1
|
Liu Y, Liang J, Li X, Huang J, Huang J, Wang J. Interferon-induced transmembrane protein 2 is a prognostic marker in colorectal cancer and promotes its progression by activating the PI3K/AKT pathway. Discov Oncol 2024; 15:191. [PMID: 38802621 PMCID: PMC11130111 DOI: 10.1007/s12672-024-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Interferon-induced transmembrane protein 2 (IFITM2) is involved in repressing viral infection. This study aim to investigate the expression of IFITM2 in colorectal cancer (CRC) and explore its effect on cell proliferation, migration, and invasion. METHODS We analyzed The Cancer Genome Atlas (TCGA) database for IFITM2 expression in colorectal cancer and used western blots to detect IFITM2 protein in specimens and cell lines of colorectal cancers. To assess the association between IFITM2 and clinical features, both univariate and multivariate cox regression analysis were conducted. Kaplan-Meier plots were used in the TCGA database to assess IFITM2 gene expression's prognostic significance. Silencing IFITM2 in SW480 and HCT116 cells was achieved by transient transfection with siRNA. Proliferation of CRCs was examined using Cell Counting Kit-8. The effect of IFITM2 on the migration and invasion of CRC cells was studied using wound healing and transwell assays. Gene set enrichment analysis (GSEA) was used to examine IFITM2-associated pathways and Western blotting was used to confirm it. RESULTS IFITM2 was over-expressed in the CRC tissues and cells, with high IFITM2 expression related to the tumor N, M, and pathologic stages. The presence of IFITM2 significantly impacted patient survival in CRC. The proliferation of SW480 and HCT116 cells was suppressed when IFITM2 was silenced, resulting in weakened migration and invasion of CRC cells. GSEA analysis showed that IFITM2 was positively related to the phosphoinositide 3-kinase (PI3K)/AKT pathway, and western blot results confirmed that IFITM2 activated it. CONCLUSIONS IFITM2 was over-expressed in CRC and modulated the PI3K/AKT pathway to promote CRC cells proliferation and metastasis.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China.
| | - Jiyun Liang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Xi Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Junyong Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiale Wang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
3
|
Kobayashi J, Wen R, Nishikawa T, Nunomura Y, Suzuki T, Sejima Y, Gokan T, Furukawa M, Yokota T, Osawa N, Sato Y, Nibu Y, Mizutani T, Oba M. Natto extract inhibits infection caused by the Aujeszky's disease virus in mice. Microbiol Immunol 2023; 67:514-519. [PMID: 37815203 DOI: 10.1111/1348-0421.13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Aujeszky's disease virus (ADV), also known as Suid alphaherpesvirus 1, which mainly infects swine, causes life-threatening neurological disorders. This disease is a serious global risk factor for economic losses in the swine industry. The development of new anti-ADV drugs is highly anticipated and required. Natto, a traditional Japanese fermented food made from soybeans, is a well-known health food. In our previous study, we confirmed that natto has the potential to inhibit viral infections by severe acute respiratory syndrome coronavirus 2 and bovine alphaherpesvirus 1 through their putative serine protease(s). In this study, we found that an agent(s) in natto functionally impaired ADV infection in cell culture assays. In addition, ADV treated with natto extract lost viral infectivity in the mice. We conducted an HPLC gel-filtration analysis of natto extract and molecular weight markers and confirmed that Fraction No. 10 had ADV-inactivating ability. Furthermore, the antiviral activity of Fraction No. 10 was inhibited by the serine protease inhibitor 4-(2-Aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF). These results also suggest that Fraction No. 10, adjacent to the 12.5 kDa peak of the marker in natto extract, may inactivate ADV by proteolysis. Our findings provide new avenues of research for the prevention of Aujeszky's disease.
