1
|
Rodríguez Deliz CL, Lee GM, Bushnell BN, Majaj NJ, Movshon JA, Kiorpes L. Development of radial frequency pattern perception in macaque monkeys. J Vis 2024; 24:6. [PMID: 38843389 PMCID: PMC11160949 DOI: 10.1167/jov.24.6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Infant primates see poorly, and most perceptual functions mature steadily beyond early infancy. Behavioral studies on human and macaque infants show that global form perception, as measured by the ability to integrate contour information into a coherent percept, improves dramatically throughout the first several years after birth. However, it is unknown when sensitivity to curvature and shape emerges in early life or how it develops. We studied the development of shape sensitivity in 18 macaques, aged 2 months to 10 years. Using radial frequency stimuli, circular targets whose radii are modulated sinusoidally, we tested monkeys' ability to radial frequency stimuli from circles as a function of the depth and frequency of sinusoidal modulation. We implemented a new four-choice oddity task and compared the resulting data with that from a traditional two-alternative forced choice task. We found that radial frequency pattern perception was measurable at the youngest age tested (2 months). Behavioral performance at all radial frequencies improved with age. Performance was better for higher radial frequencies, suggesting the developing visual system prioritizes processing of fine visual details that are ecologically relevant. By using two complementary methods, we were able to capture a comprehensive developmental trajectory for shape perception.
Collapse
Affiliation(s)
| | - Gerick M Lee
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Najib J Majaj
- Center for Neural Science, New York University, NY, NY, USA
| | | | - Lynne Kiorpes
- Center for Neural Science, New York University, NY, NY, USA
| |
Collapse
|
2
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Kang J, Wu Y, Yu H, Xing D. Dynamic Recruitment of the Feedforward and Recurrent Mechanism for Black-White Asymmetry in the Primary Visual Cortex. J Neurosci 2023; 43:5668-5684. [PMID: 37487737 PMCID: PMC10401654 DOI: 10.1523/jneurosci.0168-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jian Kang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Marcar VL, Battegay E, Schmidt D, Cheetham M. Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential. Vision Res 2021; 193:107994. [PMID: 34979298 DOI: 10.1016/j.visres.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
The neural response in the human visual system is composed of magno-, parvo- and koniocellular input from the retina. Signal differences from functional imaging between health and individuals with a cognitive weakness are attributed to a dysfunction of a specific retinal input. Yet, anatomical interconnections within the human visual system obscure individual contribution to the neural response in V1. Deflections in the visual evoked potential (VEP) arise from an interaction between electric dipoles, their strength determined by the size of the neural population active during temporal - and spatial luminance contrast processing. To investigate interaction between these neural responses, we recorded the VEP over visual cortex of 14 healthy adults viewing four series of windmill patterns. Within a series, the relative area white in a pattern varied systematically. Between series, the number of sectors across which this area was distributed doubled. These patterns were viewed as pattern alternating and on-/off stimuli. P100/P1 amplitude increased linearly with the relative area white in the pattern, while N135/N1 and P240/P2 amplitude increased with the number of sectors of which the area white was distributed. The decreases P100 amplitude with increasing number of sectors is attributed to an interaction between electric dipoles located in granular and supragranular layers of V1. Differences between the VEP components obtained during a pattern reversing display and following pattern onset are accounted for by the transient and sustained nature of neural responses processing temporal - and spatial luminance contrast and ability of these responses to manifest in the VEP.
Collapse
Affiliation(s)
- V L Marcar
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Comprehensive Cancer Centre Zurich, PO Box, 157, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Biomedical Optical Research Laboratory (BORL), Department of Neonatology, Frauenklinikstrasse 10, CH-8006 Zürich, Switzerland.
| | - E Battegay
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Research Priority Program "Dynamics of Healthy Aging", University of Zürich, Zürich, Switzerland; International Center for Multimorbidity and Complexity in Medicine (ICMC), University Zurich, University Hospital Basel (Department of Psychosomatic Medicine), Merian Iselin Klinik Basel, Switzerland
| | - D Schmidt
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - M Cheetham
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
4
|
The temporal integration windows for visual mirror symmetry. Vision Res 2021; 188:184-192. [PMID: 34352477 DOI: 10.1016/j.visres.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Symmetry perception in dot patterns is tolerant to temporal delays of up to 60 ms within and between element pairs. However, it is not known how factors effecting symmetry discrimination in static patterns might affect temporal integration in dynamic patterns. One such feature is luminance polarity. Using dynamic stimuli with increasing temporal delay (SOA) between the onset of the first and second element in a symmetric pair, we investigated how four different luminance-polarity conditions affected the temporal integration of symmetric patterns. All four luminance polarity conditions showed similar upper temporal limits of approximately 60 ms. However psychophysical performance over all delay durations showed significantly higher symmetry thresholds for unmatched-polarity patterns at short delays, but also significantly less sensitivity to increasing temporal delay relative to matched-polarity patterns. These varying temporal windows are consistent with the involvement of a fast, sensitive first-order mechanism for matched-polarity patterns, and a slower, more robust second-order mechanism for unmatched-polarity patterns. Temporal integration windows for unmatched-polarity patterns were not consistent with performance expected from attentional mechanisms alone, and instead supports the involvement of second-order mechanisms that combines information from ON and OFF channels.
