1
|
Chen K, Zhang J, Wang S, Yi Z, Fu Y. Duplex recombinase aided amplification-lateral flow dipstick assay for rapid distinction of Mycobacterium tuberculosis and Mycobacterium avium complex. Front Cell Infect Microbiol 2024; 14:1454096. [PMID: 39450337 PMCID: PMC11499229 DOI: 10.3389/fcimb.2024.1454096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives This study aims to develop a novel diagnostic approach using the recombinase aided amplification-lateral flow dipstick(RAA-LFD) assay for the distinction of Mycobacterium tuberculosis (MTB) and Mycobacterium avium complex (MAC), enabling rapid and convenient as well as accurate identification of them in clinical samples. Methods Our study established a duplex RAA-LFD assay capable of discriminating between MTB and MAC. Based on the principles of RAA primer and probe design, specific primers and probes were developed targeting the MTB IS6110 and the MAC DT1 separately. Optimization of reaction time points and temperatures was conducted, followed by an evaluation of specificity, sensitivity, and reproducibility. The established detection method was then applied to clinical samples and compared with smear microscopy, liquid culture, LAMP, and Xpert/MTB RIF in terms of diagnostic performance. Results The complete workflow allows for the effective amplification of the MTB IS6110 and MAC DT1 target sequences at constant 37°C within 20min, and the amplification products can be visually observed on the LFD test strip. This method exhibits high specificity, showing no cross-reactivity with nucleic acids from M. kansassi, M. abscessus, M. gordonae, M. chelonae, M. fortuitum, M. scrofulaceum, M. malmoense, M. chimaera, M. szulgai and common respiratory pathogens. It also demonstrates high sensitivity, with a detection limit as low as 102 CFU/mL. Additionally, the method's Coefficient of Variation (CV) is less than 5%, ensuring excellent repeatability and reliability. Furthermore, clinical performance evaluations, using Xpert/MTB RIF as the gold standard, demonstrated that the duplex RAA-LFD assay achieves a sensitivity of 92.86% and a specificity of 93.75%. It is also noteworthy that the assay exhibits considerable diagnostic efficacy in smear-negative patients. Conclusions Our study introduces a rapid, specific, and sensitive duplex RAA-LFD assay for the discriminatory diagnosis of MTB and MAC. This method represents a significant advancement in the field of infectious disease diagnostics, offering a valuable tool for rapid detection and management of MTB and MAC infections. The implementation of this approach in point-of-care settings could greatly enhance TB control and prevention efforts, especially in resource-limited environments.
Collapse
Affiliation(s)
- Ke Chen
- Department of Medical Microbiology, School of Basic Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Clinical Laboratory, Weifang Second People’s hospital, Weifang, Shandong, China
| | - Junze Zhang
- Department of Medical Microbiology, School of Basic Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Simeng Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Zhengjun Yi
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, China
| | - Yurong Fu
- Department of Medical Microbiology, School of Basic Medicine, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Zhou XM, Shen ZY, Wu YX, Lin S, Wang MD, Xu T, Wang LL, Sadiq S, Jiao XH, Wu P. Development of a rapid visual detection technology for BmNPV based on CRISPR/Cas13a system. J Invertebr Pathol 2024; 203:108072. [PMID: 38341022 DOI: 10.1016/j.jip.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Pathogenic microorganism of silkworm are important factors that threaten the high-quality development of sericulture. Among them, Bombyx mori nucleopolyhedrovirus (BmNPV) caused diseases often lead to frequent outbreaks and high mortality, resulting in huge losses to sericultural industry. Current molecular detection methods for BmNPV require expensive equipment and sikilled technical personnel. As a result, the most commonly detection method for silkworm egg production enterprises involves observing the presence of polyhedra under a microscope. However, this method has low accuracy and sensitivity. There is an urgent need to develop a new detection technology with high sensitivity, high specificity, and applicability for silkworm farms, silkworm egg production enterprises and quarantine departments. In this study, we successfully established the CRISPR/Cas13a BmNPV visualized detection technology by combining Recombinase Polymerase Amplification (RPA) technology and CRISPR/Cas13a system. This technology is based on microplate lateral, flow test strips and portable fluorescence detector. The detection sensitivity can reach up to 1 copies/μL for positive standard plasmid and 1 fg/μL for BmNPV genome in 30-45 min, demonstrating high sensitivity. By detecting silkworm tissues infected with different pathogens, we determined that CRISPR/Cas13a detection technology has good specificity. In summary, the newly established nucleic acid detection technology for BmNPV is characterized by high sensitivity, high specificity, low cost and convenience for visualization. It can be applied in field detection and silkworm egg quality monitory system.