Collapse
Affiliation(s)
- Junya Kobayashi
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Research Institute for Animal Science in Biochemistry and Toxicology (RIAS), Sagamihara, Kanagawa, Japan
| | - Rongduo Wen
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuka Nunomura
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | | | | | | | | | - Tomoko Yokota
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Nanako Osawa
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoko Sato
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
| | - Yutaka Nibu
- The University Research Administration Center (URAC), Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Diseases of Epidemiology and Prevention Research (CEPiR), Tokyo University of Agriculture and Technology, Saiwai-cho, Tokyo, Japan
- Graduate School of Agriculture, Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Liang T, Wang X, Wang Y, Ma W. IFN-γ Triggered IFITM2 Expression to Induce Malignant Phenotype in Elderly GBM. J Mol Neurosci 2023; 73:946-955. [PMID: 37889394 DOI: 10.1007/s12031-023-02156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Advanced age is an important risk factor for the worse clinical presentation of gliomas, especially glioblastoma (GBM). The tumor microenvironment (TME) in elderly GBM (eGBM) patients is considerably different from that in young ones, which causes the inferior clinical outcome. Based on the data from the Chinese Glioma Genome Atlas RNA sequence (CGGA RNA-seq), the Cancer Genome Atlas RNA array (TCGA RNA-array), and gene set enrichment (GSE) 16011 array sets, the differential genes and function between eGBM (≥ 60 years old) and young GBM (yGBM, 20-60 years old) groups were explored. Immunohistochemistry (IHC) was utilized to depict the abundance of CD8+ cells (the main resource of IFN-γ) and IFITM2 protein expression in GBM samples. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to verify the link between IFN-γ and IFITM2. Moreover, the small-interfering RNA (siRNA) of IFITM2 was used to explore the function of IFITM2 in GBM. Characterized by inflammatory TME and higher IFITM2 expression, eGBM harbored a shorter survival time. Chemotaxis and inflammatory cytokine-related genes were enriched in the eGBM group, with more infiltrative CD8+ T cells. The IHC of CD8 and IFITM2-staining could demonstrate these results. In addition, the IFN-γ response pathway was activated in eGBM and resulted in a dismal outcome. Next, it was found that IFITM2 triggered by IFN-γ played a key role in IFN-γ-induced malignant phenotype in eGBM.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Chen S, Wang S. The immune mechanism of the nasal epithelium in COVID-19-related olfactory dysfunction. Front Immunol 2023; 14:1045009. [PMID: 37529051 PMCID: PMC10387544 DOI: 10.3389/fimmu.2023.1045009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
During the first waves of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, olfactory dysfunction (OD) was reported as a frequent clinical sign. The nasal epithelium is one of the front-line protections against viral infections, and the immune responses of the nasal mucosa may be associated with OD. Two mechanisms underlying OD occurrence in COVID-19 have been proposed: the infection of sustentacular cells and the inflammatory reaction of the nasal epithelium. The former triggers OD and the latter likely prolongs OD. These two alternative mechanisms may act in parallel; the infection of sustentacular cells is more important for OD occurrence because sustentacular cells are more likely to be the entry point of SARS-CoV-2 than olfactory neurons and more susceptible to early injury. Furthermore, sustentacular cells abundantly express transmembrane protease, serine 2 (TMPRSS2) and play a major role in the olfactory epithelium. OD occurrence in COVID-19 has revealed crucial roles of sustentacular cells. This review aims to elucidate how immune responses of the nasal epithelium contribute to COVID-19-related OD. Understanding the underlying immune mechanisms of the nasal epithelium in OD may aid in the development of improved medical treatments for COVID-19-related OD.
Collapse
Affiliation(s)
| | - Shufen Wang
- Biomedical Engineering Research Institute, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Zhao K, Li X, Lei B, Han Y, An T, Zhang W, Zhang H, Li B, Yuan W. Recombinant porcine Interferon-α and Interleukin-2 fusion protein (rPoIFNα+IL-2) shows potent anti-pseudorabies virus activity in vitro and in vivo. Vet Microbiol 2023; 279:109678. [PMID: 36758273 DOI: 10.1016/j.vetmic.2023.