Collapse
|
5
|
Waz S, Liu Z. Evidence for strictly monocular processing in visual motion opponency and Glass pattern perception. Vision Res 2021; 186:103-111. [PMID: 34082396 DOI: 10.1016/j.visres.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/11/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
When presented with locally paired dots moving in opposite directions, motion selective neurons in the middle temporal cortex (MT) reduce firing while neurons in V1 are unaffected. This physiological effect is known as motion opponency. The current study used psychophysics to investigate the neural circuit underlying motion opponency. We asked whether opposing motion signals could arrive from different eyes into the receptive field of a binocular neuron while still maintaining motion opponency. We took advantage of prior findings that orientation discrimination of the motion axis (along which paired dots oscillate) is harder when dots move counter-phase than in-phase, an effect associated with motion opponency. We found that such an effect disappeared when paired dots originated from different eyes. This suggests that motion opponency, at some point, involves strictly monocular processing. This does not mean that motion opponency is entirely monocular. Further, we found that the effect of a Glass pattern disappeared under similar viewing conditions, suggesting that Glass pattern perception also involves some strictly monocular processing.
Collapse
Affiliation(s)
- Sebastian Waz
- Department of Cognitive Sciences, University of California Irvine, Irvine, CA 92697, USA; Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Zili Liu
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Marcar VL, Wolf M. An investigation into the relationship between stimulus property, neural response and its manifestation in the visual evoked potential involving retinal resolution. Eur J Neurosci 2021; 53:2612-2628. [PMID: 33448503 DOI: 10.1111/ejn.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
The visual evoked potential (VEP) has been shown to reflect the size of the neural population activated by a processing mechanism selective to the temporal - and spatial luminance contrast property of a stimulus. We set out to better understand how the factors determining the neural response associated with these mechanisms. To do so we recorded the VEP from 14 healthy volunteers viewing two series of pattern reversing stimuli with identical temporal-and spatial luminance contrast properties. In one series the size of the elements increased towards the edge of the image, in the other it decreased. In the former element size was congruent with receptive field size across eccentricity, in the later it was incongruent. P100 amplitude to the incongruent series exceeded that obtained to the congruent series. Using electric dipoles due the excitatory neural response we accounted for this using dipole cancellation of electric dipoles of opposite polarity originating in supra- and infragranular layers of V1. The phasic neural response in granular lamina of V1 exhibited magnocellular characteristics, the neural response outside of the granular lamina exhibited parvocellular characteristics and was modulated by re-entrant projections. Using electric current density, we identified areas of the dorsal followed by areas of the ventral stream as the source of the re-entrant signal modulating infragranular activity. Our work demonstrates that the VEP does not signal reflect the overall level of a neural response but is the result of an interaction between electric dipoles originating from neural responses in different lamina of V1.
Collapse
Affiliation(s)
- Valentine L Marcar
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Green RJ, Dickinson JE, Badcock DR. Integration of shape information occurs around closed contours but not across them. J Vis 2018; 18:6. [DOI: 10.1167/18.5.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Robert J. Green
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - J. Edwin Dickinson
- School of Psychological Science, The University of Western Australia, Perth, Australia
| | - David R. Badcock
- School of Psychological Science, The University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Nakayama R, Harada D, Kamachi MG, Motoyoshi I. Apparent shift in long-range motion trajectory by local pattern orientation. Sci Rep 2018; 8:774. [PMID: 29335569 PMCID: PMC5768746 DOI: 10.1038/s41598-017-19005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022] Open
Abstract
The present study shows that the apparent direction of a moving pattern is systematically affected by its orientation. We found that the perceived direction of motion of a single Gabor grating changing position in discrete steps interleaved by blank inter-stimulus interval (ISI) is biased toward the orientation of the grating. This orientation-induced motion shift peaks for grating orientations ~±15 deg away from the physical motion trajectory and was profound for relatively short distances. Orientation adaptation revealed that the directional shift is determined by the apparent –not the physical –orientation of the grating, and a subsequent experiment demonstrated that directional shift is also influenced by the orientation of the contrast-defined stimulus envelope. Results provide further evidence that the apparent trajectory of a motion stimulus is determined by interactions between motion and pattern information at relatively high levels of visual processing.
Collapse
Affiliation(s)
| | - Daisuke Harada
- Kogakuin University, Tokyo, Japan.,Toppan Printing Co.,Ltd., Tokyo, Japan
| | | | | |
Collapse
|
9
|
Khuu SK, Honson VJ, Challinor KL. The Influence of Cast Shadows on the Detection of Three-Dimensional Curved Contour Structure. Perception 2016; 45:425-42. [DOI: 10.1177/0301006615622323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cast shadows have been shown to provide an effective ordinal cue to the depth position of objects. In the present study, two experiments investigated the effectiveness of cast shadows in facilitating the detection of spatial contours embedded in a field of randomly placed elements. In Experiment 1, the separation between the cast shadow and the contour was systematically increased to effectively signal different contour depth positions (relative to background elements), and this was repeated for patterns in which the lighting direction was above and from below. Increasing the shadow separation improved contour detection performance, but the degree to which sensitivity changed was dependent on the lighting direction. Patterns in which the light was from above were better detected than patterns in which the lighting direction was from below. This finding is consistent with the visual system assuming a “light-from-above rule” when processing cast shadows. In Experiment 2, we examined the degree to which changing the shape of the cast shadow (by randomly jittering the position of local cast shadow elements) affected the ability of the visual system to rely on the cast shadow to cue the depth position of the contour. Consistent with a coarse scale analysis, we find that cast shadows remained an effective depth cue even at large degrees of element jitter. Our findings demonstrate that cast shadows provide an effective means of signaling depth, which aids the process of contour integration, and this process is largely tolerant of local variations in lighting direction.