Collapse
Affiliation(s)
- Xue-Min Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhen-Yu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yi-Xiang Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Meng-Dong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lu-Lai Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xin-Hao Jiao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China.
| |
Collapse
|
3
|
Li X, Su B, Yang L, Kou Z, Wu H, Zhang T, Liu L, Han Y, Niu M, Sun Y, Li H, Jiang T. Highly sensitive and rapid point-of-care testing for HIV-1 infection based on CRISPR-Cas13a system. BMC Infect Dis 2023; 23:627. [PMID: 37749486 PMCID: PMC10518925 DOI: 10.1186/s12879-023-08492-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/28/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type one (HIV-1) is the leading cause of acquired immunodeficiency syndrome (AIDS). AIDS remains a global public health concern but can be effectively suppressed by life-long administration of combination antiretroviral therapy. Early detection and diagnosis are two key strategies for the prevention and control of HIV/AIDS. Rapid and accurate point-of-care testing (POCT) provides critical tools for managing HIV-1 epidemic in high-risk areas and populations. METHODS In this study, a POCT for HIV-1 RNA was developed by CRISPR-Cas13a lateral flow strip combined with reverse transcriptase recombinase-aided amplification (RT-RAA) technology, the results can be directly observed by naked eyes. RESULTS Moreover, with the degenerate base-binding CRISPR-Cas13a system was introduced into the RT-RAA primer designing, the technology developed in this study can be used to test majority of HIV-1 RNA with limit of detection (LOD) 1 copy/μL, while no obvious cross-reaction with other pathogens. We evaluated this method for detecting HIV-1 RNA of clinical samples, the results showed that the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were 91.81% (85.03- 96.19%), 100% (92.60-100%), 100% (96.41-100%), 39.14% (25.59-54.60%) and 92.22% (86.89-95.88%), respectively. The lowest viral load detectable by this method was 112copies/mL. CONCLUSION Above all, this method provides a point-of-care detection of HIV-1 RNA, which is stable, simple and with good sensitivity and specificity. This method has potential to be developed for promoting early diagnosis and treatment effect monitoring of HIV patients in clinical.
Collapse
Affiliation(s)
- Xiaohui Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lan Yang
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhihua Kou
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yao Han
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Mengwei Niu
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yansong Sun
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Hao Li
- State Key Laboratory of Pathogens and Biosafety, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Taiyi Jiang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Deng B, Xue J. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Comput Struct Biotechnol J 2023; 21:4409-4423. [PMID: 37711183 PMCID: PMC10498128 DOI: 10.1016/j.csbj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection poses substantial medical risks to global public health. An essential strategy to combat the HIV epidemic is timely and effective virus testing. CRISPR-based assays combine the highly compatible CRISPR system with different elements, yielding portability, digitization capabilities, low economic burden and low operational thresholds. The application of CRISPR-based assays has demonstrated rapid, accurate, and accessible means of pathogen testing, suggesting great potential as point-of-care (POC) assays. This review outlines the different types of CRISPR/Cas systems based on Cas proteins and their applications for the detection of HIV. Additionally, we also offer an overview of future perspectives on CRISPR-based methods for HIV detection, including advances in nucleic acid amplification-free testing, improved personal testing, and refined testing for HIV genotypes and drug-resistant strains.
