1
|
Higuchi A, Tojo M, Mochizuki T. Sensitivity of Globisporangium ultimum to the fungicide metalaxyl is enhanced by the infection with a toti-like mycovirus. Microbiol Res 2024; 285:127742. [PMID: 38723390 DOI: 10.1016/j.micres.2024.127742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
In recent years, numerous oomycete mycoviruses have been discovered; however, very few studies have focused on their effects on the host oomycete phenotype. In this study, we investigated the impact of toti-like Pythium ultimum RNA virus 2 (PuRV2) infection on the phytopathogenic soil-borne oomycete Globisporangium ultimum, which serves as a model species for Globisporangium and Pythium, specifically the UOP226 isolate in Japan. We generated a PuRV2-free isogenic line through hyphal tip isolation using high-temperature culture and subsequently compared the phenotypic characteristics and gene expression profiles of UOP226 and the PuRV2-free isogenic line. Our findings revealed that the metalaxyl sensitivity of UOP226 was greater than that of the PuRV2-free isogenic line, whereas the mycelial growth rate and colony morphology remained unchanged in the absence of the fungicide. Furthermore, transcriptome analyses using RNA-seq revealed significant downregulation of ABC-type transporter genes, which are involved in fungicide sensitivity, in UOP226. Our results suggest that PuRV2 infection influences the ecology of G. ultimum in agricultural ecosystems where metalaxyl is applied.
Collapse
Affiliation(s)
- Aika Higuchi
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Motoaki Tojo
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Tomofumi Mochizuki
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan; Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
2
|
Urzo MLR, Guinto TD, Eusebio-Cope A, Budot BO, Yanoria MJT, Jonson GB, Arakawa M, Kondo H, Suzuki N. Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses. Viruses 2024; 16:1152. [PMID: 39066314 PMCID: PMC11281561 DOI: 10.3390/v16071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
Collapse
Affiliation(s)
- Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Timothy D. Guinto
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Ana Eusebio-Cope
- Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Bernard O. Budot
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Mary Jeanie T. Yanoria
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Gilda B. Jonson
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Masao Arakawa
- Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan;
| | - Hideki Kondo
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
3
|
Hua H, Zhang X, Liu L, Wu X. A Novel Strain of Fusarium oxysporum Alternavirus 1 Isolated from Fusarium oxysporum f. sp. melonis Strain T-BJ17 Confers Hypovirulence and Increases the Sensitivity of Its Host Fungus to Difenoconazole and Pydiflumetofen. Viruses 2024; 16:901. [PMID: 38932193 PMCID: PMC11209391 DOI: 10.3390/v16060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
In the current study, a novel strain of Fusarium oxysporum alternavirus 1 (FoAV1) was identified from the Fusarium oxysporum f. sp. melonis (FOM) strain T-BJ17 and was designated as Fusarium oxysporum alternavirus 1-FOM (FoAV1-FOM). Its genome consists of four dsRNA segments of 3515 bp (dsRNA1), 2663 bp (dsRNA2), 2368 bp (dsRNA3), and 1776 bp (dsRNA4) in length. Open reading frame 1 (ORF1) in dsRNA1 was found to encode a putative RNA-dependent RNA polymerase (RdRp), whose amino acid sequence was 99.02% identical to that of its counterpart in FoAV1; while ORF2 in dsRNA2, ORF3 in dsRNA3, and ORF4 in dsRNA4 were all found to encode hypothetical proteins. Strain T-BJ17-VF, which was verified to FoAV1-FOM-free, was obtained using single-hyphal-tip culture combined with high-temperature treatment to eliminate FoAV1-FOM from strain T-BJ17. The colony growth rate, ability to produce spores, and virulence of strain T-BJ17 were significantly lower than those of T-BJ17-VF, while the dry weight of the mycelial biomass and the sensitivity to difenoconazole and pydiflumetofen of strain T-BJ17 were greater than those of T-BJ17-VF. FoAV1-FOM was capable of 100% vertical transmission via spores. To our knowledge, this is the first time that an alternavirus has infected FOM, and this is the first report of hypovirulence and increased sensitivity to difenoconazole and pydiflumetofen induced by FoAV1-FOM infection in FOM.
