1
|
Falla EK, Cunniffe NJ. Why aphid virus retention needs more attention: Modelling aphid behaviour and virus manipulation in non-persistent plant virus transmission. PLoS Comput Biol 2024; 20:e1012479. [PMID: 39352908 PMCID: PMC11469505 DOI: 10.1371/journal.pcbi.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Plant viruses threaten food security and are often transmitted by insect vectors. Non-persistently transmitted (NPT) plant viruses are transmitted almost exclusively by aphids. Because virions attach to the aphid's stylet (mouthparts) and are acquired and inoculated via brief epidermal probes, the aphid-virus interaction is highly transient, with a very short aphid virus retention time. Many NPT viruses manipulate their host plant's phenotype to change aphid behaviour to optimise virus transmission. Epidemiological models of this have overlooked a key feature of aphid NPT virus retention: probing or feeding on a plant causes aphids to lose the virus. Furthermore, experimental studies suggest aphids could possibly inoculate multiple healthy plants within one infective period if they do not feed. Consequences of this for virus manipulation of host plant phenotype have not been explored. Our new compartmental epidemiological model includes both behaviour-based aphid dispersal and infectivity loss rates, and the ability of infective aphids to probe multiple plants before virus loss. We use our model to explore how NPT virus-induced host phenotypes affect epidemic outcomes, comparing these results to representative previous models. We find that previous models behave fundamentally differently and underestimate the benefit of an 'attract-and-deter' phenotype, where the virus induces increased aphid attraction to infected plants but deters them from prolonged feeding. Our results also highlight the importance of characterising NPT virus retention upon the aphid during probing. Allowing for multiple infective probes increases disease incidence and the effectiveness of virus manipulation, with implications for epidemic prediction and control.
Collapse
Affiliation(s)
- Elin K. Falla
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Ameline A, Karkach A, Denoirjean T, Grondin M, Molinari F, Turpin P, Delatte H, Reynaud B. Bacterial plant pathogens affect the locomotor behavior of the insect vector: a case study of Citrus volkameriana-Triozae erytreae-Candidatus Liberibacter asiaticus system. INSECT SCIENCE 2024; 31:901-910. [PMID: 37822228 DOI: 10.1111/1744-7917.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023]
Abstract
Plant pathogens can alter the behavior of their insect vectors as well as their survival and reproduction. The African psyllid, Trioza erytreae, is one of the vectors of Huanglongbing, a citrus disease caused mainly by "Candidatus Liberibacter asiaticus" (CLas). The purpose of this study was to characterize the effects of CLas on the psyllid, T. erytreae using Citrus volkamerina plants as the study system. The study focused more specifically on the CLas effects prior to and after its acquisition by the psyllid T. erytreae. Our results did not support the hypothesis that CLas effects psyllid probing behavior prior to acquisition; few differences were observed between uninfected T. erytrea feeding on CLas-infected versus control plants. On the other hand, compared to psyllids that had completed their development on control plants, the ones that had completed their development on a CLas-infected plant exhibited changes in their behavior (greater velocity), physiology (smaller mass) and biochemistry (lower water and lipid content). Altogether, our results confirm the existence of a marked postacquisition effect on the vector locomotor behavior and a minor preacquisition effect of CLas on the vector behavior, which can be partially explained by physiological and biochemical changes.
Collapse
Affiliation(s)
- Arnaud Ameline
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Alain Karkach
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Thomas Denoirjean
- UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Martial Grondin
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Florencia Molinari
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Patrick Turpin
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Hélène Delatte
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| | - Bernard Reynaud
- UMR PVBMT (Peuplements végétaux et bioagresseurs en milieu tropical), Université de la Réunion, Saint Pierre, La Réunion, France
| |
Collapse
|
3
|
van Griethuysen PA, Redeker KR, MacFarlane SA, Neilson R, Hartley SE. Virus-induced changes in root volatiles attract soil nematode vectors to infected plants. THE NEW PHYTOLOGIST 2024; 241:2275-2286. [PMID: 38327027 DOI: 10.1111/nph.19518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2023] [Indexed: 02/09/2024]
Abstract
Plant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants. We infected Nicotiana benthamiana with TRV and compared root growth relative to that of uninfected plants. We tested whether TRV-infected N. benthamiana was more attractive to nematodes 7 d post infection and identified a compound critical to attraction. We also infected N. benthamiana with mutated TRV strains to identify virus genes involved in vector nematode attraction. Virus titre and associated impacts on root morphology were greatest 7 d post infection. Tobacco rattle virus infection enhanced 2-ethyl-1-hexanol production. Nematode chemotaxis and 2-ethyl-1-hexanol production correlated strongly with viral load. Uninfected plants were more attractive to nematodes after the addition of 2-ethyl-1-hexanol than were untreated plants. Mutation of TRV RNA2-encoded genes reduced the production of 2-ethyl-1-hexanol and nematode attraction. For the first time, this demonstrates that virus-driven alterations in root volatile emissions lead to increased chemotaxis of the virus's nematode vector, a finding with implications for sustainable management of both nematodes and viral pathogens in agricultural systems.