Collapse
Affiliation(s)
- Bingpeng Deng
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jing Xue
- Beijing Key Laboratory for Animal Models of Emerging and Re-Emerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Chen X, Du C, Zhao Q, Zhao Q, Wan Y, He J, Yuan W. Rapid and visual identification of HIV-1 using reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticle-based lateral flow assay platform. Front Microbiol 2023; 14:1230533. [PMID: 37502395 PMCID: PMC10368893 DOI: 10.3389/fmicb.2023.1230533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Human immunodeficiency virus type one (HIV-1) infection remains a major public health problem worldwide. Early diagnosis of HIV-1 is crucial to treat and control this infection effectively. Here, for the first time, we reported a novel molecular diagnostic assay called reverse transcription loop-mediated isothermal amplification combined with a visual gold nanoparticle-based lateral flow assay (RT-LAMP-AuNPs-LFA), which we devised for rapid, specific, sensitive, and visual identification of HIV-1. The unique LAMP primers were successfully designed based on the pol gene from the major HIV-1 genotypes CRF01_AE, CRF07_BC, CRF08_BC, and subtype B, which are prevalent in China. The optimal HIV-1-RT-LAMP-AuNPs-LFA reaction conditions were determined to be 68°C for 35 min. The detection procedure, including crude genomic RNA isolation (approximately 5 min), RT-LAMP amplification (35 min), and visual result readout (<2 min), can be completed within 45 min. Our assay has a detection limit of 20 copies per test, and we did not observe any cross-reactivity with any other pathogen in our testing. Hence, our preliminary results indicated that the HIV-1-RT-LAMP-AuNPs-LFA assay can potentially serve as a useful point-of-care diagnostic tool for HIV-1 detection in a clinical setting.
Collapse
Affiliation(s)
- Xu Chen
- The Second Clinical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Clinical Medical Laboratory of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cheng Du
- Department of Anesthesiology, The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiang Zhao
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| | - Qi Zhao
- Gastroenterology of the Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yonghu Wan
- Experiment Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Jun He
- Clinical Laboratory, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| | - Wei Yuan
- Department of Quality Control, Guizhou Provincial Center for Clinical Laboratory, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Uno N, Li Z, Avery L, Sfeir MM, Liu C. CRISPR gel: A one-pot biosensing platform for rapid and sensitive detection of HIV viral RNA. Anal Chim Acta 2023; 1262:341258. [PMID: 37179057 PMCID: PMC10187225 DOI: 10.1016/j.aca.2023.341258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/04/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
CRISPR technology has recently emerged as a powerful biosensing tool for sensitive and specific nucleic acid detection when coupled with isothermal amplification (e.g., recombinase polymerase amplification (RPA)). However, it remains a challenge to incorporate isothermal amplification into CRISPR detection in a one-pot system due to their poor compatibility. Here, we developed a simple CRISPR gel biosensing platform for human immunodeficiency virus (HIV) RNA detection by combining reverse transcription-recombinase polymerase amplification (RT-RPA) reaction solution with a CRISPR gel. In our CRISPR gel biosensing platform, CRISPR-Cas12a enzymes are embedded into the agarose gel, providing a spatially separated but connected reaction interface with the RT-RPA reaction solution. During isothermal incubation, the RT-RPA amplification occurs initially on the CRISPR gel. When RPA products are sufficiently amplified and reach the CRISPR gel, the CRISPR reaction occurs in the whole tube. With the CRISPR gel biosensing platform, we successfully detected down to 30 copies of HIV RNA per test within 30 min. Furthermore, we validated its clinical utility by detecting HIV clinical plasma samples, achieving superior performance compared with the real-time RT-PCR method. Thus, our one-pot CRISPR gel biosensing platform demonstrates great potential for rapid and sensitive molecular detection of HIV and other pathogens at the point of care.
