1
|
Power D, Elstrott J, Schallek J. Photoreceptor loss does not recruit neutrophils despite strong microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595864. [PMID: 38854151 PMCID: PMC11160676 DOI: 10.1101/2024.05.25.595864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In response to central nervous system (CNS) injury, tissue resident immune cells such as microglia and circulating systemic neutrophils are often first responders. The degree to which these cells interact in response to CNS damage is poorly understood, and even less so, in the neural retina which poses a challenge for high resolution imaging in vivo. In this study, we deploy fluorescence adaptive optics scanning light ophthalmoscopy (AOSLO) to study fluorescent microglia and neutrophils in mice. We simultaneously track immune cell dynamics using label-free phase-contrast AOSLO at micron-level resolution. Retinal lesions were induced with 488 nm light focused onto photoreceptor (PR) outer segments. These lesions focally ablated PRs, with minimal collateral damage to cells above and below the plane of focus. We used in vivo (AOSLO, SLO and OCT) imaging to reveal the natural history of the microglial and neutrophil response from minutes-to-months after injury. While microglia showed dynamic and progressive immune response with cells migrating into the injury locus within 1-day after injury, neutrophils were not recruited despite close proximity to vessels carrying neutrophils only microns away. Post-mortem confocal microscopy confirmed in vivo findings. This work illustrates that microglial activation does not recruit neutrophils in response to acute, focal loss of photoreceptors, a condition encountered in many retinal diseases.
Collapse
|
2
|
Motoyoshi A, Saitoh F, Iida T, Fujieda H. Nestin Regulates Müller Glia Proliferation After Retinal Injury. Invest Ophthalmol Vis Sci 2023; 64:8. [PMID: 37934159 PMCID: PMC10631512 DOI: 10.1167/iovs.64.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023] Open
Abstract
Purpose The proliferative and neurogenic potential of retinal Müller glia after injury varies widely across species. To identify the endogenous mechanisms regulating the proliferative response of mammalian Müller glia, we comparatively analyzed the expression and function of nestin, an intermediate filament protein established as a neural stem cell marker, in the mouse and rat retinas after injury. Methods Nestin expression in the retinas of C57BL/6 mice and Wistar rats after methyl methanesulfonate (MMS)-induced photoreceptor injury was examined by immunofluorescence and Western blotting. Adeno-associated virus (AAV)-delivered control and nestin short hairpin RNA (shRNA) were intravitreally injected to rats and Müller glia proliferation after MMS-induced injury was analyzed by BrdU incorporation and immunofluorescence. Photoreceptor removal and microglia/macrophage infiltration were also analyzed by immunofluorescence. Results Rat Müller glia re-entered the cell cycle and robustly upregulated nestin after injury whereas Müller glia proliferation and nestin upregulation were not observed in mice. In vivo knockdown of nestin in the rat retinas inhibited Müller glia proliferation while transiently stimulating microglia/macrophage infiltration and phagocytic removal of dead photoreceptors. Conclusions Our findings suggest a critical role for nestin in the regulation of Müller glia proliferation after retinal injury and highlight the importance of cross species analysis to identify the molecular mechanisms regulating the injury responses of the mammalian retina.
Collapse
Affiliation(s)
- Aya Motoyoshi
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Fuminori Saitoh
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroki Fujieda
- Department of Anatomy and Neurobiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
3
|
Age- and cell cycle-related expression patterns of transcription factors and cell cycle regulators in Müller glia. Sci Rep 2022; 12:19584. [PMID: 36379991 PMCID: PMC9666513 DOI: 10.1038/s41598-022-23855-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian Müller glia express transcription factors and cell cycle regulators essential for the function of retinal progenitors, indicating the latent neurogenic capacity; however, the role of these regulators remains unclear. To gain insights into the role of these regulators in Müller glia, we analyzed expression of transcription factors (Pax6, Vsx2 and Nfia) and cell cycle regulators (cyclin D1 and D3) in rodent Müller glia, focusing on their age- and cell cycle-related expression patterns. Expression of Pax6, Vsx2, Nfia and cyclin D3, but not cyclin D1, increased in Müller glia during development. Photoreceptor injury induced cell cycle-associated increase of Vsx2 and cyclin D1, but not Pax6, Nfia, and cyclin D3. In dissociated cultures, cell cycle-associated increase of Pax6 and Vsx2 was observed in Müller glia from P10 mice but not from P21 mice. Nfia levels were highly correlated with EdU incorporation suggesting their activation during S phase progression. Cyclin D1 and D3 were transiently upregulated in G1 phase but downregulated after S phase entry. Our findings revealed previously unknown links between cell cycle progression and regulator protein expression, which likely affect the cell fate decision of proliferating Müller glia.
