1
|
Gu P, Zhu Y, Xu P, Zhao Q, Zhao X, Zhao K, Wang X, Zhang W, Bao Y, Shi W. Poria cocos polysaccharide-loaded Alum Pickering emulsion as vaccine adjuvant to enhance immune responses. Colloids Surf B Biointerfaces 2024; 244:114144. [PMID: 39116600 DOI: 10.1016/j.colsurfb.2024.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Traditional Alum adjuvants mainly elicit a Th2 humoral immune response, but fail to generate a robust Th1 cellular immune response. However, the cellular immune response is essential for vaccination against cancer and a number of chronic infectious diseases, including human immunodeficiency virus infection and tuberculosis. In our previous study, we demonstrated that the polysaccharide from Poria cocos (PCP) has the potential to serve as an immunologic stimulant, enhancing both humoral and cellular immune responses. However, this effect was only observed at high concentrations. In this study, to enhance the immune-stimulation effect of PCP and modify the type of immune response elicited by Alum adjuvant, we successfully developed a Pickering emulsion delivery system (PCP-Al-Pickering) using PCP-loaded Alhydrogel particles as the stabilizer. After optimization, the Pickering emulsion exhibited excellent storage capacity and effectively adsorbed the PCP and antigen. As an adjuvant delivery system, the PCP-Al-Pickering emulsion facilitated the antigen uptake by macrophages, increased the recruitment of cells at injection sites, improved the activation of dendritic cells in draining lymph nodes, elicited a potent and durable antibody response, and promoted the activation of CD4+ and CD8+ T cells. Importantly, the PCP-Al-Pickering emulsion adjuvant elicited a balanced Th1 and Th2 immune response, in comparison to Alum adjuvant. The PCP-Al-Pickering emulsion may serve as a safe and promising adjuvant delivery system to enhance immune responses.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Kuan Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wuchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Deng L, Huang G. Preparation, structure and application of polysaccharides from Poria cocos. RSC Adv 2024; 14:31008-31020. [PMID: 39351410 PMCID: PMC11440477 DOI: 10.1039/d4ra04005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Poria cocos polysaccharides (PCPs) are fungal polysaccharides derived from the traditional Chinese medicine Poria cocos. They are considered an important active ingredient for their pharmacological activity. Herein, the extraction, separation and purification, structure, and application of PCPs are reviewed. Additional research is necessary to fully understand the advanced structure of PCPs, which has implications for their structure-activity relationship. Their application mostly involves the medical industry, with less involvement in other fields. This article highlights the current research status on PCPs in the above-mentioned areas and some problems that need to be solved in future research. Additionally, it points the way for further studies on PCPs in the hopes that they will be more widely and realistically used in various industries.
Collapse
Affiliation(s)
- Laiqing Deng
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
3
|
Gu P, Xu P, Zhu Y, Zhao Q, Zhao X, Fan Y, Wang X, Ma N, Bao Y, Shi W. Structural characterization and adjuvant activity of a water soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 273:133067. [PMID: 38866287 DOI: 10.1016/j.ijbiomac.2024.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Adjuvants, as the essential component of vaccines, are crucial in enhancing the magnitude, breadth and durability of immune responses. Unfortunately, commonly used Alum adjuvants predominantly provoke humoral immune response, but fail to evoke cellular immune response, which is crucial for the prevention of various chronic infectious diseases and cancers. Thus, it is necessary to develop effective adjuvants to simultaneously induce humoral and cellular immune response. In this work, we obtained a water soluble polysaccharide isolated and purified from Poria cocos, named as PCP, and explored the possibility of PCP as a vaccine adjuvant. The PCP, with Mw of 20.112 kDa, primarily consisted of →6)-α-D-Galp-(1→, with a small amount of →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1→. Our results demonstrated that the PCP promoted the activation of dendritic cells (DCs) and macrophages in vitro. As the adjuvant to ovalbumin, the PCP facilitated the activation of DCs in lymph nodes, and evoked strong antibody response with a combination of Th1 and Th2 immune responses. Moreover, compared to Alum adjuvant, the PCP markedly induced a potent cellular response, especially the cytotoxic T lymphocytes response. Therefore, we confirmed that the PCP has great potential to be an available adjuvant for simultaneously inducing humoral and cellular immune responses.
