of epitopes in the S1 region. This structural and immune characterization provides insights into coronavirus spike stability determinants and explores the immune landscape of viral spike proteins.
Collapse
Affiliation(s)
- Robert N Kirchdoerfer
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mahesh Bhandari
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Olnita Martini
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sandhya Bangaru
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Kenney SP, Wang Q, Vlasova A, Jung K, Saif L. Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Vet Pathol 2020; 58:438-452. [PMID: 33357102 DOI: 10.1177/0300985820980842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronaviruses (CoVs) comprise a large group of positive stranded RNA viruses that infect a diverse host range including birds and mammals. Infection with CoVs typically presents as mild to severe respiratory or enteric disease, but CoVs have the potential to cause significant morbidity or mortality in highly susceptible age groups. CoVs have exhibited a penchant for jumping species barriers throughout history with devastating effects. The emergence of highly pathogenic or infectious CoVs in humans over the past 20 years, including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and most recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the significant threat that CoV spillovers pose to humans. Similar to the emergence of SARS-CoV-2, CoVs have been devastating to commercial animal production over the past century, including infectious bronchitis virus in poultry and bovine CoV, as well as the emergence and reemergence of multiple CoVs in swine including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus. These naturally occurring animal CoV infections provide important examples for understanding CoV disease as many animal CoVs have complex pathogenesis similar to SARS-CoV-2 and can shed light on the ongoing SARS-CoV-2 outbreak. We provide an overview and update regarding selected existing animal CoVs and their primary host species, diseases caused by CoVs, how CoVs jump species, whether these CoVs pose an outbreak risk or risk to humans, and how we can mitigate these risks.
Collapse
Affiliation(s)
| | | | | | - Kwonil Jung
- 2647The Ohio State University, Wooster, OH, USA
| | - Linda Saif
- 2647The Ohio State University, Wooster, OH, USA
| |
Collapse
|
41
|
Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Microb Pathog 2020; 150:104719. [PMID: 33373693 PMCID: PMC7764473 DOI: 10.1016/j.micpath.2020.104719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The recent outbreak of Covid-19 is posing a severe threat to public health globally. Coronaviruses (CoVs) are the largest known group of positive-sense RNA viruses surviving on an extensive number of natural hosts. CoVs are enveloped and non-segmented viruses with a size between 80 and 120 nm. CoV attachment to the surface receptor and its subsequent entrance into cells is mediated by Spike glycoprotein (S). For enhanced CoV entry and successful pathogenesis of CoV, proteolytic processing and receptor-binding act synergistically for induction of large-scale S conformational changes. The shape, size and orientation of receptor-binding domains in viral attachment proteins are well conserved among viruses of different classes that utilize the same receptor. Therefore, investigations unraveling the distribution of cellular receptors with respect to CoV entry, structural aspects of glycoproteins and related conformational changes are highly significant for understanding virus invasion and infection spread. We present the characteristic features of CoV S-Proteins, their significance for CoVs and related receptor binding activities for pathogenesis and viral survival. We are analyzing the novel role of S-protein of CoVs along with their interactive receptors for improving host immunity and decreasing infection spread. This is hoped that presented information will open new ways in tackling coronavirus, especially for the ongoing epidemic.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamari
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Saad Zafar
- District Headquarters Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Ministry of Agricultural and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
42
|
Hu Z, Li Y, Du H, Ren J, Zheng X, Wei K, Liu J. Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells. BMC Genomics 2020; 21:891. [PMID: 33317444 PMCID: PMC7734901 DOI: 10.1186/s12864-020-07306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is a causative agent of serious viral enteric disease in suckling pigs. Such diseases cause considerable economic losses in the global swine industry. Enhancing our knowledge of PEDV-induced transcriptomic responses in host cells is imperative to understanding the molecular mechanisms involved in the immune response. Here, we analyzed the transcriptomic profile of intestinal porcine epithelial cell line J2 (IPEC-J2) after infection with a classical strain of PEDV to explore the host response. RESULTS In total, 854 genes were significantly differentially expressed after PEDV infection, including 716 upregulated and 138 downregulated genes. Functional annotation analysis revealed that the differentially expressed genes were mainly enriched in the influenza A, TNF signaling, inflammatory response, cytokine receptor interaction, and other immune-related pathways. Next, the putative promoter regions of the 854 differentially expressed genes were examined for the presence of transcription factor binding sites using the MEME tool. As a result, 504 sequences (59.02%) were identified as possessing at least one binding site of signal transducer and activator of transcription (STAT), and five STAT transcription factors were significantly induced by PEDV infection. Furthermore, we revealed the regulatory network induced by STAT members in the process of PEDV infection. CONCLUSION Our transcriptomic analysis described the host genetic response to PEDV infection in detail in IPEC-J2 cells, and suggested that STAT transcription factors may serve as key regulators in the response to PEDV infection. These results further our understanding of the pathogenesis of PEDV.
