1
|
Márquez-Moñino MÁ, Santiveri CM, de León P, Camero S, Campos-Olivas R, Jiménez MÁ, Sáiz M, González B, Pérez-Cañadillas JM. The ALS drug riluzole binds to the C-terminal domain of SARS-CoV-2 nucleocapsid protein and has antiviral activity. Structure 2025; 33:39-50.e6. [PMID: 39541975 DOI: 10.1016/j.str.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Nucleoproteins (N) play an essential role in virus assembly and are less prone to mutation than other viral structural proteins, making them attractive targets for drug discovery. Using an NMR fragment-based drug discovery approach, we identified the 1,3-benzothiazol-2-amine (BZT) group as a scaffold to develop potential antivirals for SARS-CoV-2 nucleocapsid (N) protein. A thorough characterization of BZT derivatives using NMR, X-ray crystallography, antiviral activity assays, and intrinsic fluorescence measurements revealed their binding in the C-terminal domain (CTD) domain of the N protein, to residues Arg 259, Trp 330, and Lys 338, coinciding with the nucleotide binding site. Our most effective compound exhibits a slightly better affinity than GTP and the ALS drug riluzole, also identified during the screening, and displays notable viral inhibition activity. A virtual screening of 218 BZT-based compounds revealed a potential extended binding site that could be exploited for the future development of new SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
| | - Clara M Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology Programme, Spanish National Cancer Research Centre, C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera nº 1, 28049 Madrid, Spain
| | - Sergio Camero
- Institute of Physical-Chemistry "Blas Cabrera", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology Programme, Spanish National Cancer Research Centre, C/ Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - M Ángeles Jiménez
- Institute of Physical-Chemistry "Blas Cabrera", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/ Nicolás Cabrera nº 1, 28049 Madrid, Spain
| | - Beatriz González
- Institute of Physical-Chemistry "Blas Cabrera", CSIC, C/ Serrano 119, 28006 Madrid, Spain.
| | | |
Collapse
|
2
|
Llanos S, Di Geronimo B, Casajús E, Blanco-Romero E, Fernández-Leiro R, Méndez J. Interference of small compounds and Mg 2+ with dsRNA-binding fluorophores compromises the identification of SARS-CoV-2 RdRp inhibitors. Sci Rep 2024; 14:28250. [PMID: 39548173 PMCID: PMC11568178 DOI: 10.1038/s41598-024-78354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The COVID-19 pandemic highlighted the need for the rapid development of antiviral therapies. Viral RNA-dependent RNA polymerases (RdRp) are promising targets, and numerous virtual screenings for potential inhibitors were conducted without validation of the identified hits. Here we have tested a set of presumed RdRp inhibitors in biochemical assays based on fluorometric detection of RdRp activity or on the electrophoretic separation or RdRp products. We find that fluorometric detection of RdRp activity is unreliable as a screening method because many small compounds interfere with fluorophore binding to dsRNA, and this effect is enhanced by the Mg2+ metal ions used by nucleic acid polymerases. The fact that fluorimetric detection of RdRp activity leads to false-positive hits underscores the requirement for independent validation methods. We also show that suramin, one of the proposed RdRp inhibitors that could be validated biochemically, is a multi-polymerase inhibitor. While this does not hinder its potential as an antiviral agent, it cannot be considered an specific inhibitor of SARS-CoV-2 RdRp.
