1
|
Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Retina Organoid Transplants Develop Photoreceptors and Improve Visual Function in RCS Rats With RPE Dysfunction. Invest Ophthalmol Vis Sci 2020; 61:34. [PMID: 32945842 PMCID: PMC7509771 DOI: 10.1167/iovs.61.11.34] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction. Methods CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina. Retinal organoid sheets (30-70 day of differentiation) were transplanted into immunodeficient RCS rats, aged 44 to 56 days. The development of transplant organoids in vivo in relation to the host was examined by optical coherence tomography. Visual function was assessed by optokinetic testing, electroretinogram, and superior colliculus electrophysiologic recording. Cryostat sections were analyzed for various retinal, synaptic, and donor markers. Results Retinal organoids showed similar gene expression to human fetal retina transplanted rats demonstrated significant improvement in visual function compared with RCS nonsurgery and sham surgery controls by ERGs at 2 months after surgery (but not later), optokinetic testing (up to 6 months after surgery) and electrophysiologic superior colliculus recordings (6-8 months after surgery). The transplanted organoids survived more than 7 months; developed photoreceptors with inner and outer segments, and other retinal cells; and were well-integrated within the host. Conclusions This study, to our knowledge, is the first to show that transplanted photoreceptors survive and function even with host's dysfunctional RPE. Our findings suggest that transplantation of organoid sheets from stem cells may be a promising approach/therapeutic for blinding diseases.
Collapse
Affiliation(s)
- Bin Lin
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Bryce T. McLelland
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Robert B. Aramant
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
| | - Biju B. Thomas
- USC Roski Eye Institute, Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Gabriel Nistor
- AIVITA Biomedical Inc., Irvine, California, United States
| | | | - Magdalene J. Seiler
- Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, School of Medicine, Irvine, California, United States
- Ophthalmology, University of California at Irvine, School of Medicine, Irvine, California, United States
- Anatomy & Neurobiology, University of California at Irvine School of Medicine, Irvine, California, United States
| |
Collapse
|
2
|
Koster C, Wever KE, Wagstaff EL, van den Hurk KT, Hooijmans CR, Bergen AA. A Systematic Review on Transplantation Studies of the Retinal Pigment Epithelium in Animal Models. Int J Mol Sci 2020; 21:E2719. [PMID: 32295315 PMCID: PMC7216090 DOI: 10.3390/ijms21082719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
The retinal pigment epithelium (RPE) and the adjacent light-sensitive photoreceptors form a single functional unit lining the back of the eye. Both cell layers are essential for normal vision. RPE degeneration is usually followed by photoreceptor degeneration and vice versa. There are currently almost no effective therapies available for RPE disorders such as Stargardt disease, specific types of retinitis pigmentosa, and age-related macular degeneration. RPE replacement for these disorders, especially in later stages of the disease, may be one of the most promising future therapies. There is, however, no consensus regarding the optimal RPE source, delivery strategy, or the optimal experimental host in which to test RPE replacement therapy. Multiple RPE sources, delivery methods, and recipient animal models have been investigated, with variable results. So far, a systematic evaluation of the (variables influencing) efficacy of experimental RPE replacement parameters is lacking. Here we investigate the effect of RPE transplantation on vision and vision-based behavior in animal models of retinal degenerated diseases. In addition, we aim to explore the effect of RPE source used for transplantation, the method of intervention, and the animal model which is used. METHODS In this study, we systematically identified all publications concerning transplantation of RPE in experimental animal models targeting the improvement of vision (e.g., outcome measurements related to the morphology or function of the eye). A variety of characteristics, such as species, gender, and age of the animals but also cell type, number of cells, and other intervention characteristics were extracted from all studies. A risk of bias analysis was performed as well. Subsequently, all references describing one of the following outcomes were analyzed in depth in this systematic review: a-, b-, and c-wave amplitudes, vision-based, thickness analyses based on optical coherence tomography (OCT) data, and transplant survival based on scanning laser ophthalmoscopy (SLO) data. Meta-analyses were performed on the a- and b-wave amplitudes from electroretinography (ERG) data as well as data from vision-based behavioral assays. RESULTS original research articles met the inclusion criteria after two screening rounds. Overall, most studies were categorized as unclear regarding the risk of bias, because many experimental details were poorly reported. Twenty-three studies reporting one or more of the outcome measures of interest were eligible for either descriptive (thickness analyses based on OCT data; n = 2) or meta-analyses. RPE transplantation significantly increased ERG a-wave (Hedges' g 1.181 (0.471-1.892), n = 6) and b-wave (Hedges' g 1.734 (1.295-2.172), n = 42) amplitudes and improved vision-based behavior (Hedges' g 1.018 (0.826-1.209), n = 96). Subgroup analyses revealed a significantly increased effect of the use of young and adolescent animals compared to adult animals. Moreover, transplanting more cells (in the range of 105 versus in the range of 104) resulted in a significantly increased effect on vision-based behavior as well. The origin of cells mattered as well. A significantly increased effect was found on vision-based behavior when using ARPE-19 and OpRegen® RPE. CONCLUSIONS This systematic review shows that RPE transplantation in animal models for retinal degeneration significantly increases a- and b- wave amplitudes and improves vision-related behavior. These effects appear to be more pronounced in young animals, when the number of transplanted cells is larger and when ARPE-19 and OpRegen® RPE cells are used. We further emphasize that there is an urgent need for improving the reporting and methodological quality of animal experiments, to make such studies more comparable.
Collapse
Affiliation(s)
- Céline Koster
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Kimberley E. Wever
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
| | - Ellie L. Wagstaff
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Koen T. van den Hurk
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
| | - Carlijn R. Hooijmans
- Systematic Review Center for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (K.E.W.); (C.R.H.)
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Arthur A. Bergen
- Department of Clinical Genetics, Amsterdam University Medical Centers (AUMC), location Academic Medical Center (AMC), University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (C.K.); (E.L.W.); (K.T.v.d.H.)