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Pseudorabies virus (PRV) variants have been widely prevalent since 2011, leading to substantial losses to the swine industry. Although PRV can cause cross-species transmission and induce human infection, no drugs can currently prevent PRV infection. Interferons (IFNs) and interleukin-2 (IL-2) are important cytokines that mediate several biological functions including antiviral activity and immune regulation. In this study, we expressed and purified a recombinant porcine IFN-α and IL-2 fusion protein (rPoIFNα+IL-2), which did not show a cytotoxic effect on PK-15 cells. The antiviral activity was evaluated in PK-15 cells using the cytopathic effect inhibition method, and the results indicated that rPoIFNα+IL-2 can inhibit the replication of PRV, with an antiviral activity of approximately 104 U/mL. Moreover, the proliferation of peripheral blood mononuclear cells was enhanced by rPoIFNα+IL-2. Additionally, rPoIFNα+IL-2 substantially increased the expression of IFN-stimulated genes, including IFIT1, ISG15, MX1, and OAS, which are critical for antiviral activity. Furthermore, rPoIFNα+IL-2 alleviated the clinical symptoms and reduced mortality in mice infected with PRV. Simultaneously, rPoIFNα+IL-2 increased the expression levels of IFN-γ and IL-10 and inhibited the expression of IL-1β and IL-6. Additionally, the viral DNA copies in different tissues in the rPoIFNα+IL-2-treated group were lower than those in the untreated group. These findings indicate that rPoIFNα+IL-2 may serve as an antiviral agent for the prevention and treatment of PRV infection and may expand the potential function of IFN antiviral drugs in the future.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China
| | - Xiuli Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China
| | - Ying Han
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Huiwen Zhang
- Chengde City Veterinary Drug Management Station, Chengde, China
| | - Bosen Li
- Chengde City Veterinary Drug Management Station, Chengde, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
7
|
Assefi M, Bijan Rostami R, Ebrahimi M, Altafi M, Tehrany PM, Zaidan HK, Talib Al-Naqeeb BZ, Hadi M, Yasamineh S, Gholizadeh O. Potential use of the cholesterol transfer inhibitor U18666A as an antiviral drug for research on various viral infections. Microb Pathog 2023; 179:106096. [PMID: 37011734 DOI: 10.1016/j.micpath.2023.106096] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Cholesterol plays critical functions in arranging the biophysical attributes of proteins and lipids in the plasma membrane. For various viruses, an association with cholesterol for virus entrance and/or morphogenesis has been demonstrated. Therefore, the lipid metabolic pathways and the combination of membranes could be targeted to selectively suppress the virus replication steps as a basis for antiviral treatment. U18666A is a cationic amphiphilic drug (CAD) that affects intracellular transport and cholesterol production. A robust tool for investigating lysosomal cholesterol transfer and Ebola virus infection is an androstenolone derived termed U18666A that suppresses three enzymes in the cholesterol biosynthesis mechanism. In addition, U18666A inhibited low-density lipoprotein (LDL)-induced downregulation of LDL receptor and triggered lysosomal aggregation of cholesterol. According to reports, U18666A inhibits the reproduction of baculoviruses, filoviruses, hepatitis, coronaviruses, pseudorabies, HIV, influenza, and flaviviruses, as well as chikungunya and flaviviruses. U18666A-treated viral infections may act as a novel in vitro model system to elucidate the cholesterol mechanism of several viral infections. In this article, we discuss the mechanism and function of U18666A as a potent tool for studying cholesterol mechanisms in various viral infections.
Collapse
|
8
|
Jiang D, Jiang C, Sui C, Wu X, Hu Y, Lee C, Cong X, Li J, Du Y, Qi J. Swine NONO is an essential factor to inhibit pseudorabies virus infection. Vet Microbiol 2022; 275:109582. [DOI: 10.1016/j.vetmic.2022.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
9
|
HSP27 Attenuates cGAS-Mediated IFN-β Signaling through Ubiquitination of cGAS and Promotes PRV Infection. Viruses 2022; 14:v14091851. [PMID: 36146658 PMCID: PMC9502172 DOI: 10.3390/v14091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies (PR) is a domestic and wild animal infectious disease caused by the pseudorabies virus (PRV) and is one of the major infectious diseases that endanger the global swine industry. Studies have reported that PRV may achieve cross-species transmission from pigs to humans in recent years. Therefore, in-depth exploration of the relationship between PRV and host proteins is of great significance for elucidating the pathogenic mechanism of PRV and anti-PRV infection. Here, we report that heat shock protein 27 (HSP27) ubiquitinates and degrades cyclic GMP-AMP synthase (cGAS) and attenuates cGAS-mediated antiviral responses, thereby promoting PRV infection. Overexpression of HSP27 promoted PRV proliferation in vitro, while knockdown of HSP27 inhibited PRV infection. Importantly, we found that HSP27 inhibited PRV infection or poly(dA:dT)-activated IFN-β expression. Further studies found that HSP27 may inhibit cGAS-STING-mediated IFN-β expression through targeting cGAS. In addition, we found that HSP27 can suppress the expression of endogenous cGAS in different cells at both gene transcription and protein expression levels, and that HSP27 interacts with and ubiquitinates cGAS. In conclusion, we reveal for the first time that HSP27 is a novel negative regulator of the cGAS-STING signaling pathway induced by PRV infection or poly(dA:dT) activation and demonstrate that HSP27 plays a crucial role in PRV infection.