Collapse
Affiliation(s)
- Naoki Uno
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA; Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, CT, 06029, USA
| | - Lori Avery
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Maroun M Sfeir
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Fang J, Liu J, Cheng N, Kang X, Huang Z, Wang G, Xiong X, Lu T, Gong Z, Huang Z, Che J, Xiang T. Four thermostatic steps: A novel CRISPR-Cas12-based system for the rapid at-home detection of respiratory pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12568-3. [PMID: 37166482 PMCID: PMC10173909 DOI: 10.1007/s00253-023-12568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) in 2019 has severely damaged the world's economy and public health and made people pay more attention to respiratory infectious diseases. However, traditional quantitative real-time polymerase chain reaction (qRT-PCR) nucleic acid detection kits require RNA extraction, reverse transcription, and amplification, as well as the support of large-scale equipment to enrich and purify nucleic acids and precise temperature control. Therefore, novel, fast, convenient, sensitive and specific detection methods are urgently being developed and moving to proof of concept test. In this study, we developed a new nucleic acid detection system, referred to as 4 Thermostatic steps (4TS), which innovatively allows all the detection processes to be completed in a constant temperature device, which performs extraction, amplification, cutting of targets, and detection within 40 min. The assay can specifically and sensitively detect five respiratory pathogens, namely SARS-CoV-2, Mycoplasma felis (MF), Chlamydia felis (CF), Feline calicivirus (FCV), and Feline herpes virus (FHV). In addition, a cost-effective and practical small-scale reaction device was designed and developed to maintain stable reaction conditions. The results of the detection of the five viruses show that the sensitivity of the system is greater than 94%, and specificity is 100%. The 4TS system does not require complex equipment, which makes it convenient and fast to operate, and allows immediate testing for suspected infectious agents at home or in small clinics. Therefore, the assay system has diagnostic value and significant potential for further reducing the cost of early screening of infectious diseases and expanding its application. KEY POINTS: • The 4TS system enables the accurate and specific detection of nucleic acid of pathogens at 37 °C in four simple steps, and the whole process only takes 40 min. •A simple alkali solution can be used to extract nucleic acid. • A small portable device simple to operate is developed for home diagnosis and detection of respiratory pathogens.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Jing Liu
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Na Cheng
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiuhua Kang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhanchao Huang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Guoyu Wang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Xiaofeng Xiong
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Tian Lu
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhenghua Gong
- Jiangxi Zhongke Yanyuan Biotechnology Co, Ltd, Nanchang, Jiangxi, 341000, People's Republic of China
| | - Zhigang Huang
- Emergency Department, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jun Che
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, 518036, China.
| | - Tianxin Xiang
- Department of Infection Control in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 341000, People's Republic of China.
| |
Collapse
|
9
|
Zhong X, Fu Q, Wang Y, Long L, Jiang W, Chen M, Xia H, Zhang P, Tan F. CRISPR-based quantum dot nanobead lateral flow assay for facile detection of varicella-zoster virus. Appl Microbiol Biotechnol 2023; 107:3319-3328. [PMID: 37052634 DOI: 10.1007/s00253-023-12509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Varicella-zoster virus (VZV) infects more than 90% of the population worldwide and has a high incidence of postherpetic neuralgia in elderly patients, seriously affecting their quality of life. Combined with clustered regularly interspaced short palindromic repeats (CRISPR) system, we develop a quantum dot nanobeads (QDNBs) labeled lateral flow assay for VZV detection. Our assay allows the identification of more than 5 copies of VZV genomic DNA in each reaction. The entire process, from sample preparation to obtaining the results, takes less than an hour. In 86 clinical vesicles samples, the test shows 100% concordance with quantitative real-time PCR for VZV detection. Notably, when vesicles are present in specific areas, such as the genitals, our method outperforms clinical diagnosis. Compared to traditional detection methods, only a minute amount of blister fluid is required for accurate detection. Therefore, we anticipate that our method could be translated to clinical applications for specific and rapid VZV detection. KEY POINTS: • CRISPR/Cas12a and quantum dot nanobead-based lateral flow assay achieved 5 copies per reaction for VZV detection • Specific identification of VZV in atypical skin lesions • Results read by the naked eye within one hour.