- Department of Ophthalmology, AUMC, AMC, UvA, 1105 AZ Amsterdam, The Netherlands
- Department of Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
3
|
Evaluation of visual function in Royal College of Surgeon rats using a depth perception visual cliff test. Vis Neurosci 2019; 36:E002. [PMID: 30700338 DOI: 10.1017/s095252381800007x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Preserving of vision is the main goal in vision research. The presented research evaluates the preservation of visual function in Royal College of Surgeon (RCS) rats using a depth perception test. Rats were placed on a stage with one side containing an illusory steep drop ("cliff") and another side with a minimal drop ("table"). Latency of stage dismounting and the percentage of rats that set their first foot on the "cliff" side were determined. Nondystrophic Long-Evans (LE) rats were tested as control. Electroretinogram and histology analysis were used to determine retinal function and structure. Four-week-old RCS rats presented a significantly shorter mean latency to dismount the stage compared with 6-week-old rats (mean ± standard error, 13.7 ± 1.68 vs. 20.85 ± 6.5 s, P = 0.018). Longer latencies were recorded as rats aged, reaching 45.72 s in 15-week-old rats (P < 0.00001 compared with 4-week-old rats). All rats at the age of 4 weeks placed their first foot on the table side. By contrast, at the age of 8 weeks, 28.6% rats dismounted on the cliff side and at the age of 10 and 15 weeks, rats randomly dismounted the stage to either table or cliff side. LE rats dismounted the stage faster than 4-week-old RCS rats, but the difference was not statistically significant (7 ± 1.58 s, P = 0.057) and all LE rats dismounted on the table side. The latency to dismount the stage in RCS rats correlated with maximal electroretinogram b-wave under dark and light adaptation (Spearman's rho test = -0.603 and -0.534, respectively, all P < 0.0001), outer nuclear layer thickness (Spearman's rho test = -0.764, P = 0.002), and number of S- and M-cones (Spearman's rho test = -0.763 [P = 0.002], and -0.733 [P = 0.004], respectively). The cliff avoidance test is an objective, quick, and readily available method for the determination of RCS rats' visual function.
Collapse
|
4
|
Experimental Study of the Biological Properties of Human Embryonic Stem Cell-Derived Retinal Progenitor Cells. Sci Rep 2017; 7:42363. [PMID: 28205557 PMCID: PMC5304228 DOI: 10.1038/srep42363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/09/2017] [Indexed: 01/16/2023] Open
Abstract
Retinal degenerative diseases are among the leading causes of blindness worldwide, and cell replacement is considered as a promising therapeutic. However, the resources of seed cells are scarce. To further explore this type of therapy, we adopted a culture system that could harvest a substantial quantity of retinal progenitor cells (RPCs) from human embryonic stem cells (hESCs) within a relatively short period of time. Furthermore, we transplanted these RPCs into the subretinal spaces of Royal College of Surgeons (RCS) rats. We quantified the thickness of the treated rats' outer nuclear layers (ONLs) and explored the visual function via electroretinography (ERG). It was found that the differentiated cells expressed RPC markers and photoreceptor progenitor markers. The transplanted RPCs survived for at least 12 weeks, resulting in beneficial effects on the morphology of the host retina, and led to a significant improvement in the visual function of the treated animals. These therapeutic effects suggest that the hESCs-derived RPCs could delay degeneration of the retina and partially restore visual function.
Collapse
|
5
|
Kennelly KP, Holmes TM, Wallace DM, O'Farrelly C, Keegan DJ. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity. Cell Transplant 2017; 26:983-1000. [PMID: 28105976 DOI: 10.3727/096368917x694697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success of subretinal transplantation will require more emphasis on techniques to limit innate immune-mediated graft loss, rather than focusing exclusively on suppression of the adaptive immune response.
Collapse
|
6
|
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nuñez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JCI. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016; 540:144-149. [PMID: 27851729 DOI: 10.1038/nature20565] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/27/2016] [Indexed: 02/05/2023]
Abstract
Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Reyna Hernandez-Benitez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,4700 King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi Arabia
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Jie Zhu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Euiseok J Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Mako Yamamoto
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Toshikazu Araoka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.,Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Zhe Li
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Emi Aizawa
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Shicheng Guo
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Song Chen
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - April Goebl
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Rupa Devi Soligalla
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingshuai Jiang
- Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.,Guangzhou EliteHealth Biological Pharmaceutical Technology Company Ltd, Guangzhou 510005, China
| | - Xin Fu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Maryam Jafari
- Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - W Travis Berggren
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| | - Jeronimo Lajara
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Estrella Nuñez-Delicado
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain
| | - Pedro Guillen
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.,Fundación Dr. Pedro Guillen, Investigación Biomedica de Clinica CEMTRO, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain
| | - Josep M Campistol
- Hospital Clinic, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China.,Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Pierre Magistretti
- 4700 King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi Arabia
| | - Kun Zhang
- Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | - Kang Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.,Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.,Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Veterans Administration Healthcare System, San Diego, California 92093, USA
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA
| |
Collapse
|
7
|
Cooper AE, Cho JH, Menges S, Masood S, Xie J, Yang J, Klassen H. Immunosuppressive Treatment Can Alter Visual Performance in the Royal College of Surgeons Rat. J Ocul Pharmacol Ther 2016; 32:296-303. [PMID: 27008099 PMCID: PMC6453503 DOI: 10.1089/jop.2015.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/21/2016] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Immunosuppression is frequently employed to enhance survival of xenografted human cells as part of translational proof-of-concept studies. However, the potential effects of this treatment are easily overlooked. METHODS As part of baseline testing in the dark-eyed variant of the dystrophic Royal College of Surgeons (RCS) rat, we documented the time course of retinal degenerative changes versus Long Evans controls using bright field retinal imaging, fluorescein angiography, and histology and examined the impact of immunosuppression on visual function. Rats received either no treatment or systemic immunosuppression with oral cyclosporine A and injectable dexamethasone and subsequently underwent functional evaluation by optomotor response testing and electroretinography (ERG) at multiple intervals from P45 to P180. RESULTS Immunosuppressed RCS animals demonstrated poorer performance on functional tests than age-matched untreated rats during the earlier stages of degeneration, including significantly lower spatial acuities on optomotor threshold testing and significantly lower b-wave amplitudes on scotopic and photopic ERGs. Retinal imaging documented the progression of degenerative changes in the RCS fundus and histologic evaluation of the RCS retina confirmed progressive thinning of the outer nuclear layer. CONCLUSIONS A standard regimen of cyclosporine A plus dexamethasone, administered to RCS rats, results in demonstrable systemic side effects and depressed scores on behavioral and electrophysiological testing at time points before P90. The source of the functional impairment was not identified. This finding has implications for the interpretation of data generated using this commonly used translational model.