Collapse
Affiliation(s)
- Sieu K. Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Vanessa J. Honson
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Kirsten L. Challinor
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Li L, Yu Y, Zhou Y. The Unilateral Mean Luminance Alters Additive Internal Noise in Normal Vision. Perception 2015; 44:1215-24. [PMID: 26562890 DOI: 10.1177/0301006615594907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Luminance has been found to play a modulating role in the processes of many visual tasks. However, the mechanisms underlying the modulation role of luminance have been little studied, and the conclusions have been controversial. Here, using a dichoptic viewing paradigm by varying the luminance in one eye while measuring the contrast-detection threshold in the other eye, we studied the effect of different unilateral mean luminance values on the detectability of sine wave gratings against backgrounds of various levels of white noise in normal subjects. We found that unilateral luminance altered the additive internal noise within a perceptual template model framework, with low luminance increasing the additive internal noise and high luminance reducing it. This finding helps to reveal how luminance modulates contrast detection and its relative mechanisms.
Collapse
Affiliation(s)
- Lin Li
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, PR China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| | - Yifeng Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, PR China
| |
Collapse
|
11
|
Kassaliete E, Lacis I, Fomins S, Krumina G. Reading and coherent motion perception in school age children. ANNALS OF DYSLEXIA 2015; 65:69-83. [PMID: 25911276 DOI: 10.1007/s11881-015-0099-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
This study includes an evaluation, according to age, of the reading and global motion perception developmental trajectories of 2027 school age children in typical stages of development. Reading is assessed using the reading rate score test, for which all of the student participants, regardless of age, received the same passage of text of a medium difficulty reading level. The coherent motion perception threshold is determined according to the adaptive psychophysical protocol based on a four-alternative, forced-choice procedure. Three different dot velocities: 2, 5, and 8 deg/s were used for both assemblies of coherent or randomly moving dots. Reading rate score test results exhibit a wide dispersion across all age groups, so much so that the outlier data overlap, for both the 8 and 18-year-old student-participant age groups. Latvian children's reading fluency developmental trajectories reach maturation at 12-13 years of age. After the age of 13, reading rate scores increase slowly; however, the linear regression slope is different from zero and positive: F(1, 827) = 45.3; p < 0.0001. One hundred eighty-one student-participants having results below the 10th percentile were classified as weak readers in our study group. The reading fluency developmental trajectory of this particular group of student-participants does not exhibit any statistically significant saturation until the age of 18 years old. Coherent motion detection thresholds decrease with age and do not reach saturation. Tests with slower moving dots (2 deg/s) yield results that exhibit significant differences between strong and weak readers.
Collapse
Affiliation(s)
- Evita Kassaliete
- Department of Optometry and Vision Science, University of Latvia, 8Kengaraga Str., Riga, LV - 1063, Latvia,
| | | | | | | |
Collapse
|
12
|
Jiménez Barbosa IA, Boon MY, Khuu SK. Exposure to organic solvents used in dry cleaning reduces low and high level visual function. PLoS One 2015; 10:e0121422. [PMID: 25933026 PMCID: PMC4416825 DOI: 10.1371/journal.pone.0121422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/14/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). METHODS The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. RESULTS Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners. CONCLUSIONS Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance.
Collapse
Affiliation(s)
- Ingrid Astrid Jiménez Barbosa
- The University of New South Wales, School of Optometry and Vision Science, New South Wales, Sydney, Australia
- Universidad de La Salle, Health and Science Faculty, Bogotá D.C, Bogotá, Colombia
| | - Mei Ying Boon
- The University of New South Wales, School of Optometry and Vision Science, New South Wales, Sydney, Australia
| | - Sieu K. Khuu
- The University of New South Wales, School of Optometry and Vision Science, New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Badcock DR, Almeida RA, Dickinson JE. Detecting global form: separate processes required for Glass and radial frequency patterns. Front Comput Neurosci 2013; 7:53. [PMID: 23658542 PMCID: PMC3647114 DOI: 10.3389/fncom.2013.00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/17/2013] [Indexed: 11/13/2022] Open
Abstract
Global processing of form information has been studied extensively using both Glass and radial frequency (RF) patterns. Models, with common early stages, have been proposed for the detection of properties of both pattern types but human performance has not been examined to determine whether the two pattern types interact in the manner this would suggest. The experiments here investigated whether low RF patterns and concentric Glass patterns, which are thought to tap the same level of processing in form-vision, are detected by a common mechanism. Six observers participated in two series of masking experiments. First: sensitivity to the presence of either coherent structure, or contour deformation, was assessed. The computational model predicted that detection of one pattern would be masked by the other. Second: a further experiment examined position coding. The model predicted that localizing the center of form in a Glass pattern would be affected by the presence of an RF pattern: sensitivity to a change of location should be reduced and the apparent location should be drawn toward the center of the masking pattern. However, the results observed in all experiments were inconsistent with the interaction predicted by the models, suggesting that separate neural mechanisms for global processing of signal are required to process these two patterns, and also indicating that the models need to be altered to preclude the interactions that were predicted but not obtained.
Collapse
Affiliation(s)
- David R Badcock
- School of Psychology (M304), The University of Western Australia Crawley, WA, Australia
| | | | | |
Collapse
|
14
|
Edwards M, Rideaux R. How many motion signals can be simultaneously perceived? Vision Res 2013; 76:11-6. [PMID: 23088895 DOI: 10.1016/j.visres.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 12/01/2022]
Abstract
Previous research indicates that the maximum number of motion signals that can be simultaneously perceived is 2, if they are defined only by direction differences, or 3 if they also differ in speed or depth (Greenwood & Edwards, 2006b). Those previous studies used transparent, spatially-sparse stimuli. Here we investigate this motion-number perception limit using spatially-localised stimuli that drive either the standard or form-specific motion systems (Edwards, 2009). Each motion signal was defined by four signal-dots that were arranged in either a square pattern (Square Condition), to drive the form-specific system, or a random pattern (Random Condition), to drive the standard motion-system. A temporal 2AFC procedure was used with each interval (150 ms duration) containing n or n+1 signals. The observer had to identify the interval containing the highest number of signals. The total number of dots in each interval was kept constant by varying the number of noise dots (dots that started off in the same spatial arrangement as the signal dots but then each of those dots moved in different directions). A mask was used at the end of each motion sequence to prohibit the use of iconic memory. In the Square Condition, up to five directions could be simultaneously perceived, and only 1 in the Variable condition. Decreasing the number of noise dots improved performance for the Variable condition, and increasing it decreased performance in the Square Condition. These results show that the previously observed limit of 3 is not a universal limit for motion perception and further, that signal-to-noise limits are a fundamental factor in determining the number of directions that can be simultaneously perceived. Hence the greater sensitivity to motion of the form-specific system makes it well suited to extracting the motion of multiple moving objects.