Collapse
Affiliation(s)
- Xiaoqin Zhong
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Qiaoting Fu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Hui Xia
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Pengfei Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
10
|
Uno N, Li Z, Liu C. Single-tube one-step gel-based RT-RPA/PCR for highly sensitive molecular detection of HIV. Analyst 2023; 148:926-931. [PMID: 36722888 PMCID: PMC9928874 DOI: 10.1039/d2an01863b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We developed a single-tube one-step gel-based reverse transcription-recombinase polymerase amplification (RT-RPA)/polymerase chain reaction (PCR) (termed "SOG RT-RPA/PCR") to detect the human immunodeficiency virus (HIV). To improve the assay sensitivity, the RNA template is pre-amplified by RT-RPA prior to PCR. To simplify the detection process and shorten the assay time, we embedded PCR reagents into agarose gel, constructing it to physically separate the reagents from the RT-RPA reaction solution in a single tube. Due to the thermodynamic properties of agarose, the RT-RPA reaction first occurs independently on top of the PCR gel at a low temperature (e.g., 39 °C) during the SOG RT-RPA/PCR assay. Then, the RPA amplicons directly serve as the template for the second PCR amplification reaction, which begins when the PCR agarose dissolves due to the elevated reaction temperature, eliminating the need for multiple manual operations and amplicon transfer. With our SOG RT-RPA/PCR assay, we could detect 6.3 copies of HIV RNA per test, which is a 10-fold higher sensitivity than that of standalone real-time RT-PCR and RT-RPA. In addition, due to the high amplification efficiency of RPA, the SOG RT-RPA/PCR assay shows stronger fluorescence detection signals and a shorter detection time compared to the standalone real-time RT-PCR assay. Furthermore, we detected HIV viral RNA in clinical plasma samples and validated the superior performance of our assay. Thus, the SOG RT-RPA/PCR assay offers a powerful method for simple, rapid, and highly sensitive nucleic acid-based molecular detection of infectious diseases.
Collapse
Affiliation(s)
- Naoki Uno
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Storrs, CT 06029, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
11
|
A Rapid and Sensitive Detection of HIV-1 with a One-Pot Two-Stage Reverse Transcription Recombinase Aided Real-Time PCR Assay. Trop Med Infect Dis 2023; 8:tropicalmed8020105. [PMID: 36828521 PMCID: PMC9960739 DOI: 10.3390/tropicalmed8020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) attacks the immune system, making people susceptible to various diseases, thus increasing their risk of death. Comprehensive detection of major HIV-1 strains circulating in China is vital for effective HIV-1 infection prevention and treatment. HIV-1 nucleic acid detection is considered effective for HIV-1 diagnosis since traditional immunological testing may fail to detect HIV-1 infection during the window period. This work demonstrates a one-pot two-stage amplification assay (RT-RAP), a combination of reverse transcription recombinase (RT- RAA), and quantitative real-time polymerase chain reaction (qRT-PCR). The turn-around time of the assay is only 50 min and can be performed with commonly available laboratory equipment, the qPCR devices. The RT-RAP assay could detect approximately 5 and 14 copies/reaction of HIV-1 DNA and RNA using recombinant plasmids and standard reference strains, respectively. Additionally, we found that the clinical performance of RT-RAP (detected 169 samples out of 170 specimens) was consistent with that of qRT-PCR. The sensitivity and specificity of RT-RAP were 100.00% (99/99) and 98.59% (70/71), respectively, while its positive and negative predictive values were 99.00% (99/100) and 100.00% (70/70), respectively. The total coincidence rate of the RT-RAP was 99.41% (169/170), with a kappa value of 0.988 (p < 0.05). We demonstrated that RT-RAP could rapidly detect the common HIV-1 subtypes commonly circulating in China with comparable sensitivity and specificity to qRT-PCR.