Collapse
Affiliation(s)
- Ann E. Cooper
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Jang-Hyeon Cho
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Steven Menges
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Sahar Masood
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Jun Xie
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Jing Yang
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| | - Henry Klassen
- Gavin Herbert Eye Institute, Stem Cell Research Center, University of California, Irvine, California
| |
Collapse
|
8
|
Chen K, Wang Y, Liang X, Zhang Y, Ng TK, Chan LLH. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats. Sci Rep 2016; 6:26793. [PMID: 27225415 PMCID: PMC4880896 DOI: 10.1038/srep26793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/10/2016] [Indexed: 11/23/2022] Open
Abstract
The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Yi Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Xiaohua Liang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihuai Zhang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Fransen JW, Pangeni G, Pyle IS, McCall MA. Functional changes in Tg P23H-1 rat retinal responses: differences between ON and OFF pathway transmission to the superior colliculus. J Neurophysiol 2015; 114:2368-75. [PMID: 26245318 DOI: 10.1152/jn.00600.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/04/2015] [Indexed: 01/12/2023] Open
Abstract
The morphological consequences of retinal photoreceptor degeneration are well documented. Much less is known about changes in visual function during degeneration and whether central visual structures directly reflect changes in retinal ganglion cell (RGC) function. To address this, we compared changes in visual function of RGCs and cells in the superior colliculus (SC) in transgenic (Tg) P23H-1 rats, a model of retinitis pigmentosa (RP), and wild-type (WT) rats at postnatal days 35-50 (P35-50) and P300. RGCs were classified on the basis of their responses to light: onset (ON), offset (OFF), or both (ON-OFF). The distribution of ON, OFF, and ON-OFF RGCs is similar between WT and P35 Tg P23H-1 rats. By P300, many Tg P23H-1 RGCs are nonresponsive (NR). At this age, there is a sharp decline in ON and ON-OFF RGCs, and the majority that remain are OFF RGCs. Spontaneous rhythmic activity was observed in many RGCs at P300, but only in OFF or NR RGCs. In the SC, WT and P50 Tg P23H-1 responses are similar. At P300, Tg P23H-1 ON SC responses declined but OFF responses increased. We examined postsynaptic glutamate receptor expression located on the bipolar cells (BC), where the ON and OFF pathways arise. At P150, metabotropic glutamate receptor 6 (mGluR6) expression is lower than in WT, consistent with a decrease in ON RGC responses. GluR4 expression, an ionotropic glutamate receptor associated with OFF BCs, appears similar to that in WT. The loss of ON responses in Tg P23H-1 RGCs and in the SC is conserved and related to reduced mGluR6 signaling.
Collapse
Affiliation(s)
- James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - Gobinda Pangeni
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
| | - Ian S Pyle
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and
| | - Maureen A McCall
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; and Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, Kentucky
| |
Collapse
|
10
|
Zhang T, Wei Y, Jiang X, Li J, Qiu S, Zhang S. Protection of photoreceptors by intravitreal injection of the Y-27632 Rho-associated protein kinase inhibitor in Royal College of Surgeons rats. Mol Med Rep 2015; 12:3655-3661. [PMID: 26043901 DOI: 10.3892/mmr.2015.3889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease, which is characteristic by degeneration of the rod and cone photoreceptors. The present study aimed to assess the protective effects on photoreceptors of intravitreal injection of Y‑27632, a specific inhibitor of Rho‑associated protein kinase (ROCK), in a Royal College of Surgeons (RCS) rat model. Different concentrations of Y‑27632 (1‑50 mM) were administered by intravitreal injection into the RCS rats. The effects of Y‑27632 were recorded using electroretinography (ERG), measuring the thicknesses of the retinal outer nuclear layer (ONL) and examination of apoptotic markers using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and western blot analysis. Treatment of the eyes with Y27632 at 10 or 50 mM, led to a 30% increase in a‑ and b‑wave amplitudes in ERG, and an increase in ONL thickness by 10%, compared with the 1 mM Y‑27632‑treated and vehicle (phosphate‑buffered saline; PBS)‑treated groups. In addition, eyes treated with 10 mM Y27632 exhibited a 90% decrease in TUNEL‑positive cells, accompanied by decreased protein expression levels of active caspase 3 and Bax by 50%, and a 90% increase in the ratio of Bcl‑2/Bax, compared with the PBS‑treated groups. These data suggested that Y‑27632 protected retinal function by inhibiting the apoptosis of photoreceptor cells in the RCS rat model. The present study demonstrated for the first time, to the best of our knowledge, to report the use of Y‑27632 for protection against RP in an RCS rat model. Y‑27632 may be a potential candidate for the treatment of human RP.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xintong Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jingming Li
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Shaochong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
11
|
Luo J, Baranov P, Patel S, Ouyang H, Quach J, Wu F, Qiu A, Luo H, Hicks C, Zeng J, Zhu J, Lu J, Sfeir N, Wen C, Zhang M, Reade V, Patel S, Sinden J, Sun X, Shaw P, Young M, Zhang K. Human retinal progenitor cell transplantation preserves vision. J Biol Chem 2014; 289:6362-6371. [PMID: 24407289 DOI: 10.1074/jbc.m113.513713] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cell transplantation is a potential therapeutic strategy for retinal degenerative diseases involving the loss of photoreceptors. However, it faces challenges to clinical translation due to safety concerns and a limited supply of cells. Human retinal progenitor cells (hRPCs) from fetal neural retina are expandable in vitro and maintain an undifferentiated state. This study aimed to investigate the therapeutic potential of hRPCs transplanted into a Royal College of Surgeons (RCS) rat model of retinal degeneration. At 12 weeks, optokinetic response showed that hRPC-grafted eyes had significantly superior visual acuity compared with vehicle-treated eyes. Histological evaluation of outer nuclear layer (ONL) characteristics such as ONL thickness, spread distance, and cell count demonstrated a significantly greater preservation of the ONL in hRPC-treated eyes compared with both vehicle-treated and control eyes. The transplanted hRPCs arrested visual decline over time in the RCS rat and rescued retinal morphology, demonstrating their potential as a therapy for retinal diseases. We suggest that the preservation of visual acuity was likely achieved through host photoreceptor rescue. We found that hRPC transplantation into the subretinal space of RCS rats was well tolerated, with no adverse effects such as tumor formation noted at 12 weeks after treatment.