Collapse
Affiliation(s)
| | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China (X.Z.); (L.L.)
| |
Collapse
|
4
|
Li E, Liu J, Zhang S, Xu B. Identification the Pathogen Cause a New Apple Leaf Blight in China and Determination the Controlling Efficacy for Five Botanical Fungicides. J Fungi (Basel) 2024; 10:255. [PMID: 38667926 PMCID: PMC11051572 DOI: 10.3390/jof10040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Alternaria leaf blight has recently been described as an emerging fungal disease of apple trees which is causing the significant damage in the apple-growing areas of Tianshui and Jingning, Gansu, China. In the present study, the pathogen species involved in apple leaf blight and its biological characteristics were identified, and the inhibitory activity of different botanical fungicides against the pathogen was evaluated in vitro. Four strains were isolated from the symptomatic areas of necrotic apple leaves, and initially healthy leaves showed similar symptoms to those observed in orchards after inoculation with the ABL2 isolate. The ABL2 isolate was identified as Alternaria tenuissima based on the morphological characteristics of its colonies, conidiophores, and conidia, and this was also confirmed by multi-gene sequence (ITS, OPA10-2, Alta-1, and endoPG) analysis and phylogenic analysis. The optimum temperature, pH, carbon source, and nitrogen source for the growth of A. tenuissima mycelia were 28 °C, 6-7, soluble starch, and soy flour, respectively. In addition, the botanical fungicide eugenol exhibited the highest inhibitory effect on the mycelial growth and conidia germination of A. tenuissima, and the median effective concentration (EC50) values were 0.826 and 0.755 μg/mL, respectively. The protective and curative efficacy of eugenol were 86.85% and 76.94% after inoculation in detached apple leaves at a concentration of 4 μg/mL. Our research provides new insights into the control of apple leaf blight disease by applying botanical fungicides.
Collapse
Affiliation(s)
- Enchen Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Jia Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
| | - Shuwu Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (E.L.); (J.L.)
- Gansu Provincial Biocontrol Engineering Laboratory of Crop Diseases and Pests, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Hua H, Zhang X, Xia J, Wu X. A Novel Strain of Fusarium oxysporum Virus 1 Isolated from Fusarium oxysporum f. sp. niveum Strain X-GS16 Influences Phenotypes of F. oxysporum Strain HB-TS-YT-1 hyg. J Fungi (Basel) 2024; 10:252. [PMID: 38667923 PMCID: PMC11050907 DOI: 10.3390/jof10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
A novel strain of Fusarium oxysporum virus 1 (FoV1) was identified from the Fusarium oxysporum f. sp. niveum strain X-GS16 and designated as Fusarium oxysporum virus 1-FON (FoV1-FON). The full genome of FoV1-FON is 2902 bp in length and contains two non-overlapping open reading frames (ORFs), ORF1 and ORF2, encoding a protein with an unknown function (containing a typical -1 slippery motif G_GAU_UUU at the 3'-end) and a putative RNA-dependent RNA polymerase (RdRp), respectively. BLASTx search against the National Center for the Biotechnology Information (NCBI) non-redundant database showed that FoV1-FON had the highest identity (97.46%) with FoV1. Phylogenetic analysis further confirmed that FoV1-FON clustered with FoV1 in the proposed genus Unirnavirus. FoV1-FON could vertically transmit via spores. Moreover, FoV1-FON was transmitted horizontally from the F. oxysporum f. sp. niveum strain X-GS16 to the F. oxysporum strain HB-TS-YT-1hyg. This resulted in the acquisition of the F. oxysporum strain HB-TS-YT-1hyg-V carrying FoV1-FON. No significant differences were observed in the sporulation and dry weight of mycelial biomass between HB-TS-YT-1hyg and HB-TS-YT-1hyg-V. FoV1-FON infection significantly increased the mycelial growth of HB-TS-YT-1hyg, but decreased its virulence to potato tubers and sensitivity to difenoconazole, prochloraz, and pydiflumetofen. To our knowledge, this is the first report of hypovirulence and reduced sensitivity to difenoconazole, prochloraz, and pydiflumetofen in F. oxysporum due to FoV1-FON infection.