Collapse
Affiliation(s)
| | - Kelly R Redeker
- Department of Biology, University of York, Heslington, York, YO1 5DD, UK
| | - Stuart A MacFarlane
- Cell and Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Roy Neilson
- Ecological Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Sue E Hartley
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
4
|
Murhububa IS, Bragard C, Tougeron K, Hance T. Preference of Pentalonia nigronervosa for infected banana plants tends to reverse after Banana bunchy top virus acquisition. Sci Rep 2024; 14:2993. [PMID: 38316887 PMCID: PMC10844331 DOI: 10.1038/s41598-024-53205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) is the vector of the Banana Bunchy Top Virus (BBTV), the most serious viral disease of banana (Musa spp.) in the world. Before acquiring the virus, the vector is more attracted to infected banana plants in response to the increased emissions of volatile organic compounds (VOCs). Here, we test the hypothesis that BBTV acquisition directly modifies the preference of P. nigronervosa for infected banana plants, and that the change in preference results from the alteration of the organs linked to the VOC detection or to the behaviour of the vector. We found that the preference of P. nigronervosa for infected banana plants reverses after virus acquisition in dessert banana, while it remains similar between healthy and infected banana plants before and after the acquisition of BBTV. At the same time, aphids reared on infected bananas had smaller forewing areas and hind tibia length than aphids reared on healthy bananas, although the number of secondary rhinaria on the antennae was lower on dessert banana-reared aphids than plantain-reared aphids, this was not affected by the infection status of the aphid. These results support the "vector manipulation hypothesis-VMH" of pathogens to promote their spread. They have implications for the BBTV management.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium.
- Département de l'Environnement et Sciences Agronomiques, Faculté des Sciences, Université Officielle de Bukavu, Bukavu, Democratic Republic of the Congo.
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo.
- Institut Supérieur d'Etudes Agronomiques et Vétérinaires de Walungu, Walungu, Democratic Republic of the Congo.
| | - Claude Bragard
- Applied Microbiology, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Kévin Tougeron
- Ecology of Interactions and Global Change, Research Institute in Biosciences, Université de Mons, 7000, Mons, Belgium
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Jeger M, Hamelin F, Cunniffe N. Emerging Themes and Approaches in Plant Virus Epidemiology. PHYTOPATHOLOGY 2023; 113:1630-1646. [PMID: 36647183 DOI: 10.1094/phyto-10-22-0378-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant diseases caused by viruses share many common features with those caused by other pathogen taxa in terms of the host-pathogen interaction, but there are also distinctive features in epidemiology, most apparent where transmission is by vectors. Consequently, the host-virus-vector-environment interaction presents a continuing challenge in attempts to understand and predict the course of plant virus epidemics. Theoretical concepts, based on the underlying biology, can be expressed in mathematical models and tested through quantitative assessments of epidemics in the field; this remains a goal in understanding why plant virus epidemics occur and how they can be controlled. To this end, this review identifies recent emerging themes and approaches to fill in knowledge gaps in plant virus epidemiology. We review quantitative work on the impact of climatic fluctuations and change on plants, viruses, and vectors under different scenarios where impacts on the individual components of the plant-virus-vector interaction may vary disproportionately; there is a continuing, sometimes discordant, debate on host resistance and tolerance as plant defense mechanisms, including aspects of farmer behavior and attitudes toward disease management that may affect deployment in crops; disentangling host-virus-vector-environment interactions, as these contribute to temporal and spatial disease progress in field populations; computational techniques for estimating epidemiological parameters from field observations; and the use of optimal control analysis to assess disease control options. We end by proposing new challenges and questions in plant virus epidemiology.