Collapse
Affiliation(s)
- Jing Luo
- Department of Ophthalmology, Second Xiangya Hospital and International Academy of Translational Medicine, Central South University, Changsha, Hunan 410011, China; Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114
| | - Sherrina Patel
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Hong Ouyang
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - John Quach
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Frances Wu
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Austin Qiu
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093; Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Hongrong Luo
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093; Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Caroline Hicks
- ReNeuron Ltd., Guildford, Surrey GU2 7AF, United Kingdom
| | - Jing Zeng
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093; Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jing Zhu
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093; Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Jessica Lu
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Nicole Sfeir
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Cindy Wen
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Meixia Zhang
- Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | | | - Sara Patel
- Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - John Sinden
- Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200080, China; Eye Research Institute, Shanghai JiaoTong University, Shanghai 200080, China.
| | - Peter Shaw
- Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093
| | - Michael Young
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, Massachusetts 02114
| | - Kang Zhang
- Department of Ophthalmology, Second Xiangya Hospital and International Academy of Translational Medicine, Central South University, Changsha, Hunan 410011, China; Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, California 92093; Molecular Medicine Research Center, West China Hospital, Chengdu, Sichuan 610041, China; Veterans Affairs Healthcare System, San Diego, California 92161.
| |
Collapse
|
12
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res 2012; 31:661-87. [PMID: 22771454 PMCID: PMC3472113 DOI: 10.1016/j.preteyeres.2012.06.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/23/2012] [Indexed: 12/18/2022]
Abstract
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans. Most other approaches are restricted to rescue endogenous retinal cells of the recipient in earlier disease stages by a 'nursing' role of the implanted cells and are not aimed at neural retinal cell replacement. Sheet transplants restore lost visual responses in several retinal degeneration models in the superior colliculus (SC) corresponding to the location of the transplant in the retina. They do not simply preserve visual performance - they increase visual responsiveness to light. Restoration of visual responses in the SC can be directly traced to neural cells in the transplant, demonstrating that synaptic connections between transplant and host contribute to the visual improvement. Transplant processes invade the inner plexiform layer of the host retina and form synapses with presumable host cells. In a Phase II trial of RP and ARMD patients, transplants of retina together with its RPE improved visual acuity. In summary, retinal progenitor sheet transplantation provides an excellent model to answer questions about how to repair and restore function of a degenerating retina. Supply of fetal donor tissue will always be limited but the model can set a standard and provide an informative base for optimal cell replacement therapies such as embryonic stem cell (ESC)-derived therapy.
Collapse
Affiliation(s)
- Magdalene J Seiler
- Department of Anatomy & Neurobiology, Reeve-Irvine Research Center, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, 1101 Gross Hall, 845 Health Science Rd., Irvine, CA 92697-4265, USA.
| | | |
Collapse
|
14
|
Huo SJ, Li YC, Xie J, Li Y, Raisman G, Zeng YX, He JR, Weng CH, Yin ZQ. Transplanted olfactory ensheathing cells reduce retinal degeneration in Royal College of Surgeons rats. Curr Eye Res 2012; 37:749-58. [PMID: 22691022 DOI: 10.3109/02713683.2012.697972] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Retinitis pigmentosa (RP) is a group of genetic disorders and a slow loss of vision that is caused by a cascade of retinal degenerative events. We examined whether these retinal degenerative events were reduced after cultured mixtures of adult olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) were transplanted into the subretinal space of 1-month-old RCS rat, a classic model of RP. MATERIALS AND METHODS The changes in retinal photoreceptors and Müller cells of RCS rats after cell transplantation were observed by the expression of recoverin and glial fibrillary acidic protein (GFAP), counting peanut agglutinin (PNA)-positive cone outer segments and calculating the relative apoptotic area. The retinal function was also evaluated by Flash electroretinography (ERG). To further investigate the mechanisms, by which OECs/ONFs play important roles in the transplanted retinas, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) secretion of the cultured cells were analyzed by ELISA. The ability of OECs/ONFs to ingest porcine retinal outer segments and the amount of phagocytosis were compared with retinal pigment epithelium (RPE) cells. RESULTS Our research showed that the transplantation of OECs/ONFs mixtures restored recoverin expression, protected retinal outer segments, increased PNA-positive cone outer segments, reduced caspase-positive apoptotic figures, downregulated GFAP, and maintained the b-wave of the ERG. Cultured OECs/ONFs expressed and secreted NGF, BDNF, and bFGF which made contributions to assist survival of the photoreceptors. An in vitro phagocytosis assay showed that OECs, but not ONFs, phagocytosed porcine retinal outer segments, and the phagocytic ability of OECs was even superior to that of RPE cells. CONCLUSIONS These findings demonstrate that transplantation of OECs/ONFs cleaned up the accumulated debris in subretinal space, and provided an intrinsic continuous supply of neurotrophic factors. It suggested that transplantation of OECs/ONFs might be a possible future route for protection of the retina and reducing retinal degeneration in RP.
Collapse
Affiliation(s)
- Shu Jia Huo
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chong Qing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gias C, Vugler A, Lawrence J, Carr AJ, Chen LL, Ahmado A, Semo M, Coffey PJ. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res 2011; 51:2176-85. [PMID: 21871912 DOI: 10.1016/j.visres.2011.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/13/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
Abstract
The purpose of the current study was to determine the progress of cortical functional degeneration in the Royal College of Surgeons (RCS) rat. Cortical responses were measured with optical imaging of intrinsic signals using gratings of various spatial frequencies. Subsequently, electrophysiological recordings were also taken across cortical layers in response to a pulse of broad-spectrum light. We found significant degeneration in the cortical processing of visual information as early as 4 weeks of age. These results show that degeneration in the cortical response of the RCS rat starts before development has been properly completed.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Isago H, Sugano E, Wang Z, Murayama N, Koyanagi E, Tamai M, Tomita H. Age-dependent differences in recovered visual responses in Royal College of Surgeons rats transduced with the Channelrhodopsin-2 gene. J Mol Neurosci 2011; 46:393-400. [PMID: 21792608 DOI: 10.1007/s12031-011-9599-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 07/12/2011] [Indexed: 11/26/2022]
Abstract
The objective of this study is to investigate age-related differences in recovered visual function in Royal College of Surgeons (RCS) rats transduced with the Channelrhodopsin-2 (ChR2) gene. An adeno-associated virus vector that contained ChR2 was injected intravitreously into young or aged RCS rats. After 4 months, visual evoked potentials were recorded. To estimate the transduction efficiencies, ChR2V-expressing cells and retrograde labeled retinal ganglion cells (RGCs) were counted. After photoreceptor degradation, immunohistochemistry was used to detect glial fibrillary acidic protein (GFAP) in the retinas. The amplitudes and latencies from young RCS rats were higher and shorter, respectively, than those from aged RCS rats. ChR2V was expressed in the RGCs of both groups of rats; there was no significant difference in the transduction efficiency of either group. However, the number of RGCs in aged RCS rats was significantly less than that in young RCS rats. In addition, strong GFAP immunoreactivity was observed after photoreceptor degeneration, whereas it was weaker in ChR2V-expressing RGCs. ChR2 transduction produced photosensitive RGCs in both young and aged rats. However, the degree of recovery depended on the age at the time of transduction.