Collapse
|
10
|
Xie J, Li X, Yang S, Yan Z, Chen L, Yang Y, Li D, Zhang X, Feng R. DDX56 inhibits PRV replication through regulation of IFN-β signaling pathway by targeting cGAS. Front Microbiol 2022; 13:932842. [PMID: 36090064 PMCID: PMC9450509 DOI: 10.3389/fmicb.2022.932842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an agent of Aujeszky's disease, and causes great economic losses to pig farming. Re-outburst of pseudorabies implies that new control measures are urgently needed. We show here that DDX56 possesses the ability to inhibit PRV replication in vitro, which may be an important factor for PRV infection. Overexpression of DDX56 inhibited PRV genomic DNA transcription and lower titers of PRV infection in PK15 cells, whereas down-regulation of the DDX56 expression had a promotion role on virus replication. Further study demonstrated that DDX56 exerted its proliferation-inhibitory effects of PRV through up-regulating cGAS-STING-induced IFN-β expression. Moreover, we found that DDX56 could promote cGAS expression and direct interaction also existed between DDX56 and cGAS. Based on this, DDX56-regulated IFN-β pathway may be targeted at cGAS. To verify this, down-regulated cGAS expression in DDX56 over-expression cells was performed. Results indicated that knockdown of cGAS expression could abrogate the inhibition role of DDX56 on PRV proliferation and weaken the effect of DDX56 on IFN-β expression. In addition, DDX56 played a promotion role in IRF3 phosphorylation and nucleus translocation. Altogether, our results highlight DDX56's antiviral role in PRV infection, and our findings contribute to a better understanding of host factors controlling PRV replication.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Shunyu Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- *Correspondence: Ruofei Feng
| |
Collapse
|
11
|
Deng L, Yin Y, Xu Z, Li F, Zhao J, Deng H, Jian Z, Lai S, Sun X, Zhu L. Antiviral Activity of Porcine IFN-λ3 and IFN-α against Porcine Rotavirus In Vitro. Molecules 2022; 27:4575. [PMID: 35889447 PMCID: PMC9321941 DOI: 10.3390/molecules27144575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Interferons (IFNs) play a major role in the host's antiviral innate immunity. In response to viral infection, IFNs bind their receptors and initiate a signaling cascade, leading to the accurate transcriptional regulation of hundreds of IFN-stimulated genes (ISGs). Porcine rotavirus (PoRV) belongs to genus Rotavirus of the Reoviridae family; the infection is a global epidemic disease and a major threat to the pig industry. In this study, we found that IFN-λ3 inhibited the replication of PoRV in both MA104 cells and IPEC-J2 cells, and this inhibition was dose-dependent. Furthermore, the antiviral activity of IFN-λ3 was more potent in IPEC-J2 cells than in MA104 cells. Further research showed that IFN-λ3 and IFN-α might inhibit PoRV infection by activating ISGs, i.e., MxA, OASL and ISG15, in IPEC-J2 cells. However, the co-treatment of IFN-λ3 and IFN-α did not enhance the antiviral activity. Our data demonstrated that IFN-λ3 had antiviral activity against PoRV and may serve as a useful antiviral candidate against PoRV, as well as other viruses in swine.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Yue Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| | - Fengqin Li
- College of Animal Science, Xichang University, Xichang 615000, China;
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 625014, China; (L.D.); (Y.Y.); (Z.X.); (J.Z.); (H.D.); (Z.J.); (S.L.); (X.S.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 625014, China
| |
Collapse
|
12
|
The Activity of Plant-Derived Ren’s Oligopeptides-1 against the Pseudorabies Virus. Animals (Basel) 2022; 12:ani12111341. [PMID: 35681806 PMCID: PMC9179334 DOI: 10.3390/ani12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized Ren’s oligopeptides-1 was found to have an antiviral effect in clinical trials, and the purpose of this study was to further demonstrate the antiviral activity of Ren’s oligopeptides-1 against the PRV 152-GFP strain. We used the real-time cell analysis system (RTCA) to detect the cytotoxicity of different concentrations of Ren’s oligopeptides-1. We then applied high content screening (HCS) to detect the antiviral activity of Ren’s oligopeptides-1 against PRV. Meanwhile, the fluorescence signal of the virus was collected in real time and the expression levels of the related genes in the PK15 cells infected with PRV were detected using real-time PCR. At the mRNA level, we discovered that, at a concentration of 6 mg/mL, Ren’s oligopeptides-1 reduced the expression of pseudorabies virus (PRV) genes such as IE180, UL18, UL54, and UL21 at a concentration of 6 mg/mL. We then determined that Ren’s oligopeptides-1 has an EC50 value of 6 mg/mL, and at this level, no cytotoxicity was observed.