Collapse
Affiliation(s)
- Mike Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, U.K
| | - Fred Hamelin
- IGEPP INRAE, University of Rennes, Rennes, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
6
|
Gui M, Hu H, Jia Z, Gao X, Tao H, Li Y, Liu Y. Full-length RNA sequencing reveals the mechanisms by which an TSWV-HCRV complex suppresses plant basal resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1108552. [PMID: 37035074 PMCID: PMC10074851 DOI: 10.3389/fpls.2023.1108552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Viruses deploy numerous strategies to infect plants, typically by forming complexes with another virus, leading to more efficient infection. However, the detailed plant responses to viral infection and the underlying mechanisms of co-infection remain unclear. Previously, we found that tomato spotted wilt orthotospovirus (TSWV) and Hippeastrum chlorotic ringspot orthotospovirus (HCRV) could infect plants in the field by forming a complex. In this study, we found that TSWV infected tobacco (Nicotiana benthamiana) plants in cooperation with HCRV, leading to a more efficient infection rate of both viruses. We then used the in-depth full-length transcriptome to analyze the responses of N. benthamiana to complex infection by TSWV-HCRV (TH). We found that infection with individual TSWV and HCRV triggered plant defense responses, including the jasmonic acid signaling pathway, autophagy, and secondary metabolism. However, TH co-infection could not trigger and even suppress some genes that are involved in these basal resistance responses, suggesting that co-infection is advantageous for the virus and not for the plants. Typically, the TH complex inhibits NbPR1 expression to suppress tobacco resistance. Moreover, the TH complex could alter the expression of microRNAs (miRNAs), especially novel-m0782-3p and miR1992-3p, which directly interact with NbSAM and NbWRKY6 and suppress their expression in tobacco, leading to downregulation of NbPR1 and loss of resistance in tobacco to TSWV and HCRV viruses. Overall, our results elucidated the co-infection mechanisms of TH in tobacco by deploying the miRNA of plants to suppress plant basal resistance and contributed to developing a novel strategy to control crop disease caused by this virus complex.
Collapse
Affiliation(s)
- Min Gui
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, China
| | - Huaran Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Science, Kunming, China
| | - Zhiqiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xue Gao
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Hongzheng Tao
- College of Life Science and Technology, Honghe University, Mengzi, China
| | - Yongzhong Li
- College of Tobacco, Yunnan Agricultural University, Kunming, China
| | - Yating Liu
- College of Tobacco, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
McLeish MJ, Zamfir AD, Babalola BM, Peláez A, Fraile A, García-Arenal F. Metagenomics show high spatiotemporal virus diversity and ecological compartmentalisation: Virus infections of melon, Cucumis melo, crops, and adjacent wild communities. Virus Evol 2022; 8:veac095. [PMID: 36405340 PMCID: PMC9667876 DOI: 10.1093/ve/veac095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 09/30/2022] [Indexed: 07/22/2023] Open
Abstract
The emergence of viral diseases results from novel transmission dynamics between wild and crop plant communities. The bias of studies towards pathogenic viruses of crops has distracted from knowledge of non-antagonistic symbioses in wild plants. Here, we implemented a high-throughput approach to compare the viromes of melon (Cucumis melo) and wild plants of crop (Crop) and adjacent boundaries (Edge). Each of the 41-plant species examined was infected by at least one virus. The interactions of 104 virus operational taxonomic units (OTUs) with these hosts occurred largely within ecological compartments of either Crop or Edge, with Edge having traits of a reservoir community. Local scale patterns of infection were characterised by the positive correlation between plant and virus richness at each site, the tendency for increased specialist host use through seasons, and specialist host use by OTUs observed only in Crop, characterised local-scale patterns of infection. In this study of systematically sampled viromes of a crop and adjacent wild communities, most hosts showed no disease symptoms, suggesting non-antagonistic symbioses are common. The coexistence of viruses within species-rich ecological compartments of agro-systems might promote the evolution of a diversity of virus strategies for survival and transmission. These communities, including those suspected as reservoirs, are subject to sporadic changes in assemblages, and so too are the conditions that favour the emergence of disease.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián D Zamfir
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Bisola M Babalola