Collapse
|
4
|
Lechner J, Medina RJ, Lois N, Stitt AW. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina. Stem Cell Res Ther 2022; 13:388. [PMID: 35907890 PMCID: PMC9338609 DOI: 10.1186/s13287-022-03073-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic retinopathy, a major complication of diabetes mellitus, is a leading cause of sigh-loss in working age adults. Progressive loss of integrity of the retinal neurovascular unit is a central element in the disease pathogenesis. Retinal ischemia and inflammatory processes drive interrelated pathologies such as blood retinal barrier disruption, fluid accumulation, gliosis, neuronal loss and/or aberrant neovascularisation. Current treatment options are somewhat limited to late-stages of the disease where there is already significant damage to the retinal architecture arising from degenerative, edematous and proliferative pathology. New preventive and interventional treatments to target early vasodegenerative and neurodegenerative stages of the disease are needed to ensure avoidance of sight-loss. MAIN BODY Historically, diabetic retinopathy has been considered a primarily microvascular disease of the retina and clinically it is classified based on the presence and severity of vascular lesions. It is now known that neurodegeneration plays a significant role during the pathogenesis. Loss of neurons has been documented at early stages in pre-clinical models as well as in individuals with diabetes and, in some, even prior to the onset of clinically overt diabetic retinopathy. Recent studies suggest that some patients have a primarily neurodegenerative phenotype. Retinal pigment epithelial cells and the choroid are also affected during the disease pathogenesis and these tissues may also need to be addressed by new regenerative treatments. Most stem cell research for diabetic retinopathy to date has focused on addressing vasculopathy. Pre-clinical and clinical studies aiming to restore damaged vasculature using vasoactive progenitors including mesenchymal stromal/stem cells, adipose stem cells, CD34+ cells, endothelial colony forming cells and induced pluripotent stem cell derived endothelial cells are discussed in this review. Stem cells that could replace dying neurons such as retinal progenitor cells, pluripotent stem cell derived photoreceptors and ganglion cells as well as Müller stem cells are also discussed. Finally, challenges of stem cell therapies relevant to diabetic retinopathy are considered. CONCLUSION Stem cell therapies hold great potential to replace dying cells during early and even late stages of diabetic retinopathy. However, due to the presence of different phenotypes, selecting the most suitable stem cell product for individual patients will be crucial for successful treatment.
Collapse
Affiliation(s)
- Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| | - Reinhold J Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Cha S, Ahn J, Jeong Y, Lee YH, Kim HK, Lee D, Yoo Y, Goo YS. Stage-Dependent Changes of Visual Function and Electrical Response of the Retina in the rd10 Mouse Model. Front Cell Neurosci 2022; 16:926096. [PMID: 35936494 PMCID: PMC9345760 DOI: 10.3389/fncel.2022.926096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022] Open
Abstract
One of the critical prerequisites for the successful development of retinal prostheses is understanding the physiological features of retinal ganglion cells (RGCs) in the different stages of retinal degeneration (RD). This study used our custom-made rd10 mice, C57BL/6-Pde6bem1(R560C)Dkl/Korl mutated on the Pde6b gene in C57BL/6J mouse with the CRISPR/Cas9-based gene-editing method. We selected the postnatal day (P) 45, P70, P140, and P238 as representative ages for RD stages. The optomotor response measured the visual acuity across degeneration stages. At P45, the rd10 mice exhibited lower visual acuity than wild-type (WT) mice. At P140 and older, no optomotor response was observed. We classified RGC responses to the flashed light into ON, OFF, and ON/OFF RGCs via in vitro multichannel recording. With degeneration, the number of RGCs responding to the light stimulation decreased in all three types of RGCs. The OFF response disappeared faster than the ON response with older postnatal ages. We elicited RGC spikes with electrical stimulation and analyzed the network-mediated RGC response in the rd10 mice. Across all postnatal ages, the spikes of rd10 RGCs were less elicited by pulse amplitude modulation than in WT RGCs. The ratio of RGCs showing multiple peaks of spike burst increased in older ages. The electrically evoked RGC spikes by the pulse amplitude modulation differ across postnatal ages. Therefore, degeneration stage-dependent stimulation strategies should be considered for developing retinal prosthesis and successful vision restoration.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Yong Hee Lee
- Department of Biochemistry, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Microbiology, Chungbuk National University School of Medicine, Cheongju, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon, South Korea
- *Correspondence: Yongseok Yoo,
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, South Korea
- Yong Sook Goo,
| |
Collapse
|
6
|
Cha S, Choi KE, Ahn J, Yoo M, Jeong Y, Kim SW, Goo YS. Electrical response of retinal ganglion cells in an N-methyl-N-nitrosourea-induced retinal degeneration porcine model. Sci Rep 2021; 11:24135. [PMID: 34921172 PMCID: PMC8683404 DOI: 10.1038/s41598-021-03439-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Retinal prosthesis is regarded as the treatment for vision restoration in the blind with retinal degeneration (RD) due to the loss of photoreceptors. A strategy for retinal prosthesis is to electrically activate surviving neurons. The retina’s response to electrical stimulation in a larger RD model has not been studied yet. Therefore, in this study, we investigated electrically evoked retinal responses in a previously validated N-methyl-N-nitrosourea (MNU)-induced porcine RD model. Electrically evoked responses were evaluated based on the number of retinal ganglion cell (RGC) spikes via multichannel recordings. Stimulation pulses were applied to degenerative and wild-type retinas with pulse modulation. Compared to wild-type retinas, degenerative retinas showed higher threshold values of pulse amplitude and pulse duration. The rate of increase in the number of RGC spikes relative to stimulus intensity was lower in degenerative retinas than in normal retinas. In severely degenerated retinas, few RGCs showed electrically evoked spikes. Our results suggest that the degenerative porcine retina requires a higher charge than the normal porcine retina. In the early stage of RD, it is easier to induce RGC spikes through electrical stimulation using retinal prosthesis; however, when the degeneration is severe, there may be difficulty recovering patient vision.