Collapse
Affiliation(s)
- Pengfei Gu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Panpan Xu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yixuan Zhu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qi Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xinghua Zhao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yingsai Fan
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Yongzhan Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
4
|
Zhang J, Wang H, Meng S, Zhang C, Guo L, Miao Z. The Effects of Poria cocos Polysaccharides on Growth Performance, Immunity, and Cecal Microflora Composition of Weaned Piglets. Animals (Basel) 2024; 14:1121. [PMID: 38612361 PMCID: PMC11011092 DOI: 10.3390/ani14071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This paper aims to identify Poria cocos polysaccharides (PCPs) as a potential feed additive used for swine production; thus, we explored the effects of different dietary inclusion levels of PCP on growth performance, immunity, and cecal microflora composition in weaned piglets. For this, a total of 120 28-day-old Duroc × Landrace × Yorkshire weaned piglets (8.51 ± 0.19 kg; 28 ± 1 days of age) were randomly allocated to five groups that were fed a basal diet supplemented with 0, 0.025%, 0.05%, 0.1%, and 0.2% PCP, respectively, for 42 days. The results indicated that the average daily gain (ADG) and gain/feed ratio were higher in the PCP treatment groups than in the control group, with a linear effect. The serum concentrations of IgG, IgA, IL-2, IFN-γ, the number of CD4+ T cells, and the CD4+-to-CD8+ T-cell ratio (CD4+/CD8+) were increased, while the levels of IL-6 and TNF-α were decreased in the PCP supplementation groups compared with those in the control group. Furthermore, the cytokine mRNA expression levels exhibited a similar trend in the spleen. PCP supplementation also reduced the abundance of Escherichia coli and Salmonella and enhanced that of Lactobacilli and Bifidobacteria in the cecum. In summary, dietary PCP inclusion exerted positive effects on the growth performance, immunity, and cecal microbiota of piglets and showed potential for use as a feed additive for improving the health of weaned piglets, with 0.1% being the optimal dosage.
Collapse
Affiliation(s)
- Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Heming Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Shuaitao Meng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Chuankuan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| | - Liping Guo
- School of Food Science, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China;
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Xinxiang 453003, China; (J.Z.); (H.W.); (S.M.); (C.Z.)
| |
Collapse
|
5
|
Yimam M, Horm T, O'Neal A, Jiao P, Hong M, Jia Q. An Aloe-Based Composition Constituting Polysaccharides and Polyphenols Protected Mice against D-Galactose-Induced Immunosenescence. J Immunol Res 2024; 2024:9307906. [PMID: 38516617 PMCID: PMC10957255 DOI: 10.1155/2024/9307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/09/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
A decline in immune response, exhibited in the form of immunosenescence and inflammaging, is an age-associated disturbance of the immune system known to predispose the elderly to a greater susceptibility to infection and poor vaccine response. Polysaccharides and polyphenols from botanicals are known for their immune modulation effects. Here we evaluated a standardized mushroom-based composition, UP360, from Aloe barbadensis, Poria cocos, and Rosmarinus officinalis, as a natural nutritional supplement for a balanced immune response in an accelerated aging mouse model. Immunosenescence was induced by continual subcutaneous injection of D-galactose (D-gal) at a dose of 500 mg/kg/day to CD-1 mice. UP360 was administered at oral doses of 200 and 400 mg/kg to the mice starting on the 5th week of D-gal injection. The study lasted for a total of 9 weeks. All mice were given a quadrivalent influenza vaccine at 3 µg/animal via intramuscular injection 14 days before the end of the study. A group of D-gal-treated mice treated at 400 mg/kg/day UP360 was kept without vaccination. Whole blood, serum, spleen homogenate, and thymus tissues were used for analysis. UP360 was found to improve the immune response as evidenced by stimulation of innate and adaptive immune responses, increase antioxidant capacity as reflected by augmented SOD and Nrf2, and preserve vital immune organs, such as the thymus, from aging-associated damage. The findings depicted in this report show the effect of the composition in activating and maintaining homeostasis of the immune system both during active infections and as a preventive measure to help prime the immune system. These data warrant further clinical study to explore the potential application of the mushroom-based composition as an adjunct nutritional supplement for a balanced immune response.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Alexandria O'Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA
| |
Collapse
|
6
|
Lv Y, Yang Y, Chen Y, Wang D, Lei Y, Pan M, Wang Z, Xiao W, Dai Y. Structural characterization and immunomodulatory activity of a water-soluble polysaccharide from Poria cocos. Int J Biol Macromol 2024; 261:129878. [PMID: 38309394 DOI: 10.1016/j.ijbiomac.2024.129878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In order to investigate the structural characteristics and immunomodulatory effects of Poria cocos polysaccharides, a water-soluble homogeneous polysaccharide (PCP-2) was isolated by water extraction and alcohol precipitation and further purified by Cellulose DEAE-52 and Sephacryl S-100HR column chromatography. PCP-2 is a heteropolysaccharide composed of glucose, galactose, mannose, and fucose in a molar ratio of 42.0: 35.0: 13.9: 9.1. It exhibits a narrow molecular weight distribution at 2.35 kDa with a branching degree of 37.1 %. The main chain types of PCP-2 include 1,3-β-D-Glc and 1,6-β-D-Glc as the backbone glucans and 1,6-α-D-Gal as the backbone heterogalactan. In vitro experiments demonstrate that PCP-2 directly stimulate RAW264.7 cell proliferation and secretion of inflammatory factors such as NO and TNF-α. In cyclophosphamide (CTX)-induced mice, it promotes the development of thymus and spleen immune organs, elevates the blood levels of IgG, IgA, IgM and CD3+CD4+ T cells, increases the intestinal villus height/ crypt depth ratio and improves gut barrier dysfunctions. These findings suggest that PCP-2 is a natural fungal polysaccharide with broad spectrum of immunoenhancing effects, which can significantly ameliorate the immunocompromised state.