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
8
|
Chesnais Q, Golyaev V, Velt A, Rustenholz C, Brault V, Pooggin MM, Drucker M. Comparative Plant Transcriptome Profiling of Arabidopsis thaliana Col-0 and Camelina sativa var. Celine Infested with Myzus persicae Aphids Acquiring Circulative and Noncirculative Viruses Reveals Virus- and Plant-Specific Alterations Relevant to Aphid Feeding Behavior and Transmission. Microbiol Spectr 2022; 10:e0013622. [PMID: 35856906 PMCID: PMC9430646 DOI: 10.1128/spectrum.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence is accumulating that plant viruses alter host plant traits in ways that modify their insect vectors' behavior. These alterations often enhance virus transmission, which has led to the hypothesis that these effects are manipulations caused by viral adaptation. However, we lack a mechanistic understanding of the genetic basis of these indirect, plant-mediated effects on vectors, their dependence on the plant host, and their relation to the mode of virus transmission. Transcriptome profiling of Arabidopsis thaliana and Camelina sativa plants infected with turnip yellows virus (TuYV) or cauliflower mosaic virus (CaMV) and infested with the common aphid vector Myzus persicae revealed strong virus- and host-specific differences in gene expression patterns. CaMV infection caused more severe effects on the phenotype of both plant hosts than did TuYV infection, and the severity of symptoms correlated strongly with the proportion of differentially expressed genes, especially photosynthesis genes. Accordingly, CaMV infection modified aphid behavior and fecundity more strongly than did infection with TuYV. Overall, infection with CaMV, relying on the noncirculative transmission mode, tends to have effects on metabolic pathways, with strong potential implications for insect vector-plant host interactions (e.g., photosynthesis, jasmonic acid, ethylene, and glucosinolate biosynthetic processes), while TuYV, using the circulative transmission mode, alters these pathways only weakly. These virus-induced deregulations of genes that are related to plant physiology and defense responses might impact both aphid probing and feeding behavior on infected host plants, with potentially distinct effects on virus transmission. IMPORTANCE Plant viruses change the phenotype of their plant hosts. Some of the changes impact interactions of the plant with insects that feed on the plants and transmit these viruses. These modifications may result in better virus transmission. We examine here the transcriptomes of two plant species infected with two viruses with different transmission modes to work out whether there are plant species-specific and transmission mode-specific transcriptome changes. Our results show that both are the case.
Collapse
Affiliation(s)
- Quentin Chesnais
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Victor Golyaev
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Amandine Velt
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Camille Rustenholz
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Véronique Brault
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, Université Montpellier, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - Martin Drucker
- SVQV, UMR1131, INRAE Centre Grand Est–Colmar, Université Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Manipulation of Insect Vectors’ Host Selection Behavior by Barley Yellow Dwarf Virus Is Dependent on the Host Plant Species and Viral Co-Infection. Life (Basel) 2022; 12:life12050644. [PMID: 35629312 PMCID: PMC9142937 DOI: 10.3390/life12050644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that vector-borne viruses can manipulate the host selection behavior of insect vectors, yet the tripartite interactions of pathogens, host plants and insect vectors have been documented only in a limited number of pathosystems. Here, we report that the host selection behavior of the insect vector of barley yellow dwarf virus-PAV (BYDV-PAV) and cereal yellow dwarf virus-RPS (CYDV-RPS) is dependent on the host plant species and viral co-infection. This study shows that a model cereal plant, Brachypodium distachyon, is a suitable host plant for examining tripartite interactions with BYDV-PAV and CYDV-RPS. We reveal that BYDV-PAV has a different effect on the host selection behavior of its insect vector depending on the host plant species. Viruliferous aphids significantly prefer non-infected plants to virus-infected wheat plants, whereas viral infection on a novel host plant, B. distachyon, is not implicated in the attraction of either viruliferous or nonviruliferous aphids. Furthermore, our findings show that multiple virus infections of wheat with BYDV-PAV and CYDV-RPS alter the preference of their vector aphid. This result indicates that BYDV-PAV acquisition alters the insect vector’s host selection, thereby varying the spread of multiple viruses.