Collapse
Affiliation(s)
- Susana Llanos
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| | - Bruno Di Geronimo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA, 30332-0400, USA
| | - Ester Casajús
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Rafael Fernández-Leiro
- Genome Integrity and Structural Biology Group, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 3 Melchor Fernandez Almagro, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Sari IP, Ortiz CLD, Yang LW, Chen MH, Perng MD, Wu TY. Development of Fusion-Based Assay as a Drug Screening Platform for Nipah Virus Utilizing Baculovirus Expression Vector System. Int J Mol Sci 2024; 25:9102. [PMID: 39201788 PMCID: PMC11354753 DOI: 10.3390/ijms25169102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Nipah virus (NiV) is known to be a highly pathogenic zoonotic virus, which is included in the World Health Organization Research & Development Blueprint list of priority diseases with up to 70% mortality rate. Due to its high pathogenicity and outbreak potency, a therapeutic countermeasure against NiV is urgently needed. As NiV needs to be handled within a Biological Safety Level (BSL) 4 facility, we had developed a safe drug screening platform utilizing a baculovirus expression vector system (BEVS) based on a NiV-induced syncytium formation that could be handled within a BSL-1 facility. To reconstruct the NiV-induced syncytium formation in BEVS, two baculoviruses were generated to express recombinant proteins that are responsible for inducing the syncytium formation, including one baculovirus exhibiting co-expressed NiV fusion protein (NiV-F) and NiV attachment glycoprotein (NiV-G) and another exhibiting human EphrinB2 protein. Interestingly, syncytium formation was observed in infected insect cells when the medium was modified to have a lower pH level and supplemented with cholesterol. Fusion inhibitory properties of several compounds, such as phytochemicals and a polysulfonated naphthylamine compound, were evaluated using this platform. Among these compounds, suramin showed the highest fusion inhibitory activity against NiV-induced syncytium in the baculovirus expression system. Moreover, our in silico results provide a molecular-level glimpse of suramin's interaction with NiV-G's central hole and EphrinB2's G-H loop, which could be the possible reason for its fusion inhibitory activity.
Collapse
Affiliation(s)
- Indah Permata Sari
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| | - Christopher Llynard D. Ortiz
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Taipei 11529, Taiwan; (C.L.D.O.); (L.-W.Y.)
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsiang Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (I.P.S.); (M.-H.C.)
| | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taoyuan City 320314, Taiwan
| |
Collapse
|
4
|
Chen Y, Sun S, Liu X, Li H, Huan S, Xiong B, Zhang XB. Plasmonic Imaging of Multivalent NTD-Nucleic Acid Interactions for Broad-Spectrum Antiviral Drug Analysis. Anal Chem 2024; 96:9551-9560. [PMID: 38787915 DOI: 10.1021/acs.analchem.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The discovery and identification of broad-spectrum antiviral drugs are of great significance for blocking the spread of pathogenic viruses and corresponding variants of concern. Herein, we proposed a plasmonic imaging-based strategy for assessing the efficacy of potential broad-spectrum antiviral drugs targeting the N-terminal domain of a nucleocapsid protein (NTD) and nucleic acid (NA) interactions. With NTD and NA conjugated gold nanoparticles as core and satellite nanoprobes, respectively, we found that the multivalent binding interactions could drive the formation of core-satellite nanostructures with enhanced scattering brightness due to the plasmonic coupling effect. The core-satellite assembly can be suppressed in the presence of antiviral drugs targeting the NTD-NA interactions, allowing the drug efficacy analysis by detecting the dose-dependent changes in the scattering brightness by plasmonic imaging. By quantifying the changes in the scattering brightness of plasmonic nanoprobes, we uncovered that the constructed multivalent weak interactions displayed a 500-fold enhancement in affinity as compared with the monovalent NTD-NA interactions. We demonstrated the plasmonic imaging-based strategy for evaluating the efficacy of a potential broad-spectrum drug, PJ34, that can target the NTD-NA interactions, with the IC50 as 24.35 and 14.64 μM for SARS-CoV-2 and SARS-CoV, respectively. Moreover, we discovered that ceftazidime holds the potential as a candidate drug to inhibit the NTD-NA interactions with an IC50 of 22.08 μM from molecular docking and plasmonic imaging-based drug analysis. Finally, we validated that the potential antiviral drug, 5-benzyloxygramine, which can induce the abnormal dimerization of nucleocapsid proteins, is effective for SARS-CoV-2, but not effective against SARS-CoV. All these demonstrations indicated that the plasmonic imaging-based strategy is robust and can be used as a powerful strategy for the discovery and identification of broad-spectrum drugs targeting the evolutionarily conserved viral proteins.