Collapse
Affiliation(s)
- Yaozhong Lv
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China
| | - Yajun Yang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Chen
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Dongfan Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Yipeng Lei
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Mingyue Pan
- Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Zhenzhong Wang
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China
| | - Wei Xiao
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Lianyungang, Jiangsu 222001, China; Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, Jiangsu 222001, China.
| | - Yujie Dai
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Zhou X, Wang H, Zhang J, Guan Y, Zhang Y. Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol 2024; 254:128118. [PMID: 37977452 DOI: 10.1016/j.ijbiomac.2023.128118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Current rabies vaccines require 5 doses to provide full protection from the deadly virus, which significantly reduce the compliance of recipients. To minimize the number of immunizations herein single injection vaccines were developed. First a single injection vaccine was designed using rabies virus glycoprotein (G protein) as antigen. A time-controlled release system which uses dynamic layer-by-layer films as erodible coating was employed to accomplish multiply pulsatile releases of G protein. The single-injection vaccine elicits potent humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of G protein. To further improve its performance, a second single injection vaccine, in which lentinan was added as adjuvant, was designed. This single-injection vaccine again elicits humoral and cellular immune responses comparable to the corresponding multi-dose ordinary vaccines because of their similar release pattern of antigen and adjuvant. In addition, the second single-injection vaccine elicits higher level immune response and provides higher efficiency on virus inhibition than the first one because lentinan can booster immune response.
Collapse
Affiliation(s)
- Xiaoyong Zhou
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haozheng Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jianchen Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ying Guan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjun Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Pharmaceutical Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
8
|
Shi H, Luo W, Wang S, Dai J, Chen C, Li S, Liu J, Zhang W, Huang Q, Zhou R. Therapeutic efficacy of tylvalosin combined with Poria cocos polysaccharides against porcine reproductive and respiratory syndrome. Front Vet Sci 2023; 10:1242146. [PMID: 37609059 PMCID: PMC10440737 DOI: 10.3389/fvets.2023.1242146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases of pigs worldwide. Vaccination and various management measures have been implemented to control PRRS. However, due to high genetic diversity and insufficient understanding of the pathogenesis and immunological mechanisms, PRRS is still a challenge to the pig industry. Therefore, it is important to develop novel strategies to combat PRRS virus (PRRSV) infection. In this study, our data show that tylvalosin, a third-generation animal-specific macrolide, could inhibit PRRSV replication in MARC-145 cells, and suppress the PRRSV-induced NF-κB activation and cytokines expression. The pig infection experiment further demonstrated that tylvalosin could significantly reduce the virus loads in serum and tissues, and alleviate lung lesions of pigs infected with highly pathogenic PRRSV strains. The fever and loss of daily gain (LoDG) of the pigs were decreased as well. Considering the feature of immune suppression of PRRSV, a combination of tylvalosin with the immunopotentiator Poria cocos polysaccharides (PCP) was developed. Pig experiment showed this combination had a better therapeutic efficacy against PRRSV infection than tylvalosin and PCP alone in attenuating lung lesions, alleviating fever, and suppressing cytokines production. This study suggests that tylvalosin has significant antiviral and anti-inflammatory effects against PRRSV infection, and the combination of tylvalosin and PCP provides a promising strategy for PRRS treatment.
Collapse
Affiliation(s)
- Hong Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wentao Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuaiyang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jun Dai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Cuilan Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuo Li
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Jie Liu
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Weiyuan Zhang
- Hubei Provincial Bioengineering Technology Research Center for Animal Health Products, Yingcheng, China
| | - Qi Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, China
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China
- The HZAU-HVSEN Research Institute, Wuhan, China
| |
Collapse
|
9
|
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines (Basel) 2023; 11:vaccines11040756. [PMID: 37112668 PMCID: PMC10147034 DOI: 10.3390/vaccines11040756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.
Collapse
Affiliation(s)
- Krithiga Natesan
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
- Correspondence: ; Tel.: +91-9449992287
| | | | - Sharada Ramakrishnaiah
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Rathnamma Doddamane
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Anthony R. Fooks
- APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
10
|
The differences between the water- and alkaline-soluble Poria cocos polysaccharide: A review. Int J Biol Macromol 2023; 235:123925. [PMID: 36871682 DOI: 10.1016/j.ijbiomac.2023.123925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Poria cocos (PC) refers to a fungal species which is also known as "Fuling" in China. For >2000 years, PC has demonstrated its therapeutic values as a kind of traditional medicine. It is believed that the various biological benefits created by PCs highly rely on the Poria cocos polysaccharide (PCP). This review recapitulates the recent progress made in PCP in four aspects: i) the methods of extraction, separation, and purification, ii) structural characterization and identification, iii) the related bioactivities and mechanism of action, and iv) structure-activity relationships. Through discussion about the objective as mentioned above, it can be found out that PCP is categorized into water-soluble polysaccharide (WPCP) and alkaline-soluble polysaccharide (APCP), which are totally different in structure and bioactivity. The structures of WPCP are multiplicity whose backbone can be (1,6)-α-galactan and (1,3)-β-mannoglucan etc. to perform various bioactivities including anti-tumor effect, anti-depressant effect, anti-Alzheimer effect, anti-atherosclerosis effect, hepatoprotection etc. The structures of APCP are much more single with backbone of (1,3)-β-D-glucan and the studies of activity concentrate on anti-tumor effect, anti-inflammatory effect and immunomodulation. Besides, the future opportunities of WPCP are primary structure identification. For APCP, scholars can focus on the conformation of polysaccharide and its relationship with activity.