Collapse
|
10
|
Eigenbrode SD, Gomulkiewicz R. Manipulation of Vector Host Preference by Pathogens: Implications for Virus Spread and Disease Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:387-400. [PMID: 35137164 DOI: 10.1093/jee/toab261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 06/14/2023]
Abstract
Some plant pathogens manipulate the behavior and performance of their vectors, potentially enhancing pathogen spread. The implications are evolutionary and epidemiological but also economic for pathogens that cause disease in crops. Here we explore with models the effects of vector manipulation on crop yield loss to disease and on the economic returns for vector suppression. We use two frameworks, one that simulates the proportional occurrence of the pathogen in the vector population with the option to eliminate vectors by a single insecticidal treatment, and one that includes vector population dynamics and the potential for multiple insecticidal sprays in a season to suppress vectors. We parameterize the models with published data on vector manipulation, crop yields as affected by the age of the plant at infection, commodity prices and costs of vector control for three pathosystems. Using the first framework, maximum returns for treating vectors are greater with vector manipulation than without it by approximately US$10 per acre (US$24.7/ha) in peas infected by Pea enation mosaic virus and Bean leaf roll virus, and approximately US$50 per acre (US$124/ha) for potatoes infected by Potato leaf roll virus. Using the second framework, maximum returns for controlling the psyllid vectors of Candidatus Liberibacter solanacearum are 50% greater (approximately US$400/acre, US$988/ha) but additional returns for multiple weekly sprays diminish more with vector manipulation than without it. These results suggest that the economics of vector manipulation can be substantial and provide a framework that can inform management decisions.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive MS 2329, Moscow, ID 83844, USA
| | - Richard Gomulkiewicz
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| |
Collapse
|
11
|
Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput Biol 2021; 17:e1009759. [PMID: 34968387 PMCID: PMC8754348 DOI: 10.1371/journal.pcbi.1009759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding–as well as potential effects of infection on vector population density–on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics. Plant virus diseases–which cause devastating epidemics in plant populations worldwide–are most often transmitted by insect vectors. Recent experimental evidence indicates how vectors do not choose between plants at random, but instead can be affected by whether plants are infected (or not). Virus infection can cause plants to “smell” different, because they produce different combinations of volatile chemicals, or “taste” different, due to chemical changes in infected tissues. Vector reproduction rates can also be affected when colonising infected versus uninfected plants. Potential effects on epidemic spread through a population of plants are not yet entirely understood. There are also interactions with the mode of virus transmission. Some viruses can be transmitted after only a brief probe by a vector, whereas others are only picked up after an extended feed on an infected plant. Furthermore there are differences in how long vectors remain able to transmit the virus. This ranges from a matter of minutes, right up to the entire lifetime of the insect, depending on the plant-virus-vector combination under consideration. Here we use mathematical modelling to synthesise all this complexity into a coherent theoretical framework. We illustrate our model via an online interface https://plantdiseasevectorpreference.herokuapp.com/.
Collapse
Affiliation(s)
- Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Nick P. Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Michael J. Jeger
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
12
|
Safari Murhububa I, Tougeron K, Bragard C, Fauconnier ML, Bisimwa Basengere E, Walangululu Masamba J, Hance T. Banana Tree Infected with Banana Bunchy Top Virus Attracts Pentalonia nigronervosa Aphids Through Increased Volatile Organic Compounds Emission. J Chem Ecol 2021; 47:755-767. [PMID: 34463893 DOI: 10.1007/s10886-021-01298-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Banana plants are affected by various viral diseases, among which the most devastating is the "bunchy top", caused by the Banana bunchy top virus (BBTV) and transmitted by the aphid Pentalonia nigronervosa Coquerel. The effect of BBTV on attraction mechanisms of dessert and plantain banana plants on the vector remains far from elucidated. For that, attractiveness tests were carried out using a two columns olfactometer for apterous aphids, and a flight cage experiment for alate aphids. Volatile Organic Compounds (VOCs) emitted by either healthy or BBTV-infected banana plants were identified using a dynamic extraction system and gas-chromatography mass-spectrometry (GC-MS) analysis. Behavioral results revealed a stronger attraction of aphids towards infected banana plants (independently from the variety), and towards the plantain variety (independently from the infection status). GC-MS results revealed that infected banana plants produced VOCs of the same mixture as healthy banana plants but in much higher quantities. In addition, VOCs produced by dessert and plantain banana plants were different in nature, and plantains produced higher quantities than dessert banana trees. This work opens interesting opportunities for biological control of P. nigronervosa, for example by luring away the aphid from banana plants through manipulation of olfactory cues.
Collapse
Affiliation(s)
- Ignace Safari Murhububa
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium. .,Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo.
| | - Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium.,UMR CNRS 7058 EDYSAN (Écologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex,, France
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology, UCLouvain, Croix du sud 2/L7.05.03, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Laure Fauconnier
- General and Organic Chemistry Laboratory, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Espoir Bisimwa Basengere
- Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Jean Walangululu Masamba
- Faculté Des Sciences Agronomiques, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, UCLouvain, Croix du sud 4-5/L7.07.04, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Chesnais Q, Verdier M, Burckbuchler M, Brault V, Pooggin M, Drucker M. Cauliflower mosaic virus protein P6-TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:911-920. [PMID: 33993609 PMCID: PMC8295513 DOI: 10.1111/mpp.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.
Collapse
Affiliation(s)
- Quentin Chesnais
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Maxime Verdier
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Myriam Burckbuchler
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Véronique Brault
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Mikhail Pooggin
- DEFENSIRNA, PHIM, INRAECIRADSupAgroIRDMUSEINRAE Centre Occitanie‐MontpellierMontferrier‐sur‐LezFrance
| | - Martin Drucker
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
- Present address:
Insect Models of Innate Immunity, IBMCUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad Roentgen67084 Strasbourg cedexFrance
| |
Collapse
|
14
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|