Collapse
Affiliation(s)
- Mark Edwards
- Department of Psychology, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
15
|
Khuu SK, Khambiye S. The influence of shape-from-shading information on the perception of global motion. Vision Res 2012; 55:1-10. [DOI: 10.1016/j.visres.2012.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/16/2011] [Accepted: 01/05/2012] [Indexed: 11/27/2022]
|
16
|
Dai J, Wang Y. Representation of surface luminance and contrast in primary visual cortex. ACTA ACUST UNITED AC 2011; 22:776-87. [PMID: 21693782 DOI: 10.1093/cercor/bhr133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In visual perception, object identification requires both the ability to define regions of uniform luminance and zones of luminance contrast. Neural processes underlying contrast detection have been well studied, while those defining luminance remain poorly understood and controversial. Partially because stimuli comprised of uniform luminance are relatively ineffective in driving responses of cortical neurons, little effort has been made to systematically compare responses of individual neurons to both uniform luminance and contrast. Using large static uniform luminance and contrast stimuli, modulated temporally in luminance or contrast, we found a continuum of responses ranging from a few cells modulated only by luminance (luminance-only), to many cells modulated by both luminance and contrast (luminance-contrast), and to many others modulated only by contrast (contrast-only) in primary visual cortex. Moreover, luminance-contrast cells had broader orientation tuning, larger receptive field (RF) and lower spatial frequency Preference, on average, than contrast-only cells. Contrast-only cells had contrast responses more linearly correlated to the spatial structure of their RFs than luminance-contrast cells. Taken together these results suggest that luminance and contrast are represented, to some degree, by independent mechanisms that may be shaped by different classes of subcortical and/or cortical inputs.
Collapse
Affiliation(s)
- Ji Dai
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
17
|
Bell J, Gheorghiu E, Hess RF, Kingdom FAA. Global shape processing involves a hierarchy of integration stages. Vision Res 2011; 51:1760-6. [PMID: 21704056 DOI: 10.1016/j.visres.2011.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/20/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Radial Frequency (RF) patterns can be used to study the processing of familiar shapes, e.g. triangles and squares. Opinion is divided over whether the mechanisms that detect these shapes integrate local orientation and position information directly, or whether local orientations and positions are first combined to represent extended features, such as curves, and that it is local curvatures that the shape mechanism integrates. The latter view incorporates an intermediate processing stage, the former does not. To differentiate between these hypotheses we studied the processing of micro-patch sampled RF patterns as a function of the luminance polarity of successive elements on the contour path. Our first study measures shape after effects involving suprathreshold amplitude RF shapes and shows that alternating the luminance polarity of successive micro-patch elements disrupts adaptation of the global shape. Our second study shows that polarity alternations also disrupt sensitivity to threshold-amplitude RF patterns. These results suggest that neighbouring points of the contour shape are integrated into extended features by a polarity selective mechanism, prior to global shape processing, consistent with the view that for both threshold amplitude and suprathreshold amplitude patterns, global processing of RF shapes involves an intermediate stage of processing.
Collapse
Affiliation(s)
- Jason Bell
- McGill Vision Research, Dept. of Ophthalmology, McGill University, 687 Pine Av. West, H4-14, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | |
Collapse
|
18
|
Graham NV. Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years. Vision Res 2011; 51:1397-430. [PMID: 21329718 DOI: 10.1016/j.visres.2011.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
Abstract
This review briefly discusses processes that have been suggested in the last 25 years as important to the intermediate stages of visual processing of patterns. Five categories of processes are presented: (1) Higher-order processes including FRF structures; (2) Divisive contrast nonlinearities including contrast normalization; (3) Subtractive contrast nonlinearities including contrast comparison; (4) Non-classical receptive fields (surround suppression, cross-orientation inhibition); (5) Contour integration.
Collapse
Affiliation(s)
- Norma V Graham
- Department of Psychology, Columbia University, NY, NY 10027, USA.
| |
Collapse
|
19
|
Grinter EJ, Maybery MT, Badcock DR. Vision in developmental disorders: is there a dorsal stream deficit? Brain Res Bull 2010; 82:147-60. [PMID: 20211706 DOI: 10.1016/j.brainresbull.2010.02.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/09/2010] [Accepted: 02/28/2010] [Indexed: 12/12/2022]
Abstract
The main aim of this review is to evaluate the proposal that several developmental disorders affecting vision share an impairment of the dorsal visual stream. First, the current definitions and common measurement approaches used to assess differences in both local and global functioning within the visual system are considered. Next, studies assessing local and global processing in the dorsal and ventral visual pathways are reviewed for five developmental conditions for which early to mid level visual abilities have been assessed: developmental dyslexia, autism spectrum disorders, developmental dyspraxia, Williams syndrome and Fragile X syndrome. The reviewed evidence is broadly consistent with the idea that the dorsal visual stream is affected in developmental disorders. However, the potential for a unique profile of visual abilities that distinguish some of the conditions is posited, given that for some of these disorders ventral stream deficits have also been found. We conclude with ideas regarding future directions for the study of visual perception in children with developmental disorders using psychophysical measures.