Collapse
|
11
|
Yang J, Dong X, Li B, Chen T, Yu B, Wang X, Dou X, Peng B, Hu Q. Poria cocos polysaccharide-functionalized graphene oxide nanosheet induces efficient cancer immunotherapy in mice. Front Bioeng Biotechnol 2023; 10:1050077. [PMID: 36727039 PMCID: PMC9885324 DOI: 10.3389/fbioe.2022.1050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction: Tumor vaccines that induce robust humoral and cellular immune responses have attracted tremendous interest for cancer immunotherapy. Despite the tremendous potential of tumor vaccines as an effective approach for cancer treatment and prevention, a major challenge in achieving sustained antitumor immunity is inefficient antigen delivery to secondary lymphoid organs, even with adjuvant aid. Methods: Herein, we present antigen/adjuvant integrated nanocomplexes termed nsGO/PCP/OVA by employing graphene oxide nanosheet (nsGO) as antigen nanocarriers loaded with model antigen ovalbumin (OVA) and adjuvant, Poria cocos polysaccharides (PCP). We evaluated the efficacy of nsGO/PCP/OVA in activating antigen-specific humoral as well as cellular immune responses and consequent tumor prevention and rejection in vivo. Results: The optimally formed nsGO/PCP/OVA was approximately 120-150 nm in diameter with a uniform size distribution. Nanoparticles can be effectively engulfed by dendritic cells (DCs) through receptor-mediated endocytosis, induced the maturation of DCs and improved the delivery efficiency both in vitro and in vivo. The nsGO/PCP/OVA nanoparticles also induced a significant enhancement of OVA antigen-specific Th1 and Th2 immune responses in vivo. In addition, vaccination with nsGO/PCP/OVA not only significantly suppressed tumor growth in prophylactic treatments, but also achieved a therapeutic effect in inhibiting the growth of already-established tumors. Conclusion: Therefore, this potent nanovaccine platform with nanocarrier nsGO and PCP as adjuvants provides a promising strategy for boosting anti-tumor immunity for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinning Yang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoxiao Dong
- Institute of Medical Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Boye Li
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing, China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Xiaoli Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Xiangnan Dou
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, China,Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China,*Correspondence: Xiaoli Wang, ; Xiangnan Dou, ; Bo Peng, ; Qin Hu,
| |
Collapse
|
12
|
Lewis ED, Crowley DC, Guthrie N, Evans M. Healthy adults supplemented with a nutraceutical formulation containing Aloe vera gel, rosemary and Poria cocos enhances the effect of influenza vaccination in a randomized, triple-blind, placebo-controlled trial. Front Nutr 2023; 10:1116634. [PMID: 37168053 PMCID: PMC10165552 DOI: 10.3389/fnut.2023.1116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023] Open
Abstract
The study objective was to examine the role of a formulation, UP360, containing rosemary and Poria cocos extracts and Aloe vera gel powder, in healthy adults on supporting immune function with influenza vaccination. A 56-day randomized, triple-blind, placebo-controlled, parallel study consisted of a 28-day pre-vaccination period, an influenza vaccination on Day 28 and a 28-day post-vaccination period. Men and women ages 40-80 who had not yet been vaccinated for the flu were randomized to UP360 or Placebo (n = 25/group). At baseline, Days 28 and 56, blood lymphocyte populations, immunoglobulins (Ig), and cytokines were measured, and quality of life (QoL) questionnaires administered. The Wisconsin Upper Respiratory Symptom Survey (WURSS)-24 was completed daily by participants to measure incidence of upper respiratory tract infection (URTIs). In the post-vaccination period, TCR gamma-delta (γδ+) cells, known as γδ T cells, increased with UP360 supplementation compared to Placebo (p < 0.001). The UP360 group had a 15.6% increase in influenza B-specific IgG levels in the post-vaccination period (p = 0.0006). UP360 significantly increased the amount of circulating glutathione peroxidase (GSH-Px) from baseline at Day 28 (p = 0.0214), an enzyme that is important for neutralizing free radicals. While UP360 supplementation initially decreased levels of anti-inflammatory cytokine IL-1RA in the pre-vaccination period, IL-1RA levels were increased in the post-vaccination period (p ≤ 0.0482). Levels of IL-7 increased from baseline at Day 56 with UP360 supplementation (p = 0.0458). Despite these changes in immune markers, there were no differences in URTI symptoms or QoL between UP360 and Placebo. These results suggest UP360 supplementation was beneficial in eliciting a healthy, robust immune response in the context of vaccination. No changes in subjective measures of URTI illness or QoL demonstrated that participants' QoL was not negatively impacted by UP360 supplementation. There were no differences in clinical chemistry, vitals or adverse events confirming the good safety profile of UP360. The trial was registered on the International Clinical Trials Registry Platform (ISRCTN15838713).