Collapse
Affiliation(s)
- Hitomi Isago
- Institute for International Advanced Interdisciplinary Research, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Sekirnjak C, Jepson LH, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky EJ. Changes in physiological properties of rat ganglion cells during retinal degeneration. J Neurophysiol 2011; 105:2560-71. [PMID: 21389304 DOI: 10.1152/jn.01061.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of degenerative vision loss, yet its progressive effects on visual signals transmitted from the retina to the brain are not well understood. The transgenic P23H rat is a valuable model of human autosomal dominant RP, exhibiting extensive similarities to the human disease pathology, time course, and electrophysiology. In this study, we examined the physiological effects of degeneration in retinal ganglion cells (RGCs) of P23H rats aged between P37 and P752, and compared them with data from wild-type control animals. The strength and the size of visual receptive fields of RGCs decreased rapidly with age in P23H retinas. Light responses mediated by rod photoreceptors declined earlier (∼ P300) than cone-mediated light responses (∼ P600). Responses of ON and OFF RGCs diminished at a similar rate. However, OFF cells exhibited hyperactivity during degeneration, whereas ON cells showed a decrease in firing rate. The application of synaptic blockers abolished about half of the elevated firing in OFF RGCs, indicating that the remodeled circuitry was not the only source of degeneration-induced hyperactivity. These results advance our understanding of the functional changes associated with retinal degeneration.
Collapse
Affiliation(s)
- Chris Sekirnjak
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Thompson S, Whiting REH, Kardon RH, Stone EM, Narfström K. Effects of hereditary retinal degeneration due to a CEP290 mutation on the feline pupillary light reflex. Vet Ophthalmol 2010; 13:151-7. [DOI: 10.1111/j.1463-5224.2010.00772.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 2010; 89:911-9. [PMID: 20164818 PMCID: PMC2855750 DOI: 10.1097/tp.0b013e3181d45a61] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND To study whether C57BL/6J-Tyr/J (C2J) mouse embryonic stem (ES) cells can differentiate into retinal pigment epithelial (RPE) cells in vitro and then restore retinal function in a model for retinitis pigmentosa: Rpe65/Rpe65 C57BL6 mice. METHODS Yellow fluorescent protein (YFP)-labeled C2J ES cells were induced to differentiate into RPE-like structures on PA6 feeders. RPE-specific markers are expressed from differentiated cells in vitro. After differentiation, ES cell-derived RPE-like cells were transplanted into the subretinal space of postnatal day 5 Rpe65/Rpe65 mice. Live imaging of YFP-labeled C2J ES cells demonstrated survival of the graft. Electroretinograms (ERGs) were performed on transplanted mice to evaluate the functional outcome of transplantation. RESULTS RPE-like cells derived from ES cells sequentially express multiple RPE-specific markers. After transplantation, YFP-labeled cells can be tracked with live imaging for as long as 7 months. Although more than half of the mice were complicated with retinal detachments or tumor development, one fourth of the mice showed increased electroretinogram responses in the transplanted eyes. Rpe65/Rpe65 mice transplanted with RPE-like cells showed significant visual recovery during a 7-month period, whereas those injected with saline, PA6 feeders, or undifferentiated ES cells showed no rescue. CONCLUSIONS ES cells can differentiate, morphologically, and functionally, into RPE-like cells. Based on these findings, differentiated ES cells have the potential for the development of new therapeutic approaches for RPE-specific diseases such as certain forms of retinitis pigmentosa and macular degeneration. Nevertheless, stringent control of retinal detachment and teratoma development will be necessary before initiation of treatment trials.
Collapse
Affiliation(s)
- Nan-Kai Wang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Joaquin Tosi
- Department of Ophthalmology, Columbia University, New York City, NY
| | | | - Chai Lin Chou
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Jian Kong
- Department of Ophthalmology, Columbia University, New York City, NY
| | - Nancy Parmalee
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Genetics and Development, Columbia University, New York, NY
| | - Katherine J. Wert
- Department of Ophthalmology, Columbia University, New York City, NY
- Institute of Human Nutrient, Columbia University, New York, NY
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Chi-Chun Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | - Chyuan-Sheng Lin
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York City, NY
- Department of Pathology and Cell Biology, Columbia University, New York, NY
- Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York City, NY
| |
Collapse
|
20
|
Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2009; 90:429-36. [PMID: 20036655 DOI: 10.1016/j.exer.2009.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
To test the hypothesis that transduction of the channelrhodopsin-2 (ChR2) gene, a microbial-type rhodopsin gene, into retinal ganglion cells of genetically blind rats will restore functional vision, we recorded visually evoked potentials and tested the experimental rats for the presence of optomotor responses. The N-terminal fragment of the ChR2 gene was fused to the fluorescent protein Venus and inserted into an adeno-associated virus to make AAV2-ChR2V. AAV2-ChR2V was injected intravitreally into the eyes of 6-month-old dystrophic RCS (rdy/rdy) rats. Visual function was evaluated six weeks after the injection by recording visually evoked potentials (VEPs) and testing optomotor responses. The expression of ChR2V in the retina was investigated histologically. We found that VEPs could not be recorded from 6-month-old dystrophic RCS rats that had not been injected with AAV2-ChR2V. In contrast, VEPs were elicited from RCS rats six weeks after injection with AAV2-ChR2V. The VEPs were recorded at stimulation rates <20Hz, which was the same as that of normal rats. Optomotor responses were also significantly better after the AAV2-ChR2V injection. Expression of ChR2V was observed mainly in the retinal ganglion cells. These findings demonstrate that visual function can be restored in blind rats by transducing the ChR2V gene into retinal ganglion cells.
Collapse
|
21
|
Pinilla I, Cuenca N, Martínez-Navarrete G, Lund RD, Sauvé Y. Intraretinal processing following photoreceptor rescue by non-retinal cells. Vision Res 2009; 49:2067-77. [PMID: 19497333 DOI: 10.1016/j.visres.2009.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 01/13/2023]
Abstract
Royal College of Surgeon (RCS) rats undergo retinal degeneration due to the inability of retinal pigment epithelial (RPE) cells to phagocytose shed outer segments. We explored the effect of introducing Schwann cells to the subretinal space of RCS rats (before the onset of retinal degeneration), by relying on electroretinogram (ERG) recordings and correlative retinal morphology. Scotopic ERGs recorded from cell-injected eyes showed preserved amplitudes of mixed a-wave b-wave, rod b-waves, and cone b-waves over controls (sham-injected eyes); photopic b-wave amplitudes and critical flicker fusion were also improved. Normal retinal morphology was found in areas of retinas that had received cell injections. Since Schwann cells have no phagocytic properties, their therapeutic effect is best explained through a paracrine mechanism (secretion of factors that ensure photoreceptor survival).