Collapse
|
13
|
Zhang X, Xie J, Gao M, Yan Z, Chen L, Wei S, Feng R. Pseudorabies Virus ICP0 Abolishes Tumor Necrosis Factor Alpha-Induced NF-κB Activation by Degrading P65. Viruses 2022; 14:954. [PMID: 35632696 PMCID: PMC9142898 DOI: 10.3390/v14050954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Nuclear factor κB (NF-κB) is involved in a wide range of innate immune activities in host cells and serves as an important component of a host's immunity system. To survive in infected cells, viruses have evolved intricate strategies to evade the host immune response. Pseudorabies virus (PRV) is a member of the alpha herpesvirus family and is capable of causing reproductive and neurological dysfunction in pigs. PRV has a large DNA genome and therefore has the ability to encode numerous proteins that modulate host innate immune responses. In the present study, we demonstrated that the PRV-encoded immediate early protein ICP0 inhibits the tumor necrosis factor alpha (TNF-α)-mediated NF-κB signaling pathway. An in-depth study showed that ICP0 protein was able to limit NF-κB activation and decreased the expression of inflammatory cytokines interleukin-6 (IL-6) and interleukin 8 (IL-8). In addition, ICP0 blocked the activation of NF-κB through interacting with p65, degrading its protein expression and limiting its phosphorylation. PRV protein ICP0 is shown for the first time to enable escape from innate immune response through the regulation of NF-κB during PRV infection. These results illustrate that PRV ICP0 is able to block NF-κB activation. This mechanism may represent a critical role in the early events leading to PRV infection.
Collapse
Affiliation(s)
- Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (X.Z.); (J.X.); (Z.Y.); (L.C.)
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (X.Z.); (J.X.); (Z.Y.); (L.C.)
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Ming Gao
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (X.Z.); (J.X.); (Z.Y.); (L.C.)
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (X.Z.); (J.X.); (Z.Y.); (L.C.)
| | - Suocheng Wei
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China;
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China; (X.Z.); (J.X.); (Z.Y.); (L.C.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
14
|
Wang H, Wang L, Luo X, Guan J, Zhang X, Zhang L, Xiang Y. Molecular cloning, expression and anti-tumor function analysis of yak IFITM2 gene. Int J Biol Macromol 2022; 209:405-412. [PMID: 35381283 DOI: 10.1016/j.ijbiomac.2022.03.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
IFITM2 is interferon-induced transmembrane protein 2, which plays an extremely key role in anti-tumor and anti-virus diseases. In this study, the 602 bp cDNA sequence of the yak (Bos grunniens) IFITM2 (BgIFITM2) gene was obtained. Moreover, the prokaryotic expression vector of BgIFITM2 protein was constructed and expressed successfully, with a molecular weight of 33.680 kDa. The proliferation activities and migration abilities of HepG2 cells were significantly inhibited after treatment with BgIFITM2 protein (0.1 and 1 μg/mL) (P < 0.05). The expressions of B cell lymphoma-2 (BCL2)/BCL2-associated X (BAX) and molecular target of rapamycin (mTOR) genes were significantly decreased, but the expressions of BAX gene were significantly increased after treatment with BgIFITM2 protein (0.1 and 1 μg/mL) (P < 0.05). The expression of BAX protein was also significantly increased after treatment with 1 μg/mL BgIFITM2 protein (P < 0.05). Finally, the addition of BgIFITM2 protein attenuated the formation of tumor lesions in mice, and the pathological damage of the lung was less than that in the model group. The expression of Ki67 protein in the model group was significantly higher than that in the control group (P < 0.05), but the expression of Ki67 protein in the BgIFITM2 group was significantly lower than that in the model group (P < 0.05). Taken together, BgIFITM2 protein could inhibit the proliferative activity of HepG2 cells by regulating apoptosis-related genes, and reduce the invasiveness of HepG2 cells in mice lung tissue. These results facilitate further studies on the function of BgIFITM2 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, PR China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| | - Yi Xiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, PR China
| |
Collapse
|
15
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
16
|
Xie J, Zhang X, Chen L, Bi Y, Idris A, Xu S, Li X, Zhang Y, Feng R. Pseudorabies Virus US3 Protein Inhibits IFN-β Production by Interacting With IRF3 to Block Its Activation. Front Microbiol 2021; 12:761282. [PMID: 34745071 PMCID: PMC8569920 DOI: 10.3389/fmicb.2021.761282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudorabies virus is a typical swine alphaherpesvirus, which can cause obvious neurological disorders and reproductive failure in pigs. It is capable of evading host antiviral immune response. However, the mechanism by which many PRV proteins assist the virus to evade innate immunity is not fully understood. This study identified PRV US3 protein as a crucial antagonistic viral factor that represses interferon beta (IFN-β) expression. A in-depth study showed that US3 protein restricted type I IFN production by targeting interferon regulatory factor 3 (IRF3), a key molecule required for type I IFN induction. Additionally, US3 protein interacted with IRF3, degraded its protein expression to block the phosphorylation of IRF3. These findings suggested a novel strategy utilized by PRV to inhibit IFN-β production and escape the host innate immunity.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