Collapse
Affiliation(s)
- Emma J Grinter
- School of Psychology, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6008, Australia.
| | | | | |
Collapse
|
20
|
Edwin Dickinson J, Badcock DR. Position encoding of the centres of global structure: separate form and motion processes. Vision Res 2009; 49:648-56. [PMID: 19948112 DOI: 10.1016/j.visres.2009.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
The retinal flow of information during locomotion provides cues to instantaneous heading. Reconciliation of observer trajectory with the internal representation of the environment implies that the positions of the centre of structure of global motion can be localized relative to points in the visual field. Humans are also sensitive to global structure in Glass patterns, which can approximate temporally integrated optic flow. Encoding of the position of centre of structure of Glass patterns could augment the motion information. However, Glass-like pattern structure could also be present in the texture of objects and indicate their centres, raising the question of whether the centres of form and motion patterns are encoded separately. Psychophysical methods are used to examine ability to localize the centres of structure of Glass and global dot motion (GDM) patterns. Radial and concentric Glass patterns are localized more precisely than spiral Glass patterns but performance in localizing the centres of radial, concentric and spiral GDM patterns is equally precise. Also, Glass patterns centres can be localized at signal levels close to their threshold for discrimination from wholly incoherent patterns but GDM pattern centres cannot, suggesting that detectors for looming and rotating stimuli exist that do not rely on the provision of a centre of structure. Collectively, our results provide evidence for independent encoding of the positions of the centres of structure of global motion and form patterns. These positions can be accurately and precisely localized within the visual field. While the centres of structure of a number of form patterns can be simultaneously encoded, allowing their positions to be compared, only a single focus of expansion for optic flow is returned.
Collapse
Affiliation(s)
- J Edwin Dickinson
- School of Psychology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | |
Collapse
|
21
|
Abstract
Achromatic visual information is transferred from the retina to the brain through two parallel channels: ON-center cells carry "white" information and OFF-center cells "black" information (Nelson et al., 1978; Schiller, 1982; Schiller et al., 1986). Responses of ON and OFF retinal and thalamic neurons are approximately equal in magnitude (Krüger and Fischer, 1975; Kremers et al., 1993), but psychophysical studies have shown that humans detect light decrements (black) better and faster than increments (white) (Blackwell, 1946; Short, 1966; Krauskopf, 1980; Whittle, 1986; Bowen et al., 1989; Chan and Tyler, 1992; Kontsevich and Tyler, 1999; Chubb and Nam, 2000; Dannemiller and Stephens, 2001). From recordings of single-cell activity in the macaque monkey's primary visual cortex (V1), we found that black-dominant neurons substantially outnumbered white-dominant neurons in the corticocortical output layers 2/3, but the numbers of black- and white-dominant neurons were nearly equal in the thalamocortical input layer 4c. These results strongly suggest that the black-over-white preference is generated or greatly amplified in V1. The predominance of OFF neurons in layers 2/3 of V1, which provide visual input to higher cortical areas, may explain why human subjects detect black more easily than white. Furthermore, our results agree with human EEG and fMRI findings that V1 responses to decrements are stronger than to increments, though the OFF/ON imbalance we found in layers 2/3 of macaque V1 is much larger than in the whole V1 population in the human V1 experiments (Zemon et al., 1988, 1995; Olman et al., 2008).
Collapse
|
22
|
Bell J, Wilkinson F, Wilson HR, Loffler G, Badcock DR. Radial frequency adaptation reveals interacting contour shape channels. Vision Res 2009; 49:2306-17. [DOI: 10.1016/j.visres.2009.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 06/27/2009] [Accepted: 06/29/2009] [Indexed: 11/28/2022]
|
23
|
Gheorghiu E, Kingdom FAA, Sull M, Wells S. Curvature coding in illusory contours. Vision Res 2009; 49:2518-30. [PMID: 19682486 DOI: 10.1016/j.visres.2009.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/17/2009] [Accepted: 08/07/2009] [Indexed: 11/17/2022]
Abstract
We have employed the shape frequency and shape-amplitude after-effects (SFAE and SAAE) to investigate: (i) whether the shapes of illusory and real curves are processed by the same or different mechanisms, and (ii) the carrier-tuning properties of illusory curvature mechanisms. The SFAE and SAAE are the phenomena in which adaptation to a sinusoidal-shaped contour results in a shift in, respectively, the perceived shape-frequency and perceived shape-amplitude of a test contour in a direction away from that of the adapting stimulus. Both after-effects are believed to be mediated by mechanisms sensitive to curvature (Gheorghiu & Kingdom, 2007a, 2009; see also Hancock & Peirce, 2008). We observed both shape after-effects in sinusoidally-shaped illusory contours defined by phase-shifted line-grating carriers. We tested whether illusory and real contours were mediated by the same or different mechanisms by comparing same adaptor-and-test with different adaptor-and-test combinations of real and illusory contours. Real contour adaptors produced after-effects in illusory contour tests that were as great as, or even greater than those produced by illusory contour adaptors. However, illusory contour adaptors produced much weaker after-effects in real contour tests than did real contour adaptors. This asymmetry suggests that illusory contour curves are encoded by a sub-set of mechanisms sensitive to real contour curves. We also examined the carrier-tuning properties of illusory-contour curvature processing using adaptor and test illusory contours that differed in the luminance contrast-polarity, luminance scale and orientation of the carriers. We found no selectivity to any of these dimensions for either even-symmetric or odd-symmetric line-gratings carriers, even though selectivity to these dimensions was found for real contours.