Collapse
Affiliation(s)
| | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (H.H.); (X.Z.); (J.X.)
| |
Collapse
|
6
|
Zhao C, Li S, Ma Z, Wang W, Gao L, Han C, Yang A, Wu X. Anastomosis Groups and Mycovirome of Rhizoctonia Isolates Causing Sugar Beet Root and Crown Rot and Their Sensitivity to Flutolanil, Thifluzamide, and Pencycuron. J Fungi (Basel) 2023; 9:jof9050545. [PMID: 37233256 DOI: 10.3390/jof9050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Anastomosis groups (AGs) or subgroups of 244 Rhizoctonia isolates recovered from sugar beet roots with symptoms of root and crown rot were characterized to be AG-A, AG-K, AG-2-2IIIB, AG-2-2IV, AG-3 PT, AG-4HGI, AG-4HGII, and AG-4HGIII, with AG-4HGI (108 isolates, 44.26%) and AG-2-2IIIB (107 isolates, 43.85%) being predominate. Four unclassified mycoviruses and one hundred and one putative mycoviruses belonging to six families, namely Mitoviridae (60.00%), Narnaviridae (18.10%), Partitiviridae (7.62%), Benyviridae (4.76%), Hypoviridae (3.81%), and Botourmiaviridae (1.90%), were found to be present in these 244 Rhizoctonia isolates, most of which (88.57%) contained positive single-stranded RNA genome. The 244 Rhizoctonia isolates were all sensitive to flutolanil and thifluzamide, with average median effective concentration (EC50) value of 0.3199 ± 0.0149 μg·mL-1 and 0.1081 ± 0.0044 μg·mL-1, respectively. Among the 244 isolates, except for 20 Rhizoctonia isolates (seven isolates of AG-A and AG-K, one isolate of AG-4HGI, and 12 isolates of AG-4HGII), 117 isolates of AG-2-2IIIB, AG-2-2IV, AG-3 PT, and AG-4HGIII, 107 isolates of AG-4HGI, and six isolates of AG-4HGII were sensitive to pencycuron, with average EC50 value of 0.0339 ± 0.0012 μg·mL-1. Correlation index (ρ) of cross-resistance level between flutolanil and thifluzamide, flutolanil and pencycuron, and thifluzamide and pencycuron was 0.398, 0.315, and 0.125, respectively. This is the first detailed study on AG identification, mycovirome analysis, and sensitivity to flutolanil, thifluzamide, and pencycuron of Rhizoctonia isolates associated with sugar beet root and crown rot.
Collapse
Affiliation(s)
- Can Zhao
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenjun Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lihong Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chenggui Han
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Anpei Yang
- Institute of Plant Protection, Xinjiang Academy of Agricultural Science, Urumqi 830091, China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Novel Mycoviruses Discovered from a Metatranscriptomics Survey of the Phytopathogenic Alternaria Fungus. Viruses 2022; 14:v14112552. [PMID: 36423161 PMCID: PMC9693364 DOI: 10.3390/v14112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria fungus can cause notable diseases in cereals, ornamental plants, vegetables, and fruits around the world. To date, an increasing number of mycoviruses have been accurately and successfully identified in this fungus. In this study, we discovered mycoviruses from 78 strains in 6 species of the genus Alternaria, which were collected from 10 pear production areas using high-throughput sequencing technology. Using the total RNA-seq, we detected the RNA-dependent RNA polymerase of 19 potential viruses and the coat protein of two potential viruses. We successfully confirmed these viruses using reverse transcription polymerase chain reaction with RNA as the template. We identified 12 mycoviruses that were positive-sense single-stranded RNA (+ssRNA) viruses, 5 double-strand RNA (dsRNA) viruses, and 4 negative single-stranded RNA (-ssRNA) viruses. In these viruses, five +ssRNA and four -ssRNA viruses were novel mycoviruses classified into diverse the families Botourmiaviridae, Deltaflexivirus, Mymonaviridea, and Discoviridae. We identified a novel -ssRNA mycovirus isolated from an A. tenuissima strain HB-15 as Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2). Additionally, we characterized a novel +ssRNA mycovirus isolated from an A. tenuissima strain SC-8 as Alternaria tenuissima deltaflexivirus 1 (AtDFV1). According to phylogenetic and sequence analyses, we determined that AtNSRV2 was related to the viruses of the genus Sclerotimonavirus in the family Mymonaviridae. We also found that AtDFV1 was related to the virus family Deltaflexivirus. This study is the first to use total RNA sequencing to characterize viruses in Alternaria spp. These results expand the number of Alternaria viruses and demonstrate the diversity of these mycoviruses.