Collapse
|
13
|
Rabies Vaccine: Recent Update and Comprehensive Review of in vitro and in vivo Studies. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Xu T, Zhang H, Wang S, Xiang Z, Kong H, Xue Q, He M, Yu X, Li Y, Sun D, Gao P, Cong Z. A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. Int J Biol Macromol 2022; 217:536-551. [PMID: 35843404 DOI: 10.1016/j.ijbiomac.2022.07.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Poria cocos polysaccharide (PCP) is one of the main active components of Poria cocos that is extensively used in the world. PCP can be divided into intro-polysaccharides and exopolysaccharides. PCP is mainly composed of glucose, galactose and mannose. There are many methods to exact PCP, and methods can affect its yield. PCP and its derivatives exhibit diverse biological functions such as antitumour, antioxidant, anti-inflammatory, immune-regulatory, hepatoprotective, etc. There is the potential application of PCP as drug carriers. The review provides a comprehensive summary of the latest extraction and purification methods of PCP, its chemistry, synthesis of PCP derivates, their pharmacological activities and their applications as drug carriers. This review provides comprehensive information on PCP, which can be used as the basis for further research on PCP and its derivates.
Collapse
Affiliation(s)
- Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongmeng Zhang
- Laboratory management office, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongjie Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute: Shandong Cancer Hospital and Institute, Jinan 250117, China.
| |
Collapse
|
15
|
Zhang Y, Zhang G, Ling J. Medicinal Fungi with Antiviral Effect. Molecules 2022; 27:molecules27144457. [PMID: 35889330 PMCID: PMC9322162 DOI: 10.3390/molecules27144457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Pandemics from various viruses make natural organisms face challenges over and over again. Therefore, new antiviral drugs urgently need to be found to solve this problem. However, drug research and development is a very difficult task, and finding new antiviral compounds is desirable. A range of medicinal fungi such as Ganoderma lucidum and Cordyceps sinensis are widely used all over the world, and they can enhance human immunity and direct anti-virus activities and other aspects to play an antiviral role. Medicinal fungi are used as foods or as food supplements. In this review, the species of medicinal fungi with antiviral activity in recent decades and the mechanism of antiviral components were reviewed from the perspectives of human, animal, and plant viruses to provide a comprehensive theory based on better clinical utilization of medicinal fungi as antiviral agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| |
Collapse
|
16
|
Aly NI, Elnaker YF, Salama ZTS, Diab MS, Saber EA, Sotohy SA, Elfeil WK, Khodeir MH. Preparation and the assessed efficacy of oral baits for the vaccination of free-roaming dogs against rabies. Vet World 2022; 15:1383-1390. [PMID: 35765489 PMCID: PMC9210852 DOI: 10.14202/vetworld.2022.1383-1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Rabies is considered a highly fatal zoonotic disease and many deaths in humans have been associated with dog bites. This study was designed to prepare an oral anti-rabies vaccine in the form of baits to eliminate the disease in free-roaming dogs and subsequently protect humans from dog bites. Materials and Methods: The Evelyn Rokintniki Abelseth (ERA) rabies virus strain was propagated in baby hamster kidney cell cultures and adjusted to the recommended dose for application. Four forms of oral baits were employed with the rabies vaccine, which was evaluated for safety, acceptability, and potency in different dog groups. Enzyme-Linked Immunosorbent Assay (ELISA) and the serum neutralization test (SNT) were used to determine the protective rabies antibody titer in the sera of vaccinated dogs. Results: According to the results, a dose of 3 mL of the ERA strain, containing a viral titer of 107.6 TCID50/mL, induced a mean antibody titer of 25.6 by SNT, and the PI% was 75.7 by Block ELISA, providing a protective level of the rabies antibody in 100% of vaccinated dogs. All used baits were found to be safe, inducing no abnormal general post-vaccination signs (the signs are limited to mild fever, mild loss of appetite, and mild-to-moderate loss of energy for 24-36 h after vaccination). Conclusion: It was found that most of the accepted and highly potent bait types consisted of a mixture of wheat flour, vegetable oil, sodium alginate, corn starch, meat meal, cellulose gum, and water. This dog meal was covered with bran and edible wax to seal the bait cavity after inserting the vaccine sachet. This bait was able to induce a protective level of rabies antibodies in 100% of vaccinated dogs after receiving one bait/dog. Hence, such a bait could be recommended for use in the protection of free-roaming dogs and the elimination of the disease.