Collapse
Affiliation(s)
- I Pinilla
- Department of Ophthalmology, Hospital Universitario Miguel Servet, Zaragoza, Instituto Aragones de Ciencias de la Salud, Spain
| | | | | | | | | |
Collapse
|
22
|
Sharma SC. Changes of central visual receptive fields in experimental glaucoma. PROGRESS IN BRAIN RESEARCH 2008; 173:479-91. [PMID: 18929129 DOI: 10.1016/s0079-6123(08)01133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal ganglion cell apoptotic death in experimental glaucoma is protracted over several months and it leads to the visual dysfunction. In the rat with increased intraocular pressure (IOP), the lack of visual scotoma was observed where visual field was determined electrophysiologically on the contralateral optic tectum in the early stages of the disease. Increases in the sizes of receptive fields on the periphery represented early stage of glaucomatous dysfunction. The relationship of duration and magnitude of IOP elevation had a significant correlation between percentages of receptive field sizes in the tectum. Large increases in receptive field sizes noted in the glaucomatous retinal terminal areas suggest the ability of the remaining retinal axons to compete and compensate for the loss of retinal axons. This compensatory adaptation leads to the degradation of the visual acuity and visual thresholds when measured psychophysically.
Collapse
Affiliation(s)
- S C Sharma
- Department of Ophthalmology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
23
|
Pinilla I, Cuenca N, Sauvé Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp Eye Res 2007; 85:381-92. [PMID: 17662715 PMCID: PMC2711686 DOI: 10.1016/j.exer.2007.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 05/03/2007] [Accepted: 06/05/2007] [Indexed: 11/23/2022]
Abstract
We have examined how transplantation of an RPE cell line to the subretinal space of RCS rats affects the distribution of synaptic connectivity markers in the outer plexiform layer of the retina. Using markers of pre- and post-synaptic profiles (bassoon and synaptophysin as presynaptic markers and mGluR6 for postsynaptic profiles) we found that the normal orderly patterns seen between photoreceptors and rod and ON-cone bipolar cells were severely disrupted in dystrophic rats. In areas in which injected cells preserved photoreceptors, more normally appearing pairing of pre- and post-synaptic markers was seen for both rods and cones. The degree of normality correlated with the amount of photoreceptor rescue. The secondary changes that are normally seen in bipolar and horizontal cells were prevented by the photoreceptor preservation. ERG recordings in the animals subsequently studied morphologically showed that both a- and b-waves could be rescued by grafting, albeit with lower amplitudes than normal. Together these anatomical and physiological studies indicate that besides the integrity of outer nuclear layer cells and phototransduction processes, relay circuitry through the outer retina was rescued by cell grafts.
Collapse
Affiliation(s)
- Isabel Pinilla
- Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
24
|
da Cruz L, Chen FK, Ahmado A, Greenwood J, Coffey P. RPE transplantation and its role in retinal disease. Prog Retin Eye Res 2007; 26:598-635. [PMID: 17920328 DOI: 10.1016/j.preteyeres.2007.07.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal pigment epithelial (RPE) transplantation aims to restore the subretinal anatomy and re-establish the critical interaction between the RPE and the photoreceptor, which is fundamental to sight. The field has developed over the past 20 years with advances coming from a large body of animal work and more recently a considerable number of human trials. Enormous progress has been made with the potential for at least partial restoration of visual function in both animal and human clinical work. Diseases that have been treated with RPE transplantation demonstrating partial reversal of vision loss include primary RPE dystrophies such as the merTK dystrophy in the Royal College of Surgeons (RCS) rat and in humans, photoreceptor dystrophies as well as complex retinal diseases such as atrophic and neovascular age-related macular degeneration (AMD). Unfortunately, in the human trials the visual recovery has been limited at best and full visual recovery has not been demonstrated. Autologous full-thickness transplants have been used most commonly and effectively in human disease but the search for a cell source to replace autologous RPE such as embryonic stem cells, marrow-derived stem cells, umbilical cord-derived cells as well as immortalised cell lines continues. The combination of cell transplantation with other modalities of treatment such as gene transfer remains an exciting future prospect. RPE transplantation has already been shown to be capable of restoring the subretinal anatomy and improving photoreceptor function in a variety of retinal diseases. In the near future, refinements of current techniques are likely to allow RPE transplantation to enter the mainstream of retinal therapy at a time when the treatment of previously blinding retinal diseases is finally becoming a reality.
Collapse
Affiliation(s)
- Lyndon da Cruz
- Division of Cellular Therapy, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
25
|
Gias C, Jones M, Keegan D, Adamson P, Greenwood J, Lund R, Martindale J, Johnston D, Berwick J, Mayhew J, Coffey P. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. Eur J Neurosci 2007; 25:1940-8. [PMID: 17439483 DOI: 10.1111/j.1460-9568.2007.05459.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.
Collapse
Affiliation(s)
- Carlos Gias
- Institute of Ophthalmology, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Organisciak D, Darrow R, Gu X, Barsalou L, Crabb JW. Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 2007; 82:1088-96. [PMID: 16602829 DOI: 10.1562/2005-06-30-ra-599] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To probe for possible relationships between retinal crystallins and retinal degenerations, protein expression was compared in normal Sprague-Dawley rats, treated or not with intense light, Royal College of Surgeons (RCS) rats and transgenic rats expressing rhodopsin mutations. Rats were reared in dim cyclic light for 21-75 days. Photoreceptor cell DNA levels were determined at various ages to assess the rates of visual cell loss. 1D- and 2D-gel electrophoresis was used to profile retinal protein expression. Crystallins were identified by western analysis and by tandem mass spectrometry. In normal rat retinas, alpha, beta and gamma crystallins were present, although alphaA- and gamma-crystallins exhibited some increase with age. As measured by DNA levels, the rate of genetically induced photoreceptor cell loss was greater in rats with faster degenerating retinas (RCS, S334-ter Line 4, P23H Line 3) than in rats with slower degenerating retinas (S334-ter Line 9, P23H Line 2). In genetic models of retinal degeneration increased levels of immunoreactivity for all crystallins, especially alphaA-insert, correlated with the different rates of photoreceptor loss. In the light induced degeneration model alphaA-insert was unchanged, truncated alphaB-crystallin levels were increased and gamma-crystallins were greatly reduced. In the RCS rat retina 16 different crystallins were identified. Our data suggests that an increase in crystallin expression occurs during various retinal degenerations and that the increases may be related to the severity, type and onset of retinal degeneration.