Collapse
Affiliation(s)
- Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Kwang-Eon Choi
- Department of Ophthalmology, Korea University College of Medicine, Seoul, 08308, Korea
| | - Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Minsu Yoo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Yurim Jeong
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea
| | - Seong-Woo Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, 08308, Korea.
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, 28644, Korea.
| |
Collapse
|
7
|
Insights on the Regeneration Potential of Müller Glia in the Mammalian Retina. Cells 2021; 10:cells10081957. [PMID: 34440726 PMCID: PMC8394255 DOI: 10.3390/cells10081957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Müller glia, the major glial cell types in the retina, maintain retinal homeostasis and provide structural support to retinal photoreceptors. They also possess regenerative potential that might be used for retinal repair in response to injury or disease. In teleost fish (such as zebrafish), the Müller glia response to injury involves reprogramming events that result in a population of proliferative neural progenitors that can regenerate the injured retina. Recent studies have revealed several important mechanisms for the regenerative capacity of Müller glia in fish, which may shed more light on the mechanisms of Müller glia reprogramming and regeneration in mammals. Mammalian Müller glia can adopt stem cell characteristics, and in response to special conditions, be persuaded to proliferate and regenerate, although their native regeneration potential is limited. In this review, we consider the work to date revealing the regenerative potential of the mammalian Müller glia and discuss whether they are a potential source for cell regeneration therapy in humans.
Collapse
|
8
|
Zhou Y, Zhou G. Alterations of Lipidomes in Rat Photoreceptor Degeneration Induced by N-Methyl-N-nitrosourea. Lipids 2021; 56:437-448. [PMID: 34058794 DOI: 10.1002/lipd.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
To investigate alterations of lipidomes in the progress of photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU) in a rat model, retinal lipid molecular species in adult Sprague-Dawley (SD) rats at 1, 3, and 7 days after MNU administration and age-matched controls were analyzed by the shotgun lipidomics technology. Moreover, total fatty acid levels in retinal, liver, and plasma samples of different groups were determined with gas chromatography. Generally, at day 1, the levels of ethanolamine plasmalogen species in retinas were markedly elevated after treatment with MNU, while the contents of other phospholipids and sphingolipids in the retina were not significantly changed than those of the control group. The compositions of almost all of unsaturated fatty acids in the retina increased significantly at day 1 after MNU administration. At day 7, the MNU treatment group has significant increases in lipid species in the retina. However, the majority of lipids containing docosahexaenoic acid (DHA, 22:6n-3) and docosapentaenoic acid (22:5n-6) declined, especially di-DHA phospholipids were dramatically reduced in the retina. In contrast, similar alterations did not occur in plasma or the liver after MNU treatment. These results suggested that at the early stage of photoreceptor degeneration, lipidome remodeling in the retina might involve protection of photoreceptor from apoptosis and continue their transduction of light. However, at the late stage of photoreceptor apoptosis, increases in comprehensive lipid species occurred, likely due to the myelination of the retina. Finally, the deficiency of DHA in photoreceptor degeneration could exacerbate the influence of myelination on retinal function. We further investigated the effects of unsaturated fatty acids on neuronal apoptosis. The preliminary experiments confirmed our observation from lipidomics analysis that unsaturated fatty acids can protect neurons from apoptosis. Collectively, our study suggests that increased levels of DHA should be protective from photoreceptor degeneration.
Collapse
Affiliation(s)
- Yunhua Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
10
|
Goel M, Dhingra NK. bFGF and insulin lead to migration of Müller glia to photoreceptor layer in rd1 mouse retina. Neurosci Lett 2021; 755:135936. [PMID: 33910061 DOI: 10.1016/j.neulet.2021.135936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Müller glia can act as endogenous stem cells and regenerate the missing neurons in the injured or degenerating retina in lower vertebrates. However, mammalian Müller glia, although can sometimes express stem cell markers and specific neuronal proteins in response to injury or degeneration, do not differentiate into functional neurons. We asked whether bFGF and insulin would stimulate the Müller glia to migrate, proliferate and differentiate into photoreceptors in rd1 mouse. We administered single or repeated (two or three) intravitreal injections of basic fibroblast growth factor (bFGF;200 μg) and insulin (2 μg) in 2-week-old rd1 mice. Müller glia were checked for proliferation, migration and differentiation using immunostaining. A single injection resulted within 5 days in a decrease in the numbers of Müller glia in the inner nuclear layer (INL) and a corresponding increase in the outer nuclear layer (ONL). The total number of Müller glia in the INL and ONL was unaltered, suggesting that they did not proliferate, but migrated from INL to ONL. However, maintaining the Müller cells in the ONL for two weeks or longer required repeated injections of bFGF and insulin. Interestingly, all Müller cells in the ONL expressed chx10, a stem cell marker. We did not find any immunolabeling for rhodopsin, m-opsin or s-opsin in the Müller glia in the ONL.