Collapse
|
12
|
Xu J, Ma Y, Song Z, Sun W, Liu Y, Shu C, Hua H, Yang M, Liang Q. Evaluation of an automated CRISPR-based diagnostic tool for rapid detection of COVID-19. Heliyon 2023; 9:e13190. [PMID: 36712915 PMCID: PMC9868009 DOI: 10.1016/j.heliyon.2023.e13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The performance of an automated commercial CRISPR/Cas based technology was evaluated and compared with routine RT-PCR testing to diagnose COVID-19. Suspected and discharged COVID-19 cases were included and tested with CRISPR-based SARS-CoV-2 test and RT-PCR assay using throat swab and sputum specimens. The diagnostic yield was calculated and compared using the McNemar test. A total of 437 patients were included for analysis, including COVID-19 (n = 171), discharged cases (n = 155), and others (n = 111). For the diagnosis of COVID-19, the CRISPR-SARS-CoV-2 test had a sensitivity and specificity of 98.2% (168/171) and 100.0% (266/266), respectively; the RT-PCR test had a sensitivity and specificity of 100.0% (171/171) and 100.0% (266/266), respectively. No significant difference was found in the sensitivity of CRISPR-SARS-CoV-2 and RT-PCR. In conclusion, the CRISPR-SARS-CoV-2 test had a comparable performance with RT-PCR and showed several advantages, such as short assay time, low cost, and no requirement for expensive equipment.
Collapse
Affiliation(s)
- Jun Xu
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Yuanyuan Ma
- Department of Drug Clinical Trial, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhigang Song
- Pathogen Detection and Biosafety Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China,Corresponding author
| | - Wei Sun
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China,Corresponding author
| | - Yi Liu
- Pathogen Detection and Biosafety Department, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Chang Shu
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Hua Hua
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Ming Yang
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| | - Qi Liang
- Department for Viral Disease Control and Prevention, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, China
| |
Collapse
|
13
|
Cui H, Zhang C, Tu F, Zhao K, Kong Y, Pu J, Zhang L, Chen Z, Sun Y, Wei Y, Liang C, Liu J, Liu J, Guo Z. Rapid detection of influenza A viruses using a real-time reverse transcription recombinase-aided amplification assay. Front Cell Infect Microbiol 2023; 12:1071288. [PMID: 36683681 PMCID: PMC9849684 DOI: 10.3389/fcimb.2022.1071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Influenza A viruses (IAVs) are important pathogens of respiratory infections, causing not only seasonal influenza but also influenza pandemics and posing a global threat to public health. IAVs infection spreads rapidly, widely, and across species, causing huge losses, especially zoonotic IAVs infections that are more harmful. Fast and sensitive detection of IAVs is critical for controlling the spread of this disease. Methods Here, a real-time reverse transcription recombinase-aided amplification (real-time RT-RAA) assay targeting conserved positions in the matrix protein gene (M gene) of IAVs, is successfully established to detect IAVs. The assay can be completed within 20 min at 42°C. Results The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability, which was comparable to the sensitivity of the RT-qPCR assay. The specificity assay showed that the real-time RT-RAA assay was specific to IAVs, and there was no cross-reactivity with other important viruses. In addition, 100%concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 120 clinical specimens. Discussion The results suggested that the real-time RT-RAA assay we developed was a specific, sensitive and reliable diagnostic tool for the rapid detection of IAVs.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Animal Medicine, Jilin University, Changchun, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yuanyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yujie Wei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chuncai Liang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun, China
| |
Collapse
|
14
|
Cui H, Tu F, Zhang C, Zhang C, Zhao K, Liu J, Dong S, Chen L, Liu J, Guo Z. Real-Time Reverse Transcription Recombinase-Aided Amplification Assay for Rapid Amplification of the N Gene of SARS-CoV-2. Int J Mol Sci 2022; 23:ijms232315269. [PMID: 36499594 PMCID: PMC9736922 DOI: 10.3390/ijms232315269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/08/2022] Open
Abstract
