1
|
Furukawa T, Inagaki A, Hatta T, Moroishi S, Kawanishi K, Itoh Y, Maehana S, Amarasiri M, Sei K. Cell Extracts Derived from Cypress and Cedar Show Antiviral Activity against Enveloped Viruses. Microorganisms 2024; 12:1813. [PMID: 39338487 PMCID: PMC11433713 DOI: 10.3390/microorganisms12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The antiviral efficacy of cell-extracts (CEs) derived from cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl., C. obtusa) and cedar (Cryptomeria japonica (Thunb. ex. L.) D.Don, C. japonica) was assessed using phi6 and MS2 bacteriophages, which are widely accepted surrogate models for enveloped and non-enveloped viruses, in order to verify their potential use as antiviral agents. Our results indicate that CEs derived from C. obtusa are dominantly composed of terpinen-4-ol (18.0%), α-terpinyl acetate (10.1%), bornyl acetate (9.7%), limonene (7.1%), and γ-terpinene (6.7%), while CEs derived from C. japonica are dominantly composed of terpinen-4-ol (48.0%) and α-pinene (15.9%), which exhibited robust antiviral activity against phi6 bacteriophage. Both CEs successfully inactivated the phi6 bacteriophage below the detection limit (10 PFU/mL) within a short exposure time of 30 s (log reduction value, LRV > 4). Through exposure experiments utilizing CEs with content ratios prepared via 2-fold serial dilutions (ranging from 3.13% to 100%), we demonstrated that the antiviral effect could be sustained up to a concentration of 25% (C. obtusa LRV = 3.8, C. japonica LRV > 4.3 at a 25% CE content ratio for each species). However, CEs with content ratios below 12.5% did not produce a significant reduction in bacteriophage concentration and consequently lost their antiviral effects. Conversely, both CEs did not exhibit antiviral activity against MS2 bacteriophage, a non-enveloped virus. Our findings reveal for the first time the potential of CEs derived from C. obtusa and C. japonica for use as antiviral agents specifically targeting enveloped viruses.
Collapse
Affiliation(s)
- Takashi Furukawa
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Ayumu Inagaki
- Department of Mechanical Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita 870-0152, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, School of Medicine, Kitasato University, Sagamihara 252-0374, Japan
| | - Suzuha Moroishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Katsuki Kawanishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Yuki Itoh
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Shotaro Maehana
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Mohan Amarasiri
- Graduate School of Engineering, Tohoku University, 6-6-06, Aoba-Ku, Sendai 980-8579, Japan
| | - Kazunari Sei
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| |
Collapse
|
2
|
Kubo M, Eda R, Maehana S, Fuketa H, Shinkai N, Kawamura N, Kitasato H, Hanaki H. Virucidal efficacy of hypochlorous acid water for aqueous phase and atomization against SARS-CoV-2. JOURNAL OF WATER AND HEALTH 2024; 22:601-611. [PMID: 38557574 DOI: 10.2166/wh.2024.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.
Collapse
Affiliation(s)
- Makoto Kubo
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan E-mail:
| | - Ryotaro Eda
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shotaro Maehana
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Department of Environmental Microbiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Facility of Regenerative Medicine and Cell Design, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroshi Fuketa
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Norihiro Shinkai
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Naohisa Kawamura
- NIPRO Corporation, Pharmaceutical Research Laboratories, 7-2 Minamisakae-cho Kasukabe, Saitama 344-0057, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hideaki Hanaki
- Infection Control Research Center, The Omura Satoshi Memorial Institution, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Xie T, Yang J, Fang C, Zhang J, Lin H, Zhu Y, Tang T, Wang C. The survival of murine hepatitis virus (a surrogate of SARS-CoV-2) on conventional packaging materials under cold chain conditions. Front Public Health 2023; 11:1319828. [PMID: 38115844 PMCID: PMC10728718 DOI: 10.3389/fpubh.2023.1319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction The cold chain conditions have been suggested to facilitate long-distance transmission of SARS-CoV-2, but it is unclear how viable the virus is on cold chain packaging materials. Methods This study used the MHV-JHM strain of murine hepatitis virus as a model organism to investigate the viability of SARS-CoV-2 on foam, plastic, cardboard, and wood sheets at different temperatures (-40°C, -20°C, and 4°C). In addition, the ability of peracetic acid and sodium hypochlorite to eliminate the MHV-JHM on plastic and cardboard sheets were also evaluated. Results The results indicate that MHV-JHM can survive on foam, plastic, or cardboard sheets for up to 28 days at -40°C and -20°C, and up to 14 days on foam and plastic surfaces at 4°C. Although viral nucleic acids were still detectable after storing at 4°C for 28 days, the corresponding virus titer was below the limit of quantification (LOQ). Discussion The study highlights that a positive nucleic acid test result may not indicate that the virus is still viable, and confirms that peracetic acid and sodium hypochlorite can effectively eliminate MHV-JHM on packaging materials under cold chain conditions.