Collapse
Affiliation(s)
- Elena Gheorghiu
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | |
Collapse
|
24
|
Global visual processing and self-rated autistic-like traits. J Autism Dev Disord 2009; 39:1278-90. [PMID: 19381793 DOI: 10.1007/s10803-009-0740-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
The current research investigated, firstly, whether individuals with high levels of mild autistic-like traits display a similar profile of embedded figures test (EFT) and global motion performance to that seen in autism. Secondly, whether differences in EFT performance are related to enhanced local processing or reduced global processing in the ventral visual stream was also examined. Results indicated that people who scored high on the Autism-spectrum Quotient (AQ) were faster to identify embedded figures, and had poorer global motion and global form thresholds than low AQ scorers. However, the two groups did not differ on a task assessing lower-level input to the ventral stream. Overall the results indicate that individuals with high levels of autistic-like traits have difficulties with global integration in the visual pathways, which may at least partly explain their superior EFT performance.
Collapse
|
25
|
Edwards M. Common-fate motion processing: Interaction of the On and Off pathways. Vision Res 2009; 49:429-38. [DOI: 10.1016/j.visres.2008.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
|
26
|
Second-order orientation cues to the axis of motion. Vision Res 2009; 49:407-15. [DOI: 10.1016/j.visres.2008.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/10/2008] [Accepted: 11/19/2008] [Indexed: 11/22/2022]
|
27
|
Emmerton J, Renner JC. Local rather than global processing of visual arrays in numerosity discrimination by pigeons (Columba livia). Anim Cogn 2009; 12:511-26. [DOI: 10.1007/s10071-009-0212-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
|
28
|
Bell J, Badcock DR. Luminance and contrast cues are integrated in global shape detection with contours. Vision Res 2008; 48:2336-44. [DOI: 10.1016/j.visres.2008.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 07/05/2008] [Accepted: 07/22/2008] [Indexed: 11/28/2022]
|
29
|
Interaction between complex motion patterns in the perception of shape. Vision Res 2007; 48:167-78. [PMID: 18068751 DOI: 10.1016/j.visres.2007.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 09/19/2007] [Accepted: 10/28/2007] [Indexed: 11/22/2022]
Abstract
We investigated how different types of complex motion patterns interact in the perception of shape. We used global dot-motion stimuli which consisted of two superimposed groups of dots; one group of dots moved along an ellipsoidal trajectory (target pattern), while the other group of dots was divided into quadrants with dots in alternating sectors moving in radial expanding and radial contracting directions (background pattern). In the first experiment, observers judged whether the major axis of an ellipsoidal motion pattern oriented at 45 degrees or -45 degrees from vertical lay to the right or to the left of a central vertical line. Ellipsoids with different aspect ratios, which controlled both the tilt (left or right of vertical) and the extent of ellipsoidal curvature, were presented to observers using method of constant stimuli. The appearance of the ellipsoidal target pattern was distorted in the presence of background motion. The aspect ratio of the target at which observers perceived the figure to be circular was approximately 0.86 (an aspect ratio of 1.0 indicates a circle), with the pattern's major axis lying in the two sectors that contained contracting motion. This finding may constitute evidence that background motion distorts the perception of space, resulting in a distorted target pattern. However, the distortion effect is limited to conditions for which the speed of the target pattern and background pattern was slow and high contrast, and for when dots forming the target and background patterns were of the same luminance polarity.
Collapse
|
30
|
Abstract
Vision scientists long ago pointed to black and white as separate sensations and saw confirmation in the fact that in the absence of light, one perceives the visual field as gray against which the negative after-image of a bright light appeared blacker. The first recordings from optic nerve fibers in vertebrates revealed ON and OFF signals, later associated with separate streams, arising already at the synapse between receptors and bipolar cells. These can be identified anatomically and physiologically and remain distinct all the way to the lateral geniculate nucleus, whose fibers form the input to the primary visual cortex. The dichotomy has been probed by electroretinography and analyzed by means of pharmacological agents and dysfunction due to genetic causes. The bi- rather than a unidirectional nature of the retinal output has advantages in allowing small signals to remain prominent over a greater dynamic range. The two streams innervate cortical neurons in a push-pull manner, generating receptive fields with spatial sensitivity profiles featuring ON and OFF subregions. Manifestations of the dichotomy appear in a variety of simple visual discriminations where there are often profound threshold differences in patterns with same polarity as compared with mixed contrast-polarity components. But even at levels in which the spatial, contrast and color attributes have already been securely established and black and white elements participate equally, a categorical difference between blackness and whiteness of a percept persists. It is an opponency, akin to the ones in the color domain, derived from the original ON and OFF signals and subsequently bound with the other attributes to yield a feature's unitary percept.