Collapse
Affiliation(s)
- Daniel Organisciak
- Petticrew Research Laboratory, School of Medicine, Wright State University, Dayton, OH, USA.
| | | | | | | | | |
Collapse
|
27
|
Verit FF, Oguz H, Ozkul Y, Bozkurt O. Long-term effects of tibolone on ocular functions in postmenopausal women. Arch Gynecol Obstet 2006; 275:255-61. [PMID: 17047975 DOI: 10.1007/s00404-006-0251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/29/2006] [Indexed: 11/26/2022]
Abstract
Hormone replacement therapy has been widely used for the prevention of postmenopausal osteoporosis and treatment of climacteric symptoms for many years, but its effect on ocular functions remains unclear. The aim of the study was to evaluate the long-term effects of tibolone on ocular functions in postmenopausal women. A total of 77 healthy women with at least 1 year of spontaneous menopause were enrolled in the study. Forty women were treated with tibolone for 6 months and 37 women were left untreated. All these patients underwent ophthalmic examination including visual acuity, intraocular pressure (IOP), tear functions, blue-on-yellow and white-on-white Humphrey visual field (HVF), visual evoked potentials (VEP) and electroretinography (ERG). There were significant differences in mean deviation of blue-on-yellow HVF, and oscillatory potentials (O1, O2, and O4) in the ERGs of the chronic tibolone users and the control (P < 0.0001, P = 0.001, P < 0.0001 and 0.05, respectively). However, no significant differences were observed in visual acuity, IOP, tear functions, white-on-white HVF and VEP. We concluded that, although tibolone had no effects on visual acuity, IOP, tear functions and VEP, it might cause some early adverse effects on the electrophysiologic and structural characteristics of the retina, which are detected by these sensitive assays. Randomized placebo-controlled studies with larger groups are needed in future research.
Collapse
Affiliation(s)
- Fatma Ferda Verit
- Department of Obstetrics and Gynecology, Faculty of Medicine, Harran University, 63100 Sanliurfa, Turkey.
| | | | | | | |
Collapse
|
28
|
Sauvé Y, Pinilla I, Lund RD. Partial preservation of rod and cone ERG function following subretinal injection of ARPE-19 cells in RCS rats. Vision Res 2005; 46:1459-72. [PMID: 16364396 DOI: 10.1016/j.visres.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 09/28/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
We quantified rod- and cone-related electroretinogram (ERG) responses following subretinal injections of the human-derived retinal pigment epithelial (hRPE) cell line ARPE-19 at age P23 to prevent progressive photoreceptor loss in the Royal College of Surgeons (RCS) rat. Culture medium-injected eyes served as sham controls. At P60, in comparison with sham-injected eyes, all recordings from hRPE-injected eyes showed preserved scotopic a- and b-waves, oscillatory potentials, double-flash-derived rod b-waves and photopic cone b-waves, and flicker critical fusion frequencies and amplitudes. Although the actual preservation did not exceed 10% of a-wave and 20% of b-wave amplitude values in non-dystrophic RCS and deteriorated rapidly by P90, rod- and cone-related ERG parameters were still recordable up to P120 unlike the virtually unresponsive sham-injected eyes.
Collapse
Affiliation(s)
- Y Sauvé
- Department of Ophthalmology, 7-55 Medical Sciences Bldg, University of Alberta, Edmonton, Alta., Canada T6G 2H7.
| | | | | |
Collapse
|
29
|
Li S, Chen D, Sauvé Y, McCandless J, Chen YJ, Chen CK. Rhodopsin-iCre transgenic mouse line for Cre-mediated rod-specific gene targeting. Genesis 2005; 41:73-80. [PMID: 15682388 DOI: 10.1002/gene.20097] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Retinal photoreceptors are highly differentiated postmitotic neurons that transduce photons into electrical signals. While the functions of many photoreceptor-specific genes can be evaluated by direct gene targeting, here we facilitate the studies of nonphotoreceptor-specific genes in these cells by developing an Opsin-iCre transgenic mouse line, iCre-75, in which a 4-kb mouse rod opsin promoter drives the expression of bacteriophage P1 Cre recombinase. Immunohistochemical analysis demonstrated that Cre recombinase is present exclusively in the outer nuclear layer of iCre75 mouse retina. Cre expression is found only in rods and not in cones. The expression level reached 188+/-44 ng per retina at postnatal day (pnd) 11 and increased to 687+/-56 ng at 2 months and older. Cre-mediated excision of floxed genomic DNA was absent at pnd 4, became detectable at pnd 7, and was completed by pnd 18. Retinal morphology and electroretinograms were normal in 8-month-old transgenic animals. The iCre-75 transgenic mice are thus suitable for future genetic studies of essential genes in retinal rod photoreceptors.
Collapse
Affiliation(s)
- Sha Li
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pinilla I, Lund RD, Sauvé Y. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation. Neurosci Lett 2005; 382:16-21. [PMID: 15911114 DOI: 10.1016/j.neulet.2005.02.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/11/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The heterozygous P23H transgenic rat is a model of autosomal dominant retinitis pigmentosa, in which a mutation in the rhodopsin gene leads to a rapid loss of rods and a more protracted loss of cones. It has been suggested that rods play an essential role in preserving cones. We tested this hypothesis by examining whether higher levels of dysfunctional rhodopsin in rats homozygous for the P23H mutation would result in exacerbated cone dysfunction when compared with heterozygous P23H rats. Electroretinogram (ERG) responses were recorded from P21 to P250 in Sprague-Dawley (SD) and homozygous P23H rats. Both scotopic and photopic intensity response ERGs were severely depressed already at P21 when compared with age-matched SD rats. Furthermore, flicker amplitudes and critical fusion frequencies were also lower in P23H compared with SD rats at P21. Scotopic and photopic intensity responses as well as flicker amplitude and critical fusion frequencies declined rapidly up to P60, reaching a steady state that was maintained up to P200. We conclude that in rats homozygous for P23H rhodopsin mutations, the severe loss of rod function already seen by P21 is accompanied by substantial cone functional loss at that age. While rod-related responses are more severely affected than cone-related responses at all ages, their actual rate of decline with age is surprisingly similar. Both undergo a biphasic temporal pattern of decline: very rapid (P21-P60) followed by very slow (P60-P200) deterioration in response parameters, implying a tight link between rod and cone functional deterioration.
Collapse
Affiliation(s)
- I Pinilla
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, 75 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
31
|
Pinilla I, Lund RD, Lu B, Sauvé Y. Measuring the cone contribution to the ERG b-wave to assess function and predict anatomical rescue in RCS rats. Vision Res 2005; 45:635-41. [PMID: 15621180 DOI: 10.1016/j.visres.2004.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Subretinal injections of human retinal pigment epithelial (RPE) cells early in the course of retinal degeneration in Royal College of Surgeons (RCS) rats can rescue photoreceptors. Fourteen injected animals were studied using a double flash electroretinogram (ERG): 10 were examined longitudinally and four terminally with immunohistochemistry. The proportion of cone contribution to the ERG b-wave rather than the absolute size of isolated cone response proved to be a reliable indicator of function over time and a predictor of the proportion of cones identified anatomically in the area of optimal photoreceptor rescue.