Collapse
Affiliation(s)
- Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jiaxue Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chubin Fang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jing Zhang
- Technology Center of Chengdu Customs, Chengdu, China
| | - Hua Lin
- Technology Center of Chengdu Customs, Chengdu, China
| | - Yalan Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Dianty R, Hirano J, Anzai I, Kanai Y, Hayashi T, Morimoto M, Kataoka-Nakamura C, Kobayashi S, Uemura K, Ono C, Watanabe T, Kobayashi T, Murakami K, Kikuchi K, Hotta K, Yoshikawa T, Taguwa S, Matsuura Y. Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation. Front Microbiol 2023; 14:1284274. [PMID: 37928667 PMCID: PMC10625411 DOI: 10.3389/fmicb.2023.1284274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
Collapse
Affiliation(s)
- Rahmi Dianty
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Itsuki Anzai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yuta Kanai
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masae Morimoto
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Kataoka-Nakamura
- Innovative Vaccine Research and Development Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Uemura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tokiko Watanabe
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takeshi Kobayashi
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenji Kikuchi
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | | | | | - Shuhei Taguwa
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Zwicker P, Freitag M, Heidel FH, Kocher T, Kramer A. Antiseptic efficacy of two mouth rinses in the oral cavity to identify a suitable rinsing solution in radiation- or chemotherapy induced mucositis. BMC Oral Health 2023; 23:176. [PMID: 36966298 PMCID: PMC10040117 DOI: 10.1186/s12903-023-02884-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
OBJECTIVES Oral mucositis caused by intensive cancer chemotherapy or radiotherapy frequently results in pronounced damage of the oral mucosa leading to painful oral hygiene. To support oral care, antimicrobial effective mouth rinses may be used. Thus, the efficacy of a hypochlorite-based mouth rinse (Granudacyn®), assumed to be highly biocompatible because of the compounds being part of the natural pathogen defense, as possible antiseptic agent in case of oral mucositis was compared to that of an octenidine based antiseptic mouth rinse (Octenidol® md). MATERIALS AND METHODS The study was conducted as monocentric, controlled, randomized, blind cross over comparative study on 20 volunteers. As a proof of principle, we performed the study on orally healthy subjects and not cancer patients. The efficacy was determined as reduction of colony forming units (cfu) on buccal mucosa as well as in saliva. After mouth rinsing for 30 s, samples were taken after 1 min, 15 min, 30 and 60 min. The lg-reduction was calculated as difference between lg-values of cfu pre- and post-treatment. RESULTS Both antiseptic mouth rinses induced a significant reduction of cfu on buccal mucosa and in saliva 1 min after mouth rinsing. The effect persisted up to 60 min. The octenidine based rinse was significantly superior to the hypochlorite-based rinse up to the last sample 60 min after rinsing. However, the known cytotoxicity of octenidine argues against its application. CONCLUSION Within the limits of this study, due to its antiseptic efficacy, the hypochlorite-based rinse Granudacyn® can be regarded appropriate to support the oral hygiene in patients with a sensitive oral mucosa during an aggressive cancer chemotherapy and radiation treatment in case of oral mucositis.
Collapse
Affiliation(s)
- Paula Zwicker
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str, University Medicine Greifswald, D-17475, Greifswald, Germany.
| | - Marcus Freitag
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Florian H Heidel
- Internal Medicine C, Ferdinand-Sauerbruch-Str, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Fleischmannstr. 4, D-17475, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str, University Medicine Greifswald, D-17475, Greifswald, Germany
| |
Collapse
|
6
|
Miyaoka Y, Kadota C, Kabir MH, Hakim H, Yamaguchi M, Hasan MA, Shoham D, Murakami H, Kobayashi S, Takehara K. Isolation, molecular characterization, and disinfectants susceptibility of swine-carried mammalian orthoreoviruses in Japan in 2020-2022. J Vet Med Sci 2023; 85:185-193. [PMID: 36574999 PMCID: PMC10017281 DOI: 10.1292/jvms.22-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biosecurity enhancement contributes to the reduction of various microbial pathogens. Mammalian orthoreoviruses (MRVs) which are increasingly recognized as potentially serious problems on swine industry were used as indicators of biosecurity enhancement on two pig farms. Twelve MRVs were detected and isolated from fecal specimens of healthy pigs collected from one of the two farms in Japan. By sequencing based on the partial S1 gene, MRV isolates were classified as MRV1 and MRV2. Additionally, the virucidal activities of disinfectants toward the isolated MRV1 were evaluated using quaternary ammonium compound (QAC) diluted 500 times with water (QAC-500), 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, QAC diluted with 0.17% FdCa(OH)2 solution (Mix-500), sodium hypochlorite at 100 or 1,000 parts per million (ppm) of total chlorine (NaClO-100 or NaClO-1000, respectively). To efficiently inactivate MRV1 (≥3 log10 reductions), 0.17% FdCa(OH)2, Mix-500 and NaClO-1000 required 5 min, whereas it took 30 min for QAC-500. The number of MRV detections has decreased over time, after using Mix-500 for disinfection on the positive farm. These results suggest that different serotypes of MRVs are circulating among pigs, and that the occurrence of MRVs in the farms decreased consequent to more effective disinfection.