Collapse
Affiliation(s)
- Gerald Westheimer
- Division of Neurobiology, University of California, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
31
|
Selectivity for coherence in polar orientation in human form vision. Vision Res 2007; 47:3078-87. [DOI: 10.1016/j.visres.2007.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
|
32
|
Oka S, Victor JD, Conte MM, Yanagida T. VEPs elicited by local correlations and global symmetry: characteristics and interactions. Vision Res 2007; 47:2212-22. [PMID: 17604074 PMCID: PMC2041857 DOI: 10.1016/j.visres.2007.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/13/2007] [Accepted: 03/19/2007] [Indexed: 11/29/2022]
Abstract
Psychophysical and fMRI studies have indicated that visual processing of global symmetry has distinctive scaling properties, and proceeds more slowly than analysis of contrast, spatial frequency, and texture. We therefore undertook a visual evoked potential (VEP) study to directly compare the dynamics of symmetry and texture processing, and to determine the extent to which they interact. Stimuli consisted of interchange between structured and random black-and-white checkerboard stimuli. For symmetry, structured stimuli were colored with 2-fold symmetry (horizontal or vertical mirror), 4-fold symmetry (both mirror axes), and 8-fold symmetry (oblique mirror axes added). For texture, structured stimuli were colored according to the "even" isodipole texture [Julesz, B., Gilbert, E. N., & Victor, J. D. (1978). Visual discrimination of textures with identical third-order statistics. Biological Cybernetics, 31, 137-140]. Thus, all stimuli had the same contrast, and check size, but differed substantially in correlation structure. To separate components of the VEP related to symmetry and texture from components that could be generated by local luminance and contrast changes, we extracted the odd-harmonic components of the VEP (recorded at C(z)-O(z), C(z)-O(1), C(z)-O(2), C(z)-P(z)) elicited by structured-random interchange. Responses to symmetry were largest for the 8-fold patterns, and progressively smaller for 4-fold, vertical, and horizontal symmetry patterns. Eightfold patterns were therefore used in the remainder of the study. The symmetry response is shifted to larger checks and lower temporal frequencies compared to the response to texture, and its temporal tuning is broader. Processing of symmetry makes use of neural mechanisms with larger receptive fields, and slower, more sustained temporal tuning characteristics than those involved in the analysis of texture. Sparse stimuli were used to dissociate check size and check density. VEP responses to sparse symmetry stimuli showed that there is no difference between first- and second-order symmetry for densities less than 12.5%. We discuss these findings in relation to local and global visual processes.
Collapse
Affiliation(s)
- Sadanori Oka
- Department of Neurology and Neuroscience, Weill Med Col of Cornell, USA
- Graduate School of Frontier Bioscience, Osaka University, Japan
| | | | - Mary M. Conte
- Department of Neurology and Neuroscience, Weill Med Col of Cornell, USA
| | - Toshio Yanagida
- Graduate School of Frontier Bioscience, Osaka University, Japan
| |
Collapse
|
33
|
Bell J, Badcock DR, Wilson H, Wilkinson F. Detection of shape in radial frequency contours: independence of local and global form information. Vision Res 2007; 47:1518-22. [PMID: 17316737 DOI: 10.1016/j.visres.2007.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Radial frequency (RF) patterns have been used to study the processes involved in shape perception. The psychophysical literature suggests that there are distinct global and local shape detection processes for low and high radial frequency patterns, but this has not been tested in a combined contour pattern, such as would be needed to describe the contours of most natural objects. Here, we combined frequencies from the local and global range onto a compound RF structure. Observers' ability to detect a single RF component on the compound pattern was measured. Results show that sensitivity to high frequency local deviations in shape was not affected by the presence of a globally perceived low frequency pattern. In the reverse condition, detection of global form was not influenced by adding local deviations onto the structure. This suggests that local and global shape information can be detected independently within the human visual system.
Collapse
Affiliation(s)
- Jason Bell
- School of Psychology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia.
| | | | | | | |
Collapse
|
34
|
Or CCF, Khuu SK, Hayes A. The role of luminance contrast in the detection of global structure in static and dynamic, same- and opposite-polarity, Glass patterns. Vision Res 2007; 47:253-9. [PMID: 17173949 DOI: 10.1016/j.visres.2006.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/24/2006] [Accepted: 10/31/2006] [Indexed: 11/27/2022]
Abstract
Perception of global structure conveyed in static Glass patterns is difficult, though not impossible, when the constituent dipoles are formed by partnering opposite polarity dots. We investigate whether the addition of motion signals to opposite-polarity Glass patterns can act to restore the perception of global structure. The stimuli were concentric Glass patterns consisting of 200 dipoles concentrically orientated, or oriented at random orientations, placed on a grey background. For each dipole, one luminance-increment dot (Weber contrast of 1) was paired with another dot set to a contrast ranging between luminance increment and luminance decrement (i.e., a Weber contrast range of approximately -1 to 1). Dipoles were either stationary (Experiment 1), or randomly re-positioned at 17Hz (Experiment 2), on each frame transition. A two-interval forced-choice paradigm, in conjunction with an adaptive staircase, was used to obtain Glass-pattern detection thresholds. The task required observers to identify the interval that contained concentric Glass structure; the other interval contained randomly orientated dipoles. Generally, lower global form thresholds were observed for dynamic and same-polarity Glass patterns than for static and opposite-polarity Glass patterns. In particular, for dynamic presentations improvement in sensitivity was more evident for opposite-polarity than for same-polarity Glass patterns. These findings suggest that motion plays an important role in the detection of global structure in dynamic Glass patterns.
Collapse
Affiliation(s)
- Charles C-F Or
- Department of Psychology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | | | | |
Collapse
|
35
|
Burr D, Ross J. The effects of opposite-polarity dipoles on the detection of Glass patterns. Vision Res 2006; 46:1139-44. [PMID: 16256166 DOI: 10.1016/j.visres.2005.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 09/06/2005] [Accepted: 09/06/2005] [Indexed: 11/30/2022]
Abstract
Glass patterns--randomly positioned coherently orientated dipoles--create a strong sensation of oriented spatial structure. On the other hand, coherently oriented dipoles comprising dots of opposite polarity ("anti-Glass" patterns) have no distinct spatial structure and are very hard to distinguish from random noise. Although anti-Glass patterns have no obvious spatial structure themselves, their presence can destroy the structure created by Glass patterns. We measured the strength of this effect for both static and dynamic Glass patterns, and showed that anti-Glass patterns can raise thresholds for Glass patterns by a factor of 2-4, increasing with density. The dependence on density suggests that the interactions occur at a local level. When the Glass and anti-Glass dipoles were confined to alternate strips (in translational and circular Glass patterns), the detrimental effect occurred for stripe widths less than about 1.5 degrees, but had little effect for larger stripe widths, reinforcing the suggestion that the interaction occurred over a limited spatial extent. The extent of spatial interaction was much less than that for spatial summation of these patterns, at least 30 degrees under matched experimental conditions. The results suggest two stages of analysis for Glass patterns, an early stage of limited spatial extent where orientation is extracted, and a later stage that sums these orientation signals.