Collapse
Affiliation(s)
- Zhengzheng Hu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuchen Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junxiao Ren
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianrui Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kejian Wei
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
43
|
Wu JY, Wang F, Wu ZC, Wu SL, Bao WB. Regulatory Effect of Methylation of the Porcine AQP3 Gene Promoter Region on Its Expression Level and Porcine Epidemic Diarrhea Virus Resistance. Genes (Basel) 2020; 11:genes11101167. [PMID: 33036186 PMCID: PMC7599489 DOI: 10.3390/genes11101167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/12/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
As an important carrier for intestinal secretion and water absorption, aquaporin 3 (AQP3) is closely related to diarrhea. In this study, we investigated the mechanisms of AQP3 gene expression regulation in porcine epidemic diarrhea virus (PEDV)-induced diarrhea confirmed by PCR amplification and sequencing. Evaluation of intestinal pathology showed that diarrhea caused by PEDV infection destroyed the intestinal barrier of piglets. qPCR analysis showed that AQP3 expression in the small intestine of PEDV-infected piglets was extremely significantly decreased. qPCR and Bisulfite sequencing PCR revealed an increase in the methylation levels of both CpG islands in the AQP3 promoter region in the jejunum of PEDV-infected piglets. The methylation of mC-20 and mC-10 sites within the two CpG islands showed a significant negative correlation with AQP3 expression. Chromatin Co-Immunoprecipitation (ChIP)-PCR showed that the Sp1 transcription factor was bound to the AQP3 promoter region containing these two CpG sites. AQP3 expression was also extremely significantly reduced in Sp1-inhibited IPEC-J2 cells, indicating that abnormal methylation at the mC-20 site of CpG1 and the mC-10 site of CpG2 reduces its expression in PEDV-infected piglet jejunum by inhibiting the binding of Sp1 to the AQP3 promoter. These findings provide a theoretical basis for further functional studies of porcine AQP3.