Collapse
Affiliation(s)
- Naglaa I. Aly
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| | - Yasser F. Elnaker
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Zeinab T. S. Salama
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Eman A. Saber
- Department of Infectious Diseases, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| | - Sotohy A. Sotohy
- Department of Animal, Poultry and Environmental Hygiene, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Wael K. Elfeil
- Department of Avian and Rabbit, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed H. Khodeir
- Department of Pet Animal Vaccine Research Veterinary Serum and Vaccine Research Institute, Agriculture Research Center, Ministry of Agriculture, Abassia, Cairo, Egypt
| |
Collapse
|
17
|
Li L, Zuo ZT, Wang YZ. The Traditional Usages, Chemical Components and Pharmacological Activities of Wolfiporia cocos: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:389-440. [PMID: 35300566 DOI: 10.1142/s0192415x22500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As an endemic species,Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. is widely distributed, such as in China, Korea, Japan, and North America, which have had a dual-purpose resource for medicines and food for over 2000 years. The applications of W. cocos were used to treat diseases including edema, insomnia, spleen deficiency, and vomiting. What's more, there have been wide uses of such edible fungi as a function food or dietary supplement recently. Up until now, 166 kinds of chemical components have been isolated and identified from W. cocos including triterpenes, polysaccharides, sterols, diterpenes, and others. Modern pharmacological studies showed that the components hold a wide range of pharmacological activities both in vitro and in vivo, such as antitumor, anti-inflammatory, antibacterial, anti-oxidant, and antidepressant activities. In addition, present results showed that the mechanisms of pharmacological activities were closely related to chemical structures, molecular signaling paths and the expression of relate proteins for polysaccharides and triterpenes. For further in-depth studies on this fungus based on the recent research status, this review provided some perspectives and systematic summaries of W. cocos in traditional uses, chemical components, pharmacological activities, separation and analysis technologies, and structure-activity relationships.
Collapse
Affiliation(s)
- Lian Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China.,College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Zhi-Tian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, P. R. China
| |
Collapse
|
18
|
Wan X, Yin Y, Zhou C, Hou L, Cui Q, Zhang X, Cai X, Wang Y, Wang L, Tian J. Polysaccharides derived from Chinese medicinal herbs: A promising choice of vaccine adjuvants. Carbohydr Polym 2022; 276:118739. [PMID: 34823775 DOI: 10.1016/j.carbpol.2021.118739] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023]
Abstract
Adjuvants have been used in vaccines for a long time to promote the body's immune response, reducing vaccine dosage and production costs. Although many vaccine adjuvants are developed, the use in human vaccines is limited because of either limited action or side effects. Therefore, the development of new vaccine adjuvants is required. Many studies have found that natural polysaccharides derived from Traditional Chinese medicine (TCM) possess good immune promoting effects and simultaneously improve humoral, cellular and mucosal immunity. Recently polysaccharide adjuvants have attracted much attention in vaccine preparation because of their intrinsic characteristics: immunomodulation, biocompatibility, biodegradability, low toxicity and safety. This review article systematically analysed the literature on polysaccharides possessing vaccine adjuvant activity from TCM plants, such as Astragalus polysaccharide (APS), Rehmannia glutinosa polysaccharide (RGP), Isatis indigotica root polysaccharides (IRPS), etc. and their derivatives. We believe that polysaccharide adjuvants can be used to prepare the vaccines for clinical use provided their mechanisms of action are studied in detail.
Collapse
Affiliation(s)
- Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiming Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changzheng Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Qinghua Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoping Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuliang Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lizhu Wang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jingzhen Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
19
|
Kardani K, Sadat SM, Kardani M, Bolhassani A. The next generation of HCV vaccines: a focus on novel adjuvant development. Expert Rev Vaccines 2021; 20:839-855. [PMID: 34114513 DOI: 10.1080/14760584.2021.1941895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines. Many vaccine candidates are in development to fight against HCV, but their efficacy has so far proven limited partly due to low immunogenicity. AREAS COVERED We explore development of novel and powerful adjuvants to achieve an effective HCV vaccine. The basis for developing strong adjuvants is to understand the innate immunity pathway, which subsequently stimulates humoral and cellular immune responses. We have also investigated immunogenicity of developed adjuvants that have been used in recent studies available in online databases such as PubMed, PMC, ScienceDirect, Google Scholar, etc. EXPERT OPINION Adjuvants are used as a part of vaccine formulation to boost vaccine immunogenicity and antigen delivery. Several FDA-approved adjuvants are used in licensed human vaccines. Unfortunately, no adjuvant has yet been proven to boost HCV immune responses to the extent needed for an effective vaccine. One of the promising approaches for developing an effective adjuvant is the combination of various adjuvants to trigger several innate immune responses, leading to activation of adaptive immunity.[Figure: see text].