Collapse
Affiliation(s)
- Manvi Goel
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122051, India.
| | | |
Collapse
|
11
|
Zhang CJ, Ma Y, Jin ZB. The road to restore vision with photoreceptor regeneration. Exp Eye Res 2020; 202:108283. [PMID: 33010290 DOI: 10.1016/j.exer.2020.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/13/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.
Collapse
Affiliation(s)
- Chang-Jun Zhang
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
12
|
Tronov VA, Nekrasova EI. DNA Damage and p53 Restrict Proliferation of Müller Cells in the Mouse Retina in Response to the Influence of N-Methyl-N-Nitrosourea. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep 2020; 10:1488. [PMID: 32001733 PMCID: PMC6992786 DOI: 10.1038/s41598-020-58424-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/26/2019] [Indexed: 11/10/2022] Open
Abstract
Müller glia, the principal glial cell type in the retina, have the potential to reenter the cell cycle after retinal injury. In mammals, proliferation of Müller glia is followed by gliosis, but not regeneration of neurons. Retinal injury is also accompanied by phagocytic removal of degenerated cells. We here investigated the possibility that proliferation and gliosis of Müller glia and phagocytosis of degenerated cells may be regulated by the same molecular pathways. After N-methyl-N–nitrosourea-induced retinal injury, degenerated photoreceptors were eliminated prior to the infiltration of microglia/macrophages into the outer nuclear layer, almost in parallel with cell cycle reentry of Müller glia. Inhibition of microglia/macrophage activation with minocycline did not affect the photoreceptor clearance. Accumulation of lysosomes and rhodopsin-positive photoreceptor debris within the cytoplasm of Müller glia indicated that Müller glia phagocytosed most photoreceptor debris. Pharmacological inhibition of phosphatidylserine and Rac1, key regulators of the phagocytic pathway, prevented cell cycle reentry, migration, upregulation of glial fibrillary acidic protein, and phagocytic activity of Müller glia. These data provide evidence that phosphatidylserine and Rac1 may contribute to the crosstalk between different signaling pathways activated in Müller glia after injury.
Collapse
|
14
|
Ahmad I, Teotia P, Erickson H, Xia X. Recapitulating developmental mechanisms for retinal regeneration. Prog Retin Eye Res 2019; 76:100824. [PMID: 31843569 DOI: 10.1016/j.preteyeres.2019.100824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Degeneration of specific retinal neurons in diseases like glaucoma, age-related macular degeneration, and retinitis pigmentosa is the leading cause of irreversible blindness. Currently, there is no therapy to modify the disease-associated degenerative changes. With the advancement in our knowledge about the mechanisms that regulate the development of the vertebrate retina, the approach to treat blinding diseases through regenerative medicine appears a near possibility. Recapitulation of developmental mechanisms is critical for reproducibly generating cells in either 2D or 3D culture of pluripotent stem cells for retinal repair and disease modeling. It is the key for unlocking the neurogenic potential of Müller glia in the adult retina for therapeutic regeneration. Here, we examine the current status and potential of the regenerative medicine approach for the retina in the backdrop of developmental mechanisms.
Collapse
Affiliation(s)
- Iqbal Ahmad
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Pooja Teotia
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Erickson
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
15
|
Abstract
Retinal degeneration is a leading cause of untreatable blindness in the industrialised world. It is typically irreversible and there are few curative treatments available. The use of stem cells to generate new retinal neurons for transplantation purposes has received significant interest in recent years and is beginning to move towards clinical trials. However, such approaches are likely to be most effective for relatively focal areas of repair. An intriguing complementary approach is endogenous self-repair. Retinal cells from the ciliary marginal zone (CMZ), retinal pigment epithelium (RPE) and Müller glial cells (MG) have all been shown to play a role in retinal repair, typically in lower vertebrates. Among them, MG have received renewed interest, due to their distribution throughout (centre to periphery) the neural retina and their potential to re-acquire a progenitor-like state following retinal injury with the ability to proliferate and generate new neurons. Triggering these innate self-repair mechanisms represents an exciting therapeutic option in treating retinal degeneration. However, these cells behave differently in mammalian and non-mammalian species, with a considerably restricted potential in mammals. In this short review, we look at some of the recent progress made in our understanding of the signalling pathways that underlie MG-mediated regeneration in lower vertebrates, and some of the challenges that have been revealed in our attempts to reactivate this process in the mammalian retina.