Collapse
Affiliation(s)
- Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chisaki Kadota
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Md Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hakimullah Hakim
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Md Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan, Israel
| | - Harumi Murakami
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sota Kobayashi
- Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Benedusi M, Tamburini E, Sicurella M, Summa D, Ferrara F, Marconi P, Cervellati F, Costa S, Valacchi G. The Lesson Learned from the COVID-19 Pandemic: Can an Active Chemical Be Effective, Safe, Harmless-for-Humans and Low-Cost at a Time? Evidence on Aerosolized Hypochlorous Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13163. [PMID: 36293740 PMCID: PMC9602504 DOI: 10.3390/ijerph192013163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has underlined the importance of disinfectants as tools to prevent and fight against coronavirus spreading. An ideal disinfectant and sanitizer must be nontoxic to surface contact, noncorrosive, effective, and relatively inexpensive as it is hypochlorous acid (HOCl). The present work intended to evaluate, on different surfaces, the bactericidal and virucidal effectiveness of nebulized HOCl and test its safety usage in 2D and 3D skin and lung models. Our data showed that HOCl at the dose of 300 ppm did not affect cellular and tissue viability, not their morphology. The HOCl bactericidal properties varies with the surface analyzed: 69% for semi-porous, 96-99.9% for flat and porous. This discrepancy was not noticed for the virucidal properties. Overall, this study showed that nebulized HOCl can prevent virus and bacteria growth without affecting lung and skin tissues, making this compound a perfect candidate to sanitize indoor environments.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariaconcetta Sicurella
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Ferrara
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Franco Cervellati
- Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Murashevych B, Stepanskyi D, Toropin V, Mironenko A, Maslak H, Burmistrov K, Teteriuk N. Virucidal properties of new multifunctional fibrous N-halamine-immobilized styrene-divinylbenzene copolymers. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Virucidal properties of N-chlorosulfonamides immobilized on fibrous styrene-divinylbenzene copolymers have been studied. Corresponding materials with different functional group structures and chlorine content have been synthesized on FIBAN polymer carriers in the form of staple fibers and non-woven fabrics. The study has been conducted in general accordance with EN 14476 standard on poliovirus type-1 and adenovirus type-5. It has been found that all tested samples exhibit pronounced virucidal activity: regardless of the carrier polymer form, sodium N-chlorosulfonamides inactivated both viruses in less than 30 s, and N,N-dichlorosulfonamides—in 30–60 s. The main mechanism of action of these materials, obviously, consists in the emission of active chlorine from the functional group into the treated medium under the action of the amino groups of virus fragments and cell culture. Considering the previously described antimicrobial and reparative properties of such materials, as well as their satisfactory physical and mechanical properties, the synthesized polymers are promising for the creation of medical devices with increased resistance to microbial contamination, such as protective masks, filter elements, long-acting wound dressings, and others.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmytro Stepanskyi
- Department of Microbiology, Virology, Immunology and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Toropin
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Konstantin Burmistrov
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Nataliia Teteriuk
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| |
Collapse
|
9
|
Evaluation of Virucidal Quantitative Carrier Test towards Bovine Viruses for Surface Disinfectants While Simulating Practical Usage on Livestock Farms. Microorganisms 2022; 10:microorganisms10071320. [PMID: 35889039 PMCID: PMC9321655 DOI: 10.3390/microorganisms10071320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Livestock farming is affected by the occurrence of infectious diseases, but outbreaks can be prevented by effective cleaning and disinfection along with proper farm management. In the present study, bovine coronavirus (BCoV) and bovine rotavirus A (RVA) were inactivated using food additive-grade calcium hydroxide (FdCa(OH)2) solution, quaternary ammonium compound (QAC) and their mixture through suspension tests as the primary screening, and afterward via carrier tests using dropping or dipping techniques as the secondary screenings. Viruses in the aqueous phase can be easily inactivated in the suspension tests, but once attached to the materials, they can become resistant to disinfectants, and require longer times to be inactivated. This highlights the importance of thorough cleaning with detergent before disinfection, and keeping elevated contact durations of proper disinfectants to reduce viral contamination and decrease infectious diseases incidence in farms. It was also reaffirmed that the suspension and carrier tests are necessary to evaluate disinfectants and thus determine their actual use. Particularly, the mixture of QAC and FdCa(OH)2 was found to exhibit synergistic and broad-spectrum effects compared to their use alone, and is now recommended for use on livestock farms.