Collapse
Affiliation(s)
- David Burr
- Istituto di Neuroscienze del CNR, Pisa 56100, Italy.
| | | |
Collapse
|
36
|
Ditchfield JA, McKendrick AM, Badcock DR. Processing of global form and motion in migraineurs. Vision Res 2005; 46:141-8. [PMID: 16257032 DOI: 10.1016/j.visres.2005.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/26/2022]
Abstract
Previous studies have identified anomalies of cortical visual processing in migraineurs that appear to extend beyond V1. Migraineurs respond differently than controls to transcranial magnetic stimulation of V5, and can demonstrate impairments of global motion processing. This study was designed to assess the integrity of intermediate stages of both motion and form processing in people with migraine. We measured the ability to integrate local orientation information into a global form percept, and to integrate local motion information into a global motion percept. Control subjects performed significantly better than migraineurs on both tasks, suggesting a diffuse visual cortical processing anomaly in migraine.
Collapse
Affiliation(s)
- Jennifer A Ditchfield
- School of Psychology, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
37
|
Wilson JA, Switkes E. Integration of differing chromaticities in early and midlevel spatial vision. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2005; 22:2169-81. [PMID: 16277286 DOI: 10.1364/josaa.22.002169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using Glass patterns composed of isoluminant dots we have investigated the segregation and integration of chromatic information by the visual system. By measuring pattern detection when the chromaticities of the two elements forming a dot pair are varied (intradipole variation), we characterize integration at an early level of spatial processing. By measuring pattern detection for dot pairs where the within-pair chromaticity is the same but the among-pair chromaticities are varied (interdipole variation) we characterize integration and segregation for a more global, midlevel, spatial processing mechanism. Using isoluminant patterns in which all dots have the same chromaticity, we find that (i) detection thresholds are similar to those for luminance-defined dots, and (ii) an equivalent-contrast metric approximately equates thresholds for various chromaticities, including those along both the cardinal and the intermediate axes of an opponent-color space. When intradipole chromaticity is varied we observe that (i) the ability of visual mechanisms to extract oriented dot pairs decreases with increasing chromaticity differences, and (ii) average bandwidths are similar for cardinal and intermediate directions. For pattern detection with interdipole chromatic variation the visual system does not segregate noise dot pairs from correlated dot pairs on the basis of chromatic differences alone, and appears to integrate oriented dot pairs of differing chromaticities in forming a global percept, even for large color differences. Isoluminant Glass patterns with translational and concentric correlations give similar results. The results are compared with those obtained for contrast variation in luminance-defined Glass Patterns and are discussed in terms of current multistage models of color processing by the visual system.
Collapse
Affiliation(s)
- J Anthony Wilson
- Department of Psychology, University of California at Berkeley, California 94720, USA
| | | |
Collapse
|
38
|
Khuu SK, Hayes A. Glass-pattern detection is tuned for stereo-depth. Vision Res 2005; 45:2461-9. [PMID: 15979467 DOI: 10.1016/j.visres.2005.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 02/24/2005] [Accepted: 02/26/2005] [Indexed: 11/23/2022]
Abstract
We investigated the role of disparity information in the detection of global form. Glass patterns, which allow insight into processing at both local and global stages of form analysis, were used as stimuli. We determined how detection of concentric Glass patterns is affected by a disparity difference introduced between partner dots forming local dipoles (Experiment 1), and how detection is affected by the addition of randomly oriented dot-pairs (noise dots) at crossed and uncrossed disparities (Experiment 2). The first experiment showed that detection thresholds increased when partner dots were separated in depth at disparities greater than approximately 17 min arc; the second experiment showed that noise dots disrupted the detection of form if they were presented at disparities of between approximately +/-20 min arc from the Glass pattern's presentation depth plane. Our findings suggest that disparity information plays a role in the recovery of the image structure and, importantly, local and global form mechanisms were found to be selective for a small range of stereo-depths. We discuss the findings of our study in the light of current evidence indicating that a common neural substrate is responsible for the analysis of form and binocular disparity.
Collapse
Affiliation(s)
- Sieu K Khuu
- Department of Psychology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | | |
Collapse
|
39
|
Clifford CWG, Weston E. Aftereffect of adaptation to Glass patterns. Vision Res 2005; 45:1355-63. [PMID: 15743606 DOI: 10.1016/j.visres.2004.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/21/2004] [Accepted: 12/24/2004] [Indexed: 10/25/2022]
Abstract
Our visual systems constantly adapt their representation of the environment to match the prevailing input. Adaptation phenomena provide striking examples of perceptual plasticity and offer valuable insight into the mechanisms of sensory coding. Here, we describe an aftereffect of adaptation to a spatially structured image whereby an unstructured test stimulus takes on illusory structure locally perpendicular to that of the adaptor. Objective measurement of the strength of the aftereffect for different patterns suggests a neural locus of adaptation prior to the extraction of complex form in the visual processing hierarchy, probably at the level of primary visual cortex. This view is supported by further experiments showing that the aftereffect exhibits partial interocular transfer but complete transfer across opposite contrast polarities. However, the aftereffect does show weak position invariance, suggesting that adaptation at higher levels of the visual system may also contribute to the effect.
Collapse
Affiliation(s)
- Colin W G Clifford
- Colour, Form and Motion Lab, Visual Perception Unit, Department of Psychology, School of Psychology, The University of Sydney, Griffith Taylor Building (A19), Sydney, NSW 2006, Australia.
| | | |
Collapse
|