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Kardani
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Jin H, Jiao C, Cao Z, Huang P, Chi H, Bai Y, Liu D, Wang J, Feng N, Li N, Zhao Y, Wang T, Gao Y, Yang S, Xia X, Wang H. An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Negl Trop Dis 2021; 15:e0009484. [PMID: 34086672 PMCID: PMC8208564 DOI: 10.1371/journal.pntd.0009484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/16/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congenital Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain (TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E replaced with the region of RABV G). When the TM of prM-E was replaced with the region of RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G (termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least 10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6 were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of splenic lymphocytes and promoted the secretion of cytokines. It also promoted the production of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell activation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral and cellular immune responses, which have the potential to be developed into a promising vaccine for protection against both ZIKV and RABV infections.
Collapse
Affiliation(s)
- Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Cuicui Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zengguo Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (XX); (HW)
| |
Collapse
|
21
|
Characterizations of glucose-rich polysaccharides from Amomum longiligulare T.L. Wu fruits and their effects on immunogenicities of infectious bursal disease virus VP2 protein. Int J Biol Macromol 2021; 183:1574-1584. [PMID: 34044027 DOI: 10.1016/j.ijbiomac.2021.05.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study is to explore the characterization of Amomum longiligulare T.L. Wu fruits polysaccharide (ALP) and their immune enhancement effects. Two homogeneous polysaccharides (ALP1 and ALP2) were isolated from the fruits. The structural characterization results showed that ALP1 (26.10 kDa) and ALP2 (64.10 kDa) were both mainly composed of glucose. Furthermore, ALP1 was consisted of (1,2)-α-D-Glcp, (1,2,3)-α-D-Glcp and T-α-D-Glcp, while ALP2 was consisted of T-α-D-Glcp, (1,3)-α-D-Glcp and (1,3,6)-α-D-Glcp. Afterwards, the immune enhancement effects of two polysaccharides were evaluated by determining their effects on immunogenicities of infectious bursal disease virus (IBDV) VP2 protein. Chickens were immunized with IBDV VP2 protein accompanied with ALP1/ALP2. And the results indicated both ALP1 and ALP2 promoted the weights and bursa of fabricius indexes of chickens. In addition, both two polysaccharides increased specific IBDV antibody levels, while ALP1 possessed higher immune enhancement ability and was expected to be an adjuvant for IBDV VP2 protein.
Collapse
|
22
|
Dong X, Li B, Yu B, Chen T, Hu Q, Peng B, Sheng W. Poria cocos polysaccharide induced Th1-type immune responses to ovalbumin in mice. PLoS One 2021; 16:e0245207. [PMID: 33411807 PMCID: PMC7790389 DOI: 10.1371/journal.pone.0245207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
In the present study, we evaluated adjuvant potential of Poria cocos polysaccharide (PCP) on the Th1-type immune responses of C57/BL6 mice against ovalbumin (OVA). We first determined the effect of PCP on maturation of murine bone marrow derived dendritic cells (BMDCs), PCP significantly upregulated surface expression of MHCII, CD40, CD80, CD86 and enhanced production of IL-6 and IL-12p40. In addition, PCP affected receptor-mediated endocytosis, but not pinocytosis in BMDCs. Furthermore, OVA + PCP immunization induced specific cytotoxic CD8+ T cell killing of OVA (257–264) peptide pulsed cell. When mice were immunized subcutaneously in a week interval with OVA + PCP. Serum were collected for measuring OVA-specific antibody and splenocytes were harvested for analyzing CD69, IFN-γ ELISpot and cytokines production. The result indicated that OVA-specific IgG, IgG2a and IgG1 antibody levels in serum were significantly elevated by PCP compared with control. PCP increased OVA-specific IFN-γ-secreting CD8+, CD4+ T cells, promoted CD8+ T cell proliferation and up-regulated Th-1 type (IFN-γ, IL-2) cytokine production. In conclusion, data suggest that PCP enhanced cellular immune response and possess potential as a vaccine adjuvant for Th1 immune response.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Boye Li
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| | - Wang Sheng
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, PR China
- * E-mail: (QH); (BP); (WS)
| |
Collapse
|
23
|
Kumar P, Sunita, Dubey KK, Shukla P. Whole-Cell Vaccine Preparation: Options and Perspectives. Methods Mol Biol 2021; 2183:249-266. [PMID: 32959248 DOI: 10.1007/978-1-0716-0795-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vaccines are biological preparations to elicit a specific immune response in individuals against the targetted microorganisms. The use of vaccines has caused the near eradication of many critical diseases and has had an everlasting impact on public health at a relatively low cost. Most of the vaccines developed today are based on techniques which were developed a long time ago. In the beginning, vaccines were prepared from tissue fluids obtained from infected animals or people, but at present, the scenario has changed with the development of vaccines from live or killed whole microorganisms and toxins or using genetic engineering approaches. Considerable efforts have been made in vaccine development, but there are still many diseases that need attention, and new technologies are being developed in vaccinology to combat them. In this chapter, we discuss different approaches for vaccine development, including the properties and preparation of whole-cell vaccines.