Collapse
Affiliation(s)
- I Pinilla
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, 75 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
32
|
Wang S, Lu B, Lund RD. Morphological changes in the Royal College of Surgeons rat retina during photoreceptor degeneration and after cell-based therapy. J Comp Neurol 2005; 491:400-17. [PMID: 16175546 DOI: 10.1002/cne.20695] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There are concomitant morphological and functional changes in the inner retina during the course of photoreceptor degeneration in a range of animal models of retina degeneration and in humans with eye disease. One concern that has been raised is that the changes occurring in the inner retina might compromise attempts to rescue or restore visual input by various interventional approaches. It is known that cell-based therapy can preserve significant visual capability for many months. In this study, we examine the overall changes in the Royal College of Surgeons (RCS) rat during degeneration and the effects of cell transplantation by means of immunohistochemistry and confocal microscopy. The degenerative changes are complex, and they progress with age. They involve the neurons with which both rods and cones interconnect--retinal second- and third-order neurons underwent dramatic modification, including sprouting, retraction as photoreceptor loss progressed--as well as Müller glia and secondary vascular changes, which were associated at later times with neuronal migration. The pathological vascular changes led to major disruption of inner retina. After introducing a retinal pigment epithelial cell line to the subretinal space early in the progress of photoreceptor degeneration, most inner retinal changes were held in abeyance for up to at least 10 months of age. Given the concern that has been raised regarding whether inner retinal changes might compromise any graft-related benefit, this is an encouraging finding.
Collapse
Affiliation(s)
- Shaomei Wang
- John A. Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
33
|
Harrison JM, Glickman RD, Ballentine CS, Trigo Y, Pena MA, Kurian P, Najvar LK, Kumar N, Patel AH, Sponsel WE, Graybill JR, Lloyd WC, Miller MM, Paris G, Trujillo F, Miller A, Melendez R. Retinal Function Assessed by ERG Before and After Induction of Ocular Aspergillosis and Treatment by the Anti-fungal, Micafungin, in Rabbits. Doc Ophthalmol 2005; 110:37-55. [PMID: 16249956 DOI: 10.1007/s10633-005-7342-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was conducted to evaluate the effectiveness of a new antifungal drug, micafungin, and standard antifungal drugs against endophthalmitis induced in a rabbit by intravitreal injection of Aspergillus fumigatus, an important fungal pathogen. Effectiveness was evaluated by the preservation of b-wave amplitude at 72 h after injection of the fungus relative to the b-wave amplitude at baseline before any intravitreal injections. A 0.06 ml inoculum of 10(6) conidia of A. fumigatus was injected into the vitreous of the right eye of all rabbits; and, 12 h later, a 0.06 ml solution containing one of 3 antifungal drugs or saline was injected into the vitreous of both eyes. All three antifungal drugs produced significant b-wave preservation at 72 h in infected eyes compared to that in infected eyes receiving saline injections. There was no statistically significant difference between the effects of micafungin and amphotericin B in the right eyes with fungal endophthalmitis, and both produced significantly more preservation of b-wave amplitude than voriconazole. Amphotericin B, but neither micafungin nor voriconazole produced significant reduction of the b-wave amplitude in the left eyes.
Collapse
Affiliation(s)
- Joseph M Harrison
- Department of Ophthalmology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pinilla I, Lund RD, Sauvé Y. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats. Vision Res 2004; 44:2467-74. [PMID: 15358082 DOI: 10.1016/j.visres.2004.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/18/2004] [Indexed: 11/23/2022]
Abstract
Although the RCS rat is widely used as a model of progressive photoreceptor loss, it is unclear how the relative rod and cone functions change with age. Rod and cone b-waves were isolated using a double flash ERG paradigm. In contrast to cones, rods never reached normal functional maturity levels, and the ERG b-wave changed from being predominantly rod-driven to being purely cone-driven by age 74 days, at which point, b-waves were progressively replaced by negative STR-like (scotopic threshold response) waves that persisted up to age 180 days. A double flash commonly abolished this wave and unveiled a b-wave.
Collapse
Affiliation(s)
- I Pinilla
- Moran Eye Center, Ophthalmology and Visual Sciences, University of Utah, 75 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
35
|
Cuenca N, Pinilla I, Sauvé Y, Lu B, Wang S, Lund RD. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 2004; 127:301-17. [PMID: 15262321 DOI: 10.1016/j.neuroscience.2004.04.042] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 04/16/2004] [Accepted: 04/21/2004] [Indexed: 10/26/2022]
Abstract
We have used the P23H line 1 homozygous albino rat to study how progressive photoreceptor degeneration affects rod and cone relay pathways. We examined P23H retinas at different stages of degeneration by confocal microscopy of immunostained sections and electroretinogram (ERG) recordings. By 21 days of age in the P23H rat retina, there is already substantial loss of rods and reduction in rod bipolar dendrites along with reduction of metabotropic glutamate receptor 6 (mGluR6) and rod-associated bassoon staining. The cone pathway is relatively unaffected. By 150 days, when rods are absent from much of the retina, some rod bipolars remain and dendrites of rod and cone bipolar cells form synaptic complexes associated with cones and horizontal cell processes. These complexes include foci of mGluR6 and bassoon staining; they develop further by 270 days of age. Over the course of degeneration, beginning at 21 days, bipolar axon terminals atrophy and the inner retina undergoes further changes including a reduced and disorganized AII amacrine cell population and thinning of the inner plexiform layer. Electroretinogram (ERG) results at 23 days show reductions in a-wave amplitude, in rod and cone-associated b-waves (using a double flash paradigm) and in the amplitude of oscillatory potentials (OPs). By 38 days, rod scotopic a-wave responses and OPs are lost. B-wave amplitudes decline until 150 days, at which point they are purely cone-driven and remain stable up to 250 days. The results show that during the course of photoreceptor loss in the P23H rat, there are progressive degenerative changes, particularly in the rod relay pathway, and these are reflected in the changing ERG response patterns. Later reactive changes involving condensation of cone terminals and neurotransmitter receptors associated with rod and cone bipolar dendrites and with horizontal cell processes suggest that at this stage, there are likely to be complex changes in the relay of sensory information through the retina.
Collapse
Affiliation(s)
- N Cuenca
- Departamento de Biotecnologia, Universidad de Alicante, San Vicente, del Raspeig, 3060, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Caballero S, Sengupta N, Crafoord S, Lund R, Kruse FE, Young M, Grant MB. The many possible roles of stem cells in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2003; 242:85-90. [PMID: 14685872 DOI: 10.1007/s00417-003-0813-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Indexed: 01/26/2023] Open
Affiliation(s)
- Sergio Caballero
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | | | |
Collapse
|