Collapse
Affiliation(s)
- Jia-Yun Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
| | - Fang Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
| | - Zheng-Chang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Long Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Wen-Bin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.-Y.W.); (F.W.); (Z.-C.W.); (S.-L.W.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9316
| |
Collapse
|
44
|
Li Z, Ma Z, Li Y, Gao S, Xiao S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb Pathog 2020; 149:104553. [PMID: 33011361 PMCID: PMC7527827 DOI: 10.1016/j.micpath.2020.104553] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an emerging and re-emerging coronavirus disease characterized by vomiting, acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets, leading to huge economic losses in the global swine industry. Vaccination remains the most promising and effective way to prevent and control PEDV. However, effective vaccines for PEDV are still under development. Understanding the genomic structure and function of PEDV and the influence of the viral components on innate immunity is essential for developing effective vaccines. In the current review, we systematically describe the recent developments in vaccine against PEDV and the roles of structural proteins, non-structural proteins and accessory proteins of PEDV in affecting viral virulence and regulating innate immunity, which will provide insight into the rational design of effective and safe vaccines for PEDV or other coronaviruses. Advances in vaccines of PEDV, such as inactivated and attenuated live vaccines, subunit vaccines, and nucleic acid vaccines. The application of reverse genetics in the development of live attenuated PEDV vaccines. The roles of PEDV proteins in affecting viral virulence and regulating innate immunity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
45
|
Wang Y, Grunewald M, Perlman S. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods Mol Biol 2020; 2203:1-29. [PMID: 32833200 DOI: 10.1007/978-1-0716-0900-2_1] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. CoVs cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs, and upper respiratory tract and kidney disease in chickens to lethal human respiratory infections. Most recently, the novel coronavirus, SARS-CoV-2, which was first identified in Wuhan, China in December 2019, is the cause of a catastrophic pandemic, COVID-19, with more than 8 million infections diagnosed worldwide by mid-June 2020. Here we provide a brief introduction to CoVs discussing their replication, pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV), which are relevant for understanding COVID-19.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Matthew Grunewald
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
46
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am J Hum Genet 2020; 107:381-402. [PMID: 32814065 PMCID: PMC7420067 DOI: 10.1016/j.ajhg.2020.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 pandemic raises many scientific and clinical questions. These include how host genetic factors affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. We reviewed the literature on host genetic factors related to coronaviruses, systematically focusing on human studies. We identified 1,832 articles of potential relevance. Seventy-five involved human host genetic factors, 36 of which involved analysis of specific genes or loci; aside from one meta-analysis, all were candidate-driven studies, typically investigating small numbers of research subjects and loci. Three additional case reports were described. Multiple significant loci were identified, including 16 related to susceptibility (seven of which identified protective alleles) and 16 related to outcomes (three of which identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Among other studies, 30 involved both human and non-human host genetic factors related to coronavirus, 178 involved study of non-human (animal) host genetic factors related to coronavirus, and 984 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis. Previous human studies have been limited by issues that may be less impactful now, including low numbers of eligible participants and limited availability of advanced genomic methods; however, these may raise additional considerations. We outline key genes and loci from animal and human host genetic studies that may bear investigation in the study of COVID-19. We also discuss how previous studies may direct current lines of inquiry.
Collapse
Affiliation(s)
- Marissa LoPresti
- University of Florida College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin D Solomon
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Zhang S, Cao Y, Yang Q. Transferrin receptor 1 levels at the cell surface influence the susceptibility of newborn piglets to PEDV infection. PLoS Pathog 2020; 16:e1008682. [PMID: 32730327 PMCID: PMC7419007 DOI: 10.1371/journal.ppat.1008682] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 08/11/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) mainly infects the intestinal epithelial cells of newborn piglets causing acute, severe atrophic enteritis. The underlying mechanisms of PEDV infection and the reasons why newborn piglets are more susceptible than older pigs remain incompletely understood. Iron deficiency is common in newborn piglets. Here we found that high levels of transferrin receptor 1 (TfR1) distributed in the apical tissue of the intestinal villi of newborns, and intracellular iron levels influence the susceptibility of newborn piglets to PEDV. We show that iron deficiency induced by deferoxamine (DFO, an iron chelating agent) promotes PEDV infection while iron accumulation induced by ferric ammonium citrate (FAC, an iron supplement) impairs PEDV infection in vitro and in vivo. Besides, PEDV infection was inhibited by occluding TfR1 with antibodies or decreasing TfR1 expression. Additionally, PEDV infection was increased in PEDV-resistant Caco-2 and HEK 293T cells over-expressed porcine TfR1. Mechanistically, the PEDV S1 protein interacts with the extracellular region of TfR1 during PEDV entry, promotes TfR1 re-localization and clustering, then activates TfR1 tyrosine phosphorylation mediated by Src kinase, and heightens the internalization of TfR1, thereby promoting PEDV entry. Taken together, these data suggest that the higher expression of TfR1 in the apical tissue of the intestinal villi caused by iron deficiency, accounts for newborn piglets being acutely susceptible to PEDV. Newborn piglets are particularly susceptible to infection by PEDV, with 80–100% dying within days of infection. The reasons for newborns’ acute susceptibility to PEDV infection have not been elucidated clearly. The primarily target of PEDV is the porcine intestinal epithelial cells. Here, we show that the high expression of TfR1 in the apical tissue of intestinal villi in newborn piglets with iron deficiency is a reason for their susceptibility to PEDV. Further, we demonstrate that iron supplementation reduces PEDV infection. This study reveals that iron plays an important role in the susceptibility of newborn piglets to PEDV and provides insights into therapies for the prevention and treatment of PEDV infections.