Collapse
Affiliation(s)
- Yancao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shijie Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xixuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huiwen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Vickos U, Camasta M, Grandi N, Scognamiglio S, Schindler T, Belizaire MRD, Lango-Yaya E, Koyaweda GW, Senzongo O, Pounguinza S, Estimé KKJF, N’yetobouko S, Gadia CLB, Feiganazoui DA, Le Faou A, Orsini M, Perno CF, Zinzula L, Rafaï CD. COVID-19 Genomic Surveillance in Bangui (Central African Republic) Reveals a Landscape of Circulating Variants Linked to Validated Antiviral Targets of SARS-CoV-2 Proteome. Viruses 2023; 15:2309. [PMID: 38140550 PMCID: PMC10748234 DOI: 10.3390/v15122309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Since its outbreak, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spread rapidly, causing the Coronavirus Disease 19 (COVID-19) pandemic. Even with the vaccines' administration, the virus continued to circulate due to inequal access to prevention and therapeutic measures in African countries. Information about COVID-19 in Africa has been limited and contradictory, and thus regional studies are important. On this premise, we conducted a genomic surveillance study about COVID-19 lineages circulating in Bangui, Central African Republic (CAR). We collected 2687 nasopharyngeal samples at four checkpoints in Bangui from 2 to 22 July 2021. Fifty-three samples tested positive for SARS-CoV-2, and viral genomes were sequenced to look for the presence of different viral strains. We performed phylogenetic analysis and described the lineage landscape of SARS-CoV-2 circulating in the CAR along 15 months of pandemics and in Africa during the study period, finding the Delta variant as the predominant Variant of Concern (VoC). The deduced aminoacidic sequences of structural and non-structural genes were determined and compared to reference and reported isolates from Africa. Despite the limited number of positive samples obtained, this study provides valuable information about COVID-19 evolution at the regional level and allows for a better understanding of SARS-CoV-2 circulation in the CAR.
Collapse
Affiliation(s)
- Ulrich Vickos
- Department of Diagnostic and Laboratory Medicine, UOC Microbiology and Immunology Diagnostics, Children’s Hospital Bambino Gesù, IRCCS, 00118 Rome, Italy;
- Department of Medicine, Infectious and Tropical Diseases, Sino-Central African Amitié Hospital, Bangui 94045, Central African Republic
| | - Marianna Camasta
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.C.); (S.S.)
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.C.); (S.S.)
| | - Sante Scognamiglio
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy; (M.C.); (S.S.)
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland;
- Department of Medical Parasitology and Infection Biology, University of Basel, 4051 Basel, Switzerland
| | | | - Ernest Lango-Yaya
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Giscard Wilfried Koyaweda
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Oscar Senzongo
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Simon Pounguinza
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Kaleb Kandou Jephté Francis Estimé
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Stephanie N’yetobouko
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Christelle Luce Bobossi Gadia
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Dominos-Alfred Feiganazoui
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| | - Alain Le Faou
- EA 3452 CITHEFOR, Campus Brabois Santé, 54500 Vandœuvre-lès-Nancy, France;
- Faculty of Medicine, Maieutic and Health Sciences, University of Lorraine, Pole Brabois Santé, 54500 Nancy, France
| | - Massimiliano Orsini
- General and Experimental Microbiology, Laboratory of Microbial Ecology and Genomics of Microorganisms, Experimental Zooprophylactic Institute of the Venezie (IZSVe), 35020 Legnaro, Italy;
| | - Carlo Federico Perno
- Department of Diagnostic and Laboratory Medicine, UOC Microbiology and Immunology Diagnostics, Children’s Hospital Bambino Gesù, IRCCS, 00118 Rome, Italy;
| | - Luca Zinzula
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Clotaire Donatien Rafaï
- Clinical Biology and Public Health National Laboratory, Bangui 94045, Central African Republic; (E.L.-Y.); (G.W.K.); (O.S.); (S.P.); (K.K.J.F.E.); (S.N.); (C.L.B.G.); (D.-A.F.); (C.D.R.)
| |
Collapse
|