Collapse
|
8
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
9
|
A Botybirnavirus Isolated from Alternaria tenuissima Confers Hypervirulence and Decreased Sensitivity of Its Host Fungus to Difenoconazole. Viruses 2022; 14:v14102093. [DOI: 10.3390/v14102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria alternata botybirnavirus 1 (AaBRV1) was isolated from a strain of Alternaria alternata, causing watermelon leaf blight in our previous research. The effect of AaBRV1 on the phenotype of its host fungus, however, was not determined. In the present study, a novel strain of AaBRV1 was identified in A. tenuissima strain TJ-NH-51S-4, the causal agent of cotton Alternaria leaf spot, and designated as AaBRV1-AT1. A mycovirus AaBRV1-AT1-free strain TJ-NH-51S-4-VF was obtained by protoplast regeneration, which eliminated AaBRV1-AT1 from the mycovirus AaBRV1-AT1-infected strain TJ-NH-51S-4. Colony growth rate, spore production, and virulence of strain TJ-NH-51S-4 were greater than they were in TJ-NH-51S-4-VF, while the sensitivity of strain TJ-NH-51S-4 to difenoconazole, as measured by the EC50, was lower. AaBRV1-AT1 was capable of vertical transmission via asexual spores and horizontal transmission from strain TJ-NH-51S-4 to strain XJ-BZ-5-1hyg (another strain of A. tenuissima) through hyphal contact in pairing cultures. A total of 613 differentially expressed genes (DEGs) were identified in a comparative transcriptome analysis between TJ-NH-51S-4 and TJ-NH-51S-4-VF. Relative to strain TJ-NH-51S-4-VF, the number of up-regulated and down-regulated DEGs in strain TJ-NH-51S-4 was 286 and 327, respectively. Notably, the expression level of one DEG-encoding cytochrome P450 sterol 14α-demethylase and four DEGs encoding siderophore iron transporters were significantly up-regulated. To our knowledge, this is the first documentation of hypervirulence and reduced sensitivity to difenoconazole induced by AaBRV1-AT1 infection in A. tenuissima.
Collapse
|
10
|
Jiang S, Sun B, Zhu R, Che C, Ma D, Wang R, Dai H. Airborne microbial community structure and potential pathogen identification across the PM size fractions and seasons in the urban atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154665. [PMID: 35314242 DOI: 10.1016/j.scitotenv.2022.154665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As a vital component of airborne bioaerosols, bacteria and fungi seriously endanger human health as pathogens and allergens. However, comprehensive effects of environmental variables on airborne microbial community structures remain poorly understood across the PM sizes and seasons. We collected atmospheric PM1.0, PM2.5, and PM10 samples in Hefei, a typical rapidly-developing city in East China, across three seasons, and performed a comprehensive analysis of airborne microbial community structures using qPCR and high-throughput sequencing. Overall the bacterial and fungal abundances in PM1.0 were one to two orders of magnitude higher than those in PM2.5 and PM10 across seasons, but their α-diversity tended to increase from PM1.0 to PM10. The bacterial gene abundances showed a strong positive correlation (P < 0.05) with atmospheric SO2 and NO2 concentrations and air quality index. The bacterial gene abundances were significantly higher (P = 0.001) than fungi, and the bacterial diversity showed stronger seasonality. The PM sizes influenced distribution patterns for airborne microbial communities within the same season. Source-tracking analysis indicated that soils, plants, human and animal feces represented important sources of airborne bacteria with a total relative abundance of more than 60% in summer, but total abundance from the unidentified sources surpassed in fall and winter. Total 10 potential bacterial and 12 potential fungal pathogens were identified at the species level with the highest relative abundances in summer, and their abundances increased with the PM sizes. Together, our results indicated that a complex set of environmental factors, including water-soluble ions in PM, changes in air pollutant levels and meteorological conditions, and shifts in the relative importance of available microbial sources, acted to control the seasonal compositions of microbial communities in the urban atmosphere.