Collapse
Affiliation(s)
- Punit Kumar
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India.,Department of Clinical Immunology, Allergology and Microbiology, Karaganda Medical University, 40 Gogol Street, Karaganda, Kazakhstan
| | - Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India
| | - Kashyap Kumar Dubey
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University Rohtak, Rohtak, Haryana, India.
| |
Collapse
|
24
|
Nie A, Chao Y, Zhang X, Jia W, Zhou Z, Zhu C. Phytochemistry and Pharmacological Activities of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front Pharmacol 2020; 11:505249. [PMID: 33071776 PMCID: PMC7533546 DOI: 10.3389/fphar.2020.505249] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Poria cocos is the dried sclerotium of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb., which was the current accepted name and was formerly known as Macrohyporia cocos (Schwein.) I. Johans. & Ryvarden, Pachyma cocos (Schwein.) Fr., Poria cocos F.A. Wolf and Sclerotium cocos Schwein. It is one of the most important crude drugs in traditional Chinese medicine, with a wide range of applications in ameliorating phlegm and edema, relieving nephrosis and chronic gastritis and improving uneasiness of minds. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the chemical compounds and pharmacological activities of Poria cocos. Therefore, this review aimed to provide the latest information on the chemical compounds and pharmacological effects of Poria cocos, exploring the therapeutic potential of these compounds. We obtained the information of Poria cocos from electronic databases such as SCI finder, PubMed, Web of Science, CNKI, WanFang DATA and Google Scholar. Up to now, two main active ingredients, triterpenes and polysaccharides of Poria cocos, have been identified from Poria cocos. It has been reported that they have pharmacological effects on anti-tumor, anti-bacterial, anti-oxidant, anti-inflammatory, immunomodulation, and liver and kidney protection. The review summarizes the phytochemistry and pharmacological properties of Poria cocos, which suggest that researchers should focus on the development of new drugs about Poria cocos to make them exert greater therapeutic potential.
Collapse
Affiliation(s)
- Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanhui Chao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K, Zhang Y. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240:116346. [PMID: 32475597 PMCID: PMC7175912 DOI: 10.1016/j.carbpol.2020.116346] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023]
Abstract
The new coronavirus pneumonia, named COVID-19 by the World Health Organization, has become a pandemic. It is highly pathogenic and reproduces quickly. There are currently no specific drugs to prevent the reproduction and spread of COVID-19. Some traditional Chinese medicines, especially the Lung Cleansing and Detoxifying Decoction (Qing Fei Pai Du Tang), have shown therapeutic effects on mild and ordinary COVID-19 patients. Polysaccharides are important ingredients in this decoction. This review summarizes the potential pharmacological activities of polysaccharides isolated by hot water extraction from Lung Cleansing and Detoxifying Decoction, which is consistent with its production method, to provide the theoretical basis for ongoing research on its application.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Kaiping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| |
Collapse
|
26
|
Yan L, Zhao Z, Xue X, Zheng W, Xu T, Liu L, Tian L, Wang X, He H, Zheng X. A Bivalent Human Adenovirus Type 5 Vaccine Expressing the Rabies Virus Glycoprotein and Canine Distemper Virus Hemagglutinin Protein Confers Protective Immunity in Mice and Foxes. Front Microbiol 2020; 11:1070. [PMID: 32612580 PMCID: PMC7309451 DOI: 10.3389/fmicb.2020.01070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
The development of a safe and efficient multivalent vaccine has great prospects for application. Both rabies virus (RABV) and canine distemper virus (CDV) are highly infectious antigens, causing lethal diseases in domestic dogs and other carnivores worldwide. In this study, a replication-deficient human adenovirus 5 (Ad5)-vectored vaccine, rAd5-G-H, expressing RABV glycoprotein (G) and CDV hemagglutinin (H) protein was constructed. The RABV G and CDV H protein of rAd5-G-H were expressed and confirmed in infected HEK-293 cells by indirect immunofluorescence assay. The rAd5-G-H retained a homogeneous icosahedral morphology similar to rAd5-GFP under an electron microscope. A single dose of 108 GFU of rAd5-G-H administered to mice by intramuscular injection elicited rapid and robust neutralizing antibodies against RABV and CDV. Flow cytometry assays indicated that the dendritic cells and B cells in inguinal lymph nodes were significantly recruited in rAd5-G-H-immunized mice in comparison with the mock and rAd5-GFP groups. rAd5-G-H also activated the Th1- and Th2-mediated cell immune responses against RABV and CDV in mice, which contributed to 100% survival of a lethal-dose RABV challenge without any clinical signs. In foxes, a single dose of 109 GFU of rAd5-G-H could elicit high levels of neutralizing antibodies against both RABV and CDV in comparison with the mock and rAd5-GFP groups. All foxes in the rAd5-GFP and mock groups died, while the foxes inoculated with rAd5-G-H all survived and showed no clinical signs of disease after being challenged with a lethal wild-type CDV strain. These results suggested that rAd5-G-H has great potential as a bivalent vaccine against rabies and canine distemper in highly susceptible dogs and wildlife animals.
Collapse
Affiliation(s)
- Lina Yan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhongxin Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Xu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xianwei Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Hongbin He
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|