Collapse
Affiliation(s)
- Shuai Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Yanan Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang, Nanjing, Jiangsu, PR China
| |
Collapse
|
48
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
49
|
Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res 2020; 286:198045. [PMID: 32502552 PMCID: PMC7266596 DOI: 10.1016/j.virusres.2020.198045] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration and high mortality in neonatal piglets. Two different genogroups of PEDV, S INDEL [PEDV variant containing multiple deletions and insertions in the S1 subunit of the spike (S) protein, G1b] and non-S INDEL (G2b) strains were detected during the diarrheal disease outbreak in US swine in 2013-2014. Similar viruses are also circulating globally. Continuous improvement and update of biosecurity and vaccine strains and protocols are still needed to control and prevent PEDV infections worldwide. Although the non-S INDEL PEDV was highly virulent and the S INDEL PEDV caused milder disease, the latter has the capacity to cause illness in a high number of piglets on farms with low biosecurity and herd immunity. The main PEDV transmission route is fecal-oral, but airborne transmission via the fecal-nasal route may play a role in pig-to-pig and farm-to-farm spread. PEDV infection of neonatal pigs causes fecal virus shedding (alongside frequent detection of PEDV RNA in the nasal cavity), acute viremia, severe atrophic enteritis (mainly jejunum and ileum), and increased pro-inflammatory and innate immune responses. PEDV-specific IgA effector and memory B cells in orally primed sows play a critical role in sow lactogenic immunity and passive protection of piglets. This review focuses on the etiology, transmission, pathogenesis, and prevention and control of PEDV infection.
Collapse
Affiliation(s)
- Kwonil Jung
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| | - Qiuhong Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
50
|
Role of Porcine Aminopeptidase N and Sialic Acids in Porcine Coronavirus Infections in Primary Porcine Enterocytes. Viruses 2020; 12:v12040402. [PMID: 32260595 PMCID: PMC7232180 DOI: 10.3390/v12040402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been reported to use aminopeptidase N (APN) as a cellular receptor. Recently, the role of APN as a receptor for PEDV has been questioned. In our study, the role of APN in PEDV and TGEV infections was studied in primary porcine enterocytes. After seven days of cultivation, 89% of enterocytes presented microvilli and showed a two- to five-fold higher susceptibility to PEDV and TGEV. A significant increase of PEDV and TGEV infection was correlated with a higher expression of APN, which was indicative that APN plays an important role in porcine coronavirus infections. However, PEDV and TGEV infected both APN positive and negative enterocytes. PEDV and TGEV Miller showed a higher infectivity in APN positive cells than in APN negative cells. In contrast, TGEV Purdue replicated better in APN negative cells. These results show that an additional receptor exists, different from APN for porcine coronaviruses. Subsequently, treatment of enterocytes with neuraminidase (NA) had no effect on infection efficiency of TGEV, implying that terminal cellular sialic acids (SAs) are no receptor determinants for TGEV. Treatment of TGEV with NA significantly enhanced the infection which shows that TGEV is masked by SAs.
Collapse
|