17
|
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of interferon-inducible proteins that inhibit a broad range of viruses by interfering with viral-to-cellular membrane fusion. The antiviral activity of IFITMs is highly regulated by several posttranslational modifications and by a number of protein domains that modulate steady-state protein levels, trafficking, and antiviral effectiveness. Taking advantage of the natural diversity existing among IFITMs of different animal species, we have compared 21 IFITMs for their ability to inhibit HIV-1 at two steps, during virus entry into cells (target cell protection) and during the production of novel virion particles (negative imprinting of virion particles' infectivity). We found a high functional heterogeneity among IFITM homologs with respect to both antiviral modalities, with IFITM members that exhibit enhanced viral inhibition, while others have no ability to block HIV-1. These differences could not be ascribed to known regulatory domains and could only be partially explained through differential protein stability, implying the existence of additional mechanisms. Through the use of chimeras between active and inactive IFITMs, we demonstrate that the cross talk between distinct domains of IFITMs is an important contributor of their antiviral potency. Finally, we identified murine IFITMs as natural variants competent for target cell protection, but not for negative imprinting of virion particles' infectivity, suggesting that the two properties may, at least in principle, be uncoupled. Overall, our results shed new light on the complex relationship between IFITMs and viral infection and point to the cross talk between IFITM domains as a novel layer of regulation of their activity. IMPORTANCE IFITMs are broad viral inhibitors capable of interfering with both early and late phases of the replicative cycle of many different viruses. By comparing 21 IFITM proteins issued from different animal species for their ability to inhibit HIV-1, we have identified several that exhibit either enhanced or impaired antiviral behavior. This functional diversity is not driven by differences in known domains and can only be partly explained through differential protein stability. Chimeras between active and inactive IFITMs point to the cross talk between individual IFITM domains as important for optimal antiviral activity. Finally, we show that murine IFITMs are not capable of decreasing the infectivity of newly produced HIV-1 virion particles, although they retain target cell protection abilities, suggesting that these properties may be, in principle, disconnected. Overall, our results shed new light on the complex layers of regulation of IFITM proteins and enrich our current understanding of these broad antiviral factors.
Collapse
|
18
|
Zhang T, Liu Y, Chen Y, Wang J, Feng H, Wei Q, Zhao S, Yang S, Ma H, Liu D, Zhang G. Antiviral activity of porcine interferon delta 8 against pesudorabies virus in vitro. Int J Biol Macromol 2021; 177:10-18. [PMID: 33548323 DOI: 10.1016/j.ijbiomac.2021.01.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Recently, pseudorabies virus (PRV) was isolated from human cases, and infected patients presented with respiratory dysfunction and acute neurological symptoms. However, there was no available effective drug to prevent the progression of PRV infection. In the present study, we screened a stably Drosophila S2 cell line which can secretory express a novel type I IFNs-interferon delta 8 (IFN-δ8) and the yield was about 10 mg/L. After purification, recombinant IFN-δ8 was demonstrated to be acid-stable, heat-stable, and nontoxic to PK-15 and 3D4/21 cells. Antiviral effects of IFN-δ8 against PRV were tested in vitro. Our results showed both pre- and post-treatment, recombinant PoIFN-δ8 exerted a significant protective effect against PRV infection in PK-15 and 3D4/21 cells. In addition, PoIFN-δ8 remarkably increased the expression of eight IFN-stimulated genes (ISGs), including ISG15, OAS1, PKR, MX1, CH25H, IFITM1, IFITM2 and IFITM3, to resist virus infection. These findings highlight the significance of IFN-δ8 that might serve as an antiviral agent for the prevention of PRV infection, and maybe expand the potential function of IFN antiviral drugs in the future.
Collapse
Affiliation(s)
- Teng Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shuangshuang Zhao
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongfang Ma
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|