Collapse
Affiliation(s)
- Rahul Langhe
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
16
|
Peña JS, Robles D, Zhang S, Vazquez M. A Milled Microdevice to Advance Glia-Mediated Therapies in the Adult Nervous System. MICROMACHINES 2019; 10:mi10080513. [PMID: 31370352 PMCID: PMC6723365 DOI: 10.3390/mi10080513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/19/2019] [Accepted: 07/29/2019] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders affect millions of adults worldwide. Neuroglia have become recent therapeutic targets due to their reparative abilities in the recycling of exogenous neurotoxins and production of endogenous growth factors for proper functioning of the adult nervous system (NS). Since neuroglia respond effectively to stimuli within in vivo environments on the micron scale, adult glial physiology has remarkable synergy with microscale systems. While clinical studies have begun to explore the reparative action of Müller glia (MG) of the visual system and Schwann Cells (ShC) of the peripheral NS after neural injury, few platforms enable the study of intrinsic neuroglia responses to changes in the local microenvironment. This project developed a low-cost, benchtop-friendly microfluidic system called the glia line system, or gLL, to advance the cellular study needed for emerging glial-based therapies. The gLL was fabricated using elastomeric kits coupled with a metal mold milled via conventional computer numerical controlled (CNC) machines. Experiments used the gLL to measure the viability, adhesion, proliferation, and migration of MG and ShC within scales similar to their respective in vivo microenvironments. Results illustrate differences in neuroglia adhesion patterns and chemotactic behavior significant to advances in regenerative medicine using implants and biomaterials, as well as cell transplantation techniques. Data showed highest survival and proliferation of MG and ShC upon laminin and illustrated a four-fold and two-fold increase of MG migration to dosage-dependent signaling from vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), respectively, as well as a 20-fold increase of ShC migration toward exogenous brain-derived neurotrophic factor (BDNF), compared to media control. The ability to quantify these biological parameters within the gLL offers an effective and reliable alternative to photolithography study neuroglia in a local environment ranging from the tens to hundreds of microns, using a low-cost and easily fabricated system.
Collapse
Affiliation(s)
- Juan S Peña
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Denise Robles
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Stephanie Zhang
- Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
17
|
Liu Y, Wang C, Su G. Cellular Signaling in Müller Glia: Progenitor Cells for Regenerative and Neuroprotective Responses in Pharmacological Models of Retinal Degeneration. J Ophthalmol 2019; 2019:5743109. [PMID: 31016037 PMCID: PMC6444254 DOI: 10.1155/2019/5743109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of visual impairment or blindness. There are many therapies for delaying the progression of vision loss but no curative strategies currently. Stimulating intrinsic neuronal regeneration is a potential approach to therapy in retinal degenerative diseases. In contrast to stem cells, as embryonic/pluripotent stem cell-derived retinal progenitor cell or mesenchymal stem cells, Müller glia provided an endogenous cellular source for regenerative therapy in the retina. Müller glia are a major component of the retina and considerable evidence suggested these cells can be induced to produce the lost neurons in several species. Understanding the specific characteristic of Müller glia to generate lost neurons will inspire an attractive and alternative therapeutic strategy for treating visual impairment with regenerative research. This review briefly provides the different signal transduction mechanisms which are underlying Müller cell-mediated neuroprotection and neuron regeneration and discusses recent advances about regeneration from Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Yang Liu
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Chenguang Wang
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| |
Collapse
|
18
|
Devoldere J, Peynshaert K, De Smedt SC, Remaut K. Müller cells as a target for retinal therapy. Drug Discov Today 2019; 24:1483-1498. [PMID: 30731239 DOI: 10.1016/j.drudis.2019.01.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
Müller cells are specialized glial cells that span the entire retina from the vitreous cavity to the subretinal space. Their functional diversity and unique radial morphology render them particularly interesting targets for new therapeutic approaches. In this review, we reflect on various possibilities for selective Müller cell targeting and describe how some of their cellular mechanisms can be used for retinal neuroprotection. Intriguingly, cross-species investigation of their properties has revealed that Müller cells also have an essential role in retinal regeneration. Although many questions regarding this subject remain, it is clear that Müller cells have unique characteristics that make them suitable targets for the prevention and treatment of numerous retinal diseases.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Zhang S, Zhang S, Gong W, Zhu G, Wang S, Wang Y, Halim M, Wang K, Zhou G, Liu Q. Müller Cell Regulated Microglial Activation and Migration in Rats With N-Methyl- N-Nitrosourea-Induced Retinal Degeneration. Front Neurosci 2018; 12:890. [PMID: 30559643 PMCID: PMC6287671 DOI: 10.3389/fnins.2018.00890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
During the pathogenesis of retinitis pigmentosa (RP), the roles of retinal microglial cells after activation have not been fully elucidated. Herein, experimental RP was induced in Sprague Dawley rats by intraperitoneal injection of N-methyl-N-nitrosourea (MNU) at 50 mg/kg, and the effects of MNU on the retinas were evaluated, respectively, by retinal histology and electroretinography recordings at serial time points. Time-dependent and gradual loss of photoreceptor cells, disrupted arrangement of the outer nuclear layer (ONL), and significant reductions in both a-wave and b-wave amplitudes were observed. Morphology changes were observed in retinal microglial cells; meanwhile, with time, the number of Iba1-positive microglia and their infiltration into the ONL gradually increased. Furthermore, physical interaction of microglial-Müller cell processes following microglial activation was observed after MNU injection. In addition, Müller cells increased CX3CL1 secretion, enhanced microglial cell migration, and upregulated the CX3CR1 expression of the latter. Our observations implied that, during the pathogenesis of RP by MNU, microglial cells exhibit a prominent morphology change and Müller cells can induce activated microglia infiltration by increasing secretion of the chemotaxis factor, CX3CL1, and promoting the migration of retinal microglial cells. This novel finding highlights a potential therapeutic target aimed at regulating the microglial response.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenqing Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guopei Zhu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songtao Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yalin Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai, China
| | - Michael Halim
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kaidi Wang
- Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
20
|
Comparison of Individual Retinal Layer Thicknesses after Epiretinal Membrane Surgery with or without Internal Limiting Membrane Peeling. J Ophthalmol 2018; 2018:1256781. [PMID: 30420914 PMCID: PMC6215557 DOI: 10.1155/2018/1256781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To compare changes in the retinal layer thickness and visual outcomes in patients undergoing epiretinal membrane (ERM) surgery with or without internal limiting membrane (ILM) peeling. Methods Seventy-six eyes of 76 patients who underwent ERM surgery from January 2013 to March 2015 at the Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea, were analyzed. While ERM removal with ILM peeling was performed in ILM peeling (P) group (n=39), ILM peeling was not performed in non-ILM peeling (NP) group (n=37). Retinal layer segmentation was performed using optical coherence tomography images. Individual retinal layer thicknesses before and at 6 months after ERM surgery were compared. The postoperative best-corrected visual acuity (BCVA) was also compared. Results In the P group, the thicknesses of retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) were significantly reduced. In the NP group, significant decreases in the RNFL, GCL, IPL, inner nuclear layer, and outer plexiform layer were observed. The P group manifested a greater mean postoperative GCL (35.56 ± 1.53 µm vs 29.86 ± 2.16 µm; p=0.033) and less loss of GCL (−10.26 ± 1.91 µm vs −19.86 ± 2.74 µm; p=0.004) compared to the NP group. No statistically significant differences were observed when comparing the changes in BCVA. Conclusions This study demonstrates that ILM peeling for ERM surgery may result in better preservation of GCL compared to no ILM peeling.
Collapse
|
21
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Abstract
Tadalafil (Cialis) is one of the most commonly used phosphodiesterase type5 (PDE5) inhibitors. This work aimed to analyze the histological and ultrastructural changes provoked by chronic tadalafil administration in the rat retina, correlate between such changes and PDE5 immunoexpression and to evaluate the possible reversibility of these changes. Thirty Sprague Dawley male rats were randomly distributed into 3 groups. Control group; given 1 ml distilled water daily for 6 weeks. Tadalafil group; given tadalafil in a daily dose of 2.6 mg/kg for 6 weeks. Withdrawal group; given tadalafil 2.6 mg/kg daily for 6 week followed by a withdrawal period of 4 weeks. Retinal specimens were prepared for histological, ultrastructural and immunohistochemical study using anti-PDE5 and anti-Bcl-2 antibodies. Morphometric and statistical studies were performed. Tadalafil group displayed a significant reduction in retinal thickness, diminished cell population of outer and inner nuclear layers, dilated blood capillaries and a significant decline in the number of ganglion cells. Significant reductions of both PDE5 and Bcl-2 immunoexpression were observed. At the ultrastructural level, the photoreceptors showed spacing of outer segments and disorganized membranous discs. Retinal neurons showed ultrastructural degenerative changes in the form of shrunken irregular nuclei, dilated rER, and disrupted mitochondria. Withdrawal group revealed preservation of histological structure and partial restoration of retinal thickness, retinal cells ultrastructure, and PDE5 and Bcl-2 immunoexpressions. In conclusion, chronic use of tadalafil could induce reversible apoptotic and degenerative changes in retinal neurons due to its inhibitory effect on PDE5 expression which affects the metabolism and viability of retinal cells.
Collapse
|
23
|
Oh TW, Do HJ, Kim KY, Park KI, Ma JY. Leaves of Acer palmatum thumb. Rescues N-ethyl-N-nitrosourea (ENU)-Induced retinal degeneration in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:51-55. [PMID: 29655697 DOI: 10.1016/j.phymed.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the East Asia, the genus Acer (Aceraceae) is a herbal medicine that is used to treat various diseases, including hemostasis, hepatic disorders, traumatic bleeding and poor eyesight. However, the effects of Acer palmatum thumb. on retinal degeneration are unknown. AIM In this study, we investigated whether Acer palmatum thumb.ethanol extract (KIOM-2015E) can protect eyes from retinal degeneration. Our research investigated whether KIOM-2015E could have a protective effect in the retinal degenerating mouse model induced by N-ethyl-N-nitrosourea (ENU). MATERIALS AND METHODS Retinal degeneration was induced by a single intraperitoneal injection of ENU in ICR mice. KIOM-2015E (100, 200 mg/kg) was orally administered once per day. The eyeballs were embedded and lysed after drug administration to examine the histological changed and protein expression levels. RESULTS The ENU-induced retinal degeneration model exhibited increased photoreceptor cell death and a loss of the outer nuclear layer. Additionally, the expression of PKCα and OPN1SW was reduced, and that of GFAP and Nestin was increased in ENU-treated retinal tissues. CONCLUSION KIOM-2015E treatment ameliorated the ENU-induced retinal degeneration. KIOM-2015E prevents ENU-induced retinal degeneration by modulating protein expression and the thickness of the outer nuclear layer in the retina.
Collapse
Affiliation(s)
- Tae Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Hyun Ju Do
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kwang-Youn Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kwang Il Park
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Jin Yeul Ma
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
24
|
Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP. Endogenous Mobilization of Bone-Marrow Cells Into the Murine Retina Induces Fusion-Mediated Reprogramming of Müller Glia Cells. EBioMedicine 2018. [PMID: 29525572 PMCID: PMC5952225 DOI: 10.1016/j.ebiom.2018.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Müller glial cells (MGCs) represent the most plastic cell type found in the retina. Following injury, zebrafish and avian MGCs can efficiently re-enter the cell cycle, proliferate and generate new functional neurons. The regenerative potential of mammalian MGCs, however, is very limited. Here, we showed that N-methyl-d-aspartate (NMDA) damage stimulates murine MGCs to re-enter the cell cycle and de-differentiate back to a progenitor-like stage. These events are dependent on the recruitment of endogenous bone marrow cells (BMCs), which, in turn, is regulated by the stromal cell-derived factor 1 (SDF1)-C-X-C motif chemokine receptor type 4 (CXCR4) pathway. BMCs mobilized into the damaged retina can fuse with resident MGCs, and the resulting hybrids undergo reprogramming followed by re-differentiation into cells expressing markers of ganglion and amacrine neurons. Our findings constitute an important proof-of-principle that mammalian MGCs retain their regenerative potential, and that such potential can be activated via cell fusion with recruited BMCs. In this perspective, our study could contribute to the development of therapeutic strategies based on the enhancement of mammalian endogenous repair capabilities. Endogenous bone marrow cells migrate into NMDA-damaged murine retinae and fuse with retinal Müller glial cells (MGCs). MGCs can be reprogrammed to retinal progenitors to then differentiate into ganglion and amacrine neurons. Modulation of the SDF1/CXCR4 pathway regulates BMC migration, BMC-MGC fusion, and MGC reprogramming.
Retinal degeneration is present in a large and heterogeneous group of debilitating diseases, often not curable. Cell therapy represents an interesting approach to regenerate injured retinal tissue. However, it comes with some hurdles in terms of engraftment and differentiation of the transplanted cells. Here, we reported that murine Müller glia cells can be converted into retinal neurons after fusion with endogenous bone marrow cells. The efficiency of this mechanism can be enhanced by perturbation of the SDF1/CXCR4 signaling pathway. Our study provides an important proof-of-principle that the limited endogenous regeneration capability of mammals can be enhanced by modulation of specific signaling pathways.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; Universitat de Barcelona (UB), Barcelona, Spain
| | - Giacoma Simonte
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Sanges
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.; ICREA, Barcelona, Spain..
| |
Collapse
|
25
|
Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B. Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas. Cell Rep 2017; 17:165-178. [PMID: 27681429 DOI: 10.1016/j.celrep.2016.08.078] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022] Open
Abstract
In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription. Deletion of Lin28 abolishes β-catenin-mediated effects on MG proliferation, and Lin28 gene transfer stimulates MG proliferation. We further demonstrate that let-7 miRNAs are critically involved in Wnt/Lin28-regulated MG proliferation. Intriguingly, a subset of cell-cycle-reactivated MGs express markers for amacrine cells. Together, these results reveal a key role of Wnt-Lin28-let7 miRNA signaling in regulating proliferation and neurogenic potential of MGs in the adult mammalian retina.
Collapse
Affiliation(s)
- Kai Yao
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suo Qiu
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - William D Snider
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David V Schaffer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, Bioengineering, Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
26
|
Conedera FM, Arendt P, Trepp C, Tschopp M, Enzmann V. Müller Glia Cell Activation in a Laser-induced Retinal Degeneration and Regeneration Model in Zebrafish. J Vis Exp 2017. [PMID: 29155720 DOI: 10.3791/56249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A fascinating difference between teleost and mammals is the lifelong potential of the teleost retina for retinal neurogenesis and regeneration after severe damage. Investigating the regeneration pathways in zebrafish might bring new insights to develop innovative strategies for the treatment of retinal degenerative diseases in mammals. Herein, we focused on the induction of a focal lesion to the outer retina in adult zebrafish by means of a 532 nm diode laser. A localized injury allows investigating biological processes that take place during retinal degeneration and regeneration directly at the area of damage. Using non-invasive optical coherence tomography (OCT), we were able to define the location of the damaged area and monitor subsequent regeneration in vivo. Indeed, OCT imaging produces high-resolution, cross-sectional images of the zebrafish retina, providing information which was previously only available with histological analyses. In order to confirm the data from real-time OCT, histological sections were performed and regenerative response after the induction of the retinal injury was investigated by immunohistochemistry.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Ophthalmology, University Hospital of Bern, University of Bern; Department of Clinical Research, University of Bern; Graduate School for Cellular and Biomedical Sciences, University of Bern
| | - Petra Arendt
- Department of Ophthalmology, University Hospital of Bern, University of Bern
| | - Carolyn Trepp
- Department of Ophthalmology, University Hospital of Bern, University of Bern; Department of Clinical Research, University of Bern; Graduate School for Cellular and Biomedical Sciences, University of Bern
| | - Markus Tschopp
- Department of Ophthalmology, University Hospital of Bern, University of Bern
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, University of Bern; Department of Clinical Research, University of Bern;
| |
Collapse
|
27
|
Abstract
Retinal Müller glial cells have been shown to undergo reactive gliosis in a variety of retinal diseases. Upregulation of glial fibrillary acidic protein (GFAP) is a hallmark of Müller cell activation. Reactive gliosis after retinal detachment or ischemia/reperfusion is characterized by hypertrophy and downregulation of inwardly rectifying K+ (Kir) currents. However, this kind of physiological alteration could not be detected in slowly progressing retinal degenerations. The photoreceptor toxin N-methyl-N-nitrosourea (MNU) leads to the rapid loss of cells in the outer nuclear layer and subsequent Müller cell activation. Here, we investigated whether Müller cells from MNU-treated mice exhibit reactive gliosis. We found that Müller cells showed increased GFAP expression and increased membrane capacitance, indicating hypertrophy. Membrane potential and Kir channel-mediated K+ currents were not significantly altered whereas Kir4.1 mRNA expression and Kir-mediated inward current densities were markedly decreased. This suggests that MNU-induced Müller cell gliosis is characterized by plasma membrane increase without alteration in the membrane content of Kir channels. Taken together, our findings show that Müller cells of MNU-treated mice are reactive and respond with a form of gliosis which is characterized by cellular hypertrophy but no changes in Kir current amplitudes.
Collapse
|
28
|
Gu D, Wang S, Zhang S, Zhang P, Zhou G. Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep 2017; 16:7993-8002. [PMID: 28983586 PMCID: PMC5779882 DOI: 10.3892/mmr.2017.7652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Specification of distinct cell types from Müller glial cells is key to the potential application of endogenous repair in retinal regeneration. Sonic hedgehog (SHH) has been established as a potent mitogen for rat Müller glial cells, which also induces Müller glial cells to dedifferentiate and adopt the phenotype of rod photoreceptors. The present study investigated the effects of purmorphamine, a small molecule that activates the SHH‑pathway, in the proliferation, dedifferentiation and transdifferentiation of Müller glial cells, as determined by several methods including immunofluorescence, polymerase chain reaction and western blotting. It was demonstrated that it may be able to replace SHH for the regeneration of retinal neurons. Purmorphamine was revealed to stimulate the proliferation of Müller glial cells by increasing the expression of cyclin D1 and cyclin D3. In addition, purmorphamine‑treated Müller glial cells were induced to dedifferentiate by inducing the expression of progenitor‑specific markers; subsequently differentiating into rod‑like photoreceptors. Intraocular injection of purmorphamine promoted the activation of Müller glial cells, and in turn, the production of rod‑like photoreceptors in acute damaged retina. These results suggested that the endogenous neurogenic capacity of retinal Müller glial cells may be enhanced by this small molecular agonist of the SHH signaling pathway.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Songtao Wang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shuai Zhang
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai 200032, P.R. China
| | - Peng Zhang
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Institute of Acupuncture Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
29
|
Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: Could material transfer distort conclusions? Dev Dyn 2017. [PMID: 28643368 DOI: 10.1002/dvdy.24535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, QC, Canada.,Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Ng Chi Kei J, Currie PD, Jusuf PR. Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression. Neural Dev 2017; 12:12. [PMID: 28705258 PMCID: PMC5508679 DOI: 10.1186/s13064-017-0089-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Regeneration of neurons in the central nervous system is poor in humans. In other vertebrates neural regeneration does occur efficiently and involves reactivation of developmental processes. Within the neural retina of zebrafish, Müller glia are the main stem cell source and are capable of generating progenitors to replace lost neurons after injury. However, it remains largely unknown to what extent Müller glia and neuron differentiation mirror development. METHODS Following neural ablation in the zebrafish retina, dividing cells were tracked using a prolonged labelling technique. We investigated to what extent extrinsic feedback influences fate choices in two injury models, and whether fate specification follows the histogenic order observed in development. RESULTS By comparing two injury paradigms that affect different subpopulations of neurons, we found a dynamic adaptability of fate choices during regeneration. Both injuries followed a similar time course of cell death, and activated Müller glia proliferation. However, these newly generated cells were initially biased towards replacing specifically the ablated cell types, and subsequently generating all cell types as the appropriate neuron proportions became re-established. This dynamic behaviour has implications for shaping regenerative processes and ensuring restoration of appropriate proportions of neuron types regardless of injury or cell type lost. CONCLUSIONS Our findings suggest that regenerative fate processes are more flexible than development processes. Compared to development fate specification we observed a disruption in stereotypical birth order of neurons during regeneration Understanding such feedback systems can allow us to direct regenerative fate specification in injury and diseases to regenerate specific neuron types in vivo.
Collapse
Affiliation(s)
- Jeremy Ng Chi Kei
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Peter David Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patricia Regina Jusuf
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
31
|
Ackermann P, Brachert M, Albrecht P, Ringelstein M, Finis D, Geerling G, Aktas O, Guthoff R. Alterations of the outer retina in non-arteritic anterior ischaemic optic neuropathy detected using spectral-domain optical coherence tomography. Clin Exp Ophthalmol 2017; 45:496-508. [DOI: 10.1111/ceo.12914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Philipp Ackermann
- Department of Ophthalmology; University of Düsseldorf; Düsseldorf Germany
| | - Maike Brachert
- Department of Ophthalmology; University of Düsseldorf; Düsseldorf Germany
| | - Philipp Albrecht