Collapse
Affiliation(s)
- Shaoyi Jiang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Li B, Cao Y, Ji Z, Zhang J, Meng X, Dai P, Hu T, Wang S, Cao K, Wang Y. Coinfection of Two Mycoviruses Confers Hypovirulence and Reduces the Production of Mycotoxin Alternariol in Alternaria alternata f. sp. mali. Front Microbiol 2022; 13:910712. [PMID: 35756001 PMCID: PMC9218907 DOI: 10.3389/fmicb.2022.910712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022] Open
Abstract
Alternaria leaf blotch caused by Alternaria alternata apple pathotype (Alternaria mali) is an important fungal disease that affects the production of apples worldwide. Mycoviruses harbored in plant pathogenic fungi can confer hypovirulence in their hosts and have attracted widespread attention as potential biocontrol tools. In this study, the coinfection of two mycoviruses, named A. alternata chrysovirus 1 strain QY2 (AaCV1-QY2) and A. alternata magoulivirus 1 (AaMV1), respectively, were isolated from A. alternata f. sp. mali strain QY21. Sequence analyses revealed that AaCV1-QY2 virus belonged to the genus Betachrysovirus and AaMV1 virus belonged to the genus Magoulvirus. These two mycoviruses were found to be associated with hypovirulence in A. alternata, among which AaCV1-QY2 might play a relatively leading role. Because the elimination of AaMV1 from the strain QY21 does not affect the hypovirulence trait, which indicates that the virus AaCV1-QY2 can independently induce slow growth and reduce host virulence. Moreover, the presence of viruses decreased the accumulation of the mycotoxin alternariol (AOH) in A. alternata strains. Intriguingly, AaCV1-QY2/AaMV1 mycoviruses can be horizontally transmitted to other A. alternata strains, and this coinfection can promote the interspecific transmission efficiency of AaCV1-QY2. To our knowledge, this study reports the first description of the member of Chrysovirus is related to hypovirulence in Alternaria spp. that facilitates the development of biocontrol measures of A. mali Roberts.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yuhan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zixuan Ji
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jingyi Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Complete genome sequence of a novel partitivirus infecting the phytopathogenic fungus Alternaria tenuissima. Arch Virol 2022; 167:635-639. [PMID: 35031860 DOI: 10.1007/s00705-021-05332-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/30/2021] [Indexed: 11/02/2022]
Abstract
In the present study, a novel double-stranded RNA (dsRNA) mycovirus designated as "Alternaria tenuissima partitivirus 2" (AttPV2), was isolated from Alternaria tenuissima strain BJ-SY-1, a phytopathogenic fungus causing muskmelon leaf blight in Beijing municipality of China. The genome of AttPV2 comprises two dsRNA segments. The larger segment is 1829 bp in length and has a single open reading frame (ORF), potentially encoding a 65.8-kDa RNA-dependent RNA polymerase (RdRp), and the smaller segment is 1681 bp in length and also contains a single ORF, encoding a putative coat protein (CP) with a molecular mass of 56.0 kDa. BLASTp analysis revealed that the RdRp and CP encoded by the two ORFs of AttPV2 have the highest sequence identity, 85.9% and 75.0%, respectively, to their counterparts in Colletotrichum eremochloae partitivirus 1 (CePV1). Phylogenetic analysis based on RdRp sequences showed that AttPV2 clustered most closely with CePV1, a member of the proposed genus "Epsilonpartitivirus" in the family Partitiviridae. Hence, we propose that AttPV2 is a new epsilonpartitivirus from A. tenuissima. To the best of our knowledge, this is the first report of an epsilonpartitivirus infecting A. tenuissima.