Collapse
|
10
|
Miyaoka Y, Yamaguchi M, Kadota C, Hasan MA, Kabir MH, Shoham D, Murakami H, Takehara K. Rapid in vitro virucidal activity of slightly acidic hypochlorous acid water toward aerosolized coronavirus in simulated human-dispersed droplets. Virus Res 2022; 311:198701. [PMID: 35093473 PMCID: PMC8799933 DOI: 10.1016/j.virusres.2022.198701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/26/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
The virucidal activities were evaluated by spraying slightly acidic hypochlorous acid waters (SAHWs) containing various concentrations of free available chlorine - 100, 200, 300 and 500 ppm (SAHW-100, -200, -300 and -500, respectively) - toward aerosol of an avian coronavirus (infectious bronchitis virus: IBV). The viral solution was supplemented with 0.5% fetal bovine serum (FBS) to simulate normal human droplets generated by sneezing or coughing in a real-life scenario. The virus containing 0.5% FBS was sprayed and exposed to SAHWs for a few seconds in a closed chamber, before reaching the air sampler. The results showed that IBV exposed to SAHW-100 and -200 for a few seconds decreased by 0.21 log10 and 0.80 log10, respectively, compared to the pre-exposed samples to SAHWs as controls. On the other hand, reductions of 1.16 log10 and 1.67 log10 were achieved following the exposure to SAHW-300 and -500, respectively, within a few seconds. These results suggest that SAHWs have rapid in vitro virucidal activity toward aerosolized IBV. The findings obtained for IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses. To prevent human-to-human transmissions by aerosols, the inactivation of viruses in the air by exposure to SAHWs for a few seconds seems to be an effective way.
Collapse
Affiliation(s)
- Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Chisaki Kadota
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Harumi Murakami
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
11
|
Physicochemical stability and virucidal effect of diluted, slightly acidic electrolyzed water against human norovirus. Food Sci Biotechnol 2021; 31:131-138. [DOI: 10.1007/s10068-021-01011-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
|
12
|
Kabir MH, Miyaoka Y, Hasan MA, Yamaguchi M, Shoham D, Murakami H, Takehara K. Synergistic effects of quaternary ammonium compounds and food additive grade calcium hydroxide on microbicidal activities at low temperatures. J Vet Med Sci 2021; 83:1820-1825. [PMID: 34719533 PMCID: PMC8762418 DOI: 10.1292/jvms.21-0275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microbicidal activities of mixtures of quaternary ammonium compounds (QACs) and food
additive grade calcium hydroxide (FdCa(OH)2) were evaluated in a suspension
test at −20°C using an anti-freeze agent (AFA) containing methanol, or at 1°C, with
varying contact time, toward avian influenza virus (AIV), Newcastle disease virus (NDV),
fowl adenovirus (FAdV), avian reovirus (ARV), Salmonella Infantis (SI)
and Escherichia coli (EC). At −20°C, the mixtures could inactivate AIV
and NDV within 30 min, FAdV and ARV within 5 sec, and SI and EC within 3 min,
respectively. AFA did not inactivate viruses and bacteria within 30 min and 10 min,
respectively. At 1°C, the mixtures inactivated FAdV and ARV within 30 sec, AIV within 10
min, and NDV within 30 min. A mixture of slaked lime (SL) and QAC could inactivate FAdV
and ARV within 30 sec, but could not inactivate AIV and NDV even after 60 min at 1°C. SL
could not substitute FdCa(OH)2 in order to exert the synergistic effects with
QAC. Thus, QACs microbicidal activities were maintained or enhanced by adding
FdCa(OH)2. It is hence recommended to use QACs with FdCa(OH)2,
especially in the winter season.
Collapse
Affiliation(s)
- Md Humayun Kabir
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yu Miyaoka
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md Amirul Hasan
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makiko Yamaguchi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany Shoham
- Begin-Sadat Center for Strategic Studies, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Harumi Murakami
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|