COVID-19 was officially declared a global pandemic disease on 11 March 2020, with severe implications for healthcare systems, economic activity, and human life worldwide. Fast and sensitive amplification of the severe acute respiratory syndrome virus 2 (SARS-CoV-2) nucleic acids is critical for controlling the spread of this disease. Here, a real-time reverse transcription recombinase-aided amplification (RT-RAA) assay, targeting conserved positions in the nucleocapsid protein gene (N gene) of SARS-CoV-2, was successfully established for SARS-CoV-2. The assay was specific to SARS-CoV-2, and there was no cross-reaction with other important viruses. The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability. Furthermore, 100% concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 72 clinical specimens. Further linear regression analysis indicated a significant correlation between the real-time RT-RAA and RT-qPCR assays with an R2 value of 0.8149 (p < 0.0001). In addition, the amplicons of the real-time RT-RAA assay could be directly visualized by a portable blue light instrument, making it suitable for the rapid amplification of SARS-CoV-2 in resource-limited settings. Therefore, the real-time RT-RAA method allows the specific, sensitive, simple, rapid, and reliable detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Fei Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Chunmao Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
| | - Kui Zhao
- College of Animal Medicine, Jilin University, Changchun 130062, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (J.L.); (Z.G.); Tel.: +86-431-86985932 (J.L.); +86-431-86985975 (Z.G.)
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130122, China
- Correspondence: (J.L.); (Z.G.); Tel.: +86-431-86985932 (J.L.); +86-431-86985975 (Z.G.)
| |
Collapse
|
15
|
Nikolopoulos GK, Tsantes AG. Recent HIV Infection: Diagnosis and Public Health Implications. Diagnostics (Basel) 2022; 12:2657. [PMID: 36359500 PMCID: PMC9689622 DOI: 10.3390/diagnostics12112657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 08/15/2024] Open
Abstract
The early period of infection with human immunodeficiency virus (HIV) has been associated with higher infectiousness and, consequently, with more transmission events. Over the last 30 years, assays have been developed that can detect viral and immune biomarkers during the first months of HIV infection. Some of them depend on the functional properties of antibodies including their changing titers or the increasing strength of binding with antigens over time. There have been efforts to estimate HIV incidence using antibody-based assays that detect recent HIV infection along with other laboratory and clinical information. Moreover, some interventions are based on the identification of people who were recently infected by HIV. This review summarizes the evolution of efforts to develop assays for the detection of recent HIV infection and to use these assays for the cross-sectional estimation of HIV incidence or for prevention purposes.
Collapse
Affiliation(s)
| | - Andreas G. Tsantes
- Microbiology Department, “Saint Savvas” Oncology Hospital, 11522 Athens, Greece
| |
Collapse
|
16
|
Lou J, Wang B, Li J, Ni P, Jin Y, Chen S, Xi Y, Zhang R, Duan G. The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Mol Biol Rep 2022; 49:11301-11311. [PMID: 35857175 PMCID: PMC9297709 DOI: 10.1007/s11033-022-07752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 10/26/2022]
Abstract
Emerging and relapsing infectious diseases pose a huge health threat to human health and a new challenge to global public health. Rapid, sensitive and simple diagnostic tools are keys to successful management of infectious patients and containment of disease transmission. In recent years, international research on Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-related proteins (Cas) has revolutionized our understanding of biology. The CRISPR-Cas system has the advantages of high specificity, high sensitivity, simple, rapid, low cost, and has begun to be used for molecular diagnosis and treatment of infectious diseases. In this paper, we described the biological principles, application fields and prospects of CRISPR-Cas system in the molecular diagnosis and treatment of infectious diseases, and compared it with existing molecular diagnosis methods, the advantages and disadvantages were summarized.
Collapse
Affiliation(s)
- Juan Lou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junwei Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China. .,International School of Public Health and One Health, The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
|
18
|
Zhang L, Jiang H, Zhu Z, Liu J, Li B. Integrating CRISPR/Cas within isothermal amplification for point-of-Care Assay of nucleic acid. Talanta 2022; 243:123388. [DOI: 10.1016/j.talanta.2022.123388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
|