Collapse
|
13
|
Ma G, Wu C, Li Y, Mi Y, Zhou T, Zhao C, Wu X. Identification and genomic characterization of a novel polymycovirus from Alternaria alternata causing watermelon leaf blight. Arch Virol 2021; 167:223-227. [PMID: 34636952 DOI: 10.1007/s00705-021-05272-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus from the phytopathogenic fungus Alternaria alternata, which causes watermelon leaf blight, was characterized. The genome of this virus has eight dsRNA segments, ranging from 1039 bp to 2398 bp. DsRNAs 1-6 each contain a single large open reading frame (ORF), while dsRNAs 7 and 8 each dsRNA contain two ORFs. The RNA-dependent RNA polymerase (RdRp) encoded by dsRNA1 and the viral methyltransferase encoded by dsRNA3 share 97.6% and 98.9% amino acid sequence identity, respectively, with the corresponding proteins of Plasmopara viticola lesion associated polymycovirus 1. The dsRNA5-encoded proline-alanine-serine-rich protein shows 48.1% sequence identity to that of Beauveria bassiana polymycovirus 3. The proteins encoded on dsRNAs 2, 4, and 8 have 99.7%, 98.2%, and 65.1% sequence identity, respectively, to the corresponding proteins of a mycovirus identified in Alternaria sp. FA0703 (AltR1). The proteins encoded by dsRNAs 6 and 7 do not match any known proteins of mycoviruses. Phylogenetic analysis of the RdRp domain showed that the virus clustered with members of the family Polymycoviridae. Based on these characteristics, the mycovirus was identified as a polymycovirus and designated as "Alternaria alternata polymycovirus 1" (AaPmV1). This is the first report of a polymycovirus associated with A. alternata.
Collapse
Affiliation(s)
- Guoping Ma
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.,Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Plant Virology, Jinan, 250100, People's Republic of China
| | - Chunyan Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuting Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yiran Mi
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China. .,College of Horticulture, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
14
|
Wen R, Li XA, Han G, Chen Q, Kong B. Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation. Food Microbiol 2021; 99:103764. [PMID: 34119122 DOI: 10.1016/j.fm.2021.103764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the fungal community succession and volatile compound dynamics of Harbin dry sausage during a twelve-day fermentation using high-throughput internal transcribed spacer amplicon sequencing and headspace solid-phase microextraction gas chromatography-mass spectrometry. Aspergillus pseudoglaucus was found to be the primary species in the sausages during fermentation, whereas Lasiodiplodia theobromae, Alternaria alternata, Aspergillus caesiellus, and Trichosporon asahii were also prevalent. Additionally, a total of 72 volatile compounds were identified in the dry sausages, of which 24 key compounds (odor activity value > 1) dominated flavor development, including 3 aldehydes, 1 ketone, 4 alcohols, 9 esters, 4 alkenes, and 3 other compounds. Furthermore, correlation analysis suggested that most of the core fungi were positively correlated with the key volatile compounds, particularly A. pseudoglaucus, Aspergillus gracilis, Trichosporon caseorum, Debaryomyces hansenii, and T. asahii. Our findings provide novel insights into the fungal ecology and flavor development of Harbin dry sausages.
Collapse
Affiliation(s)
- Rongxin Wen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiang-Ao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
15
|
Hu Z, Guo J, Da Gao B, Zhong J. A novel mycovirus isolated from the plant-pathogenic fungus Alternaria dianthicola. Arch Virol 2020; 165:2105-2109. [DOI: 10.1007/s00705-020-04700-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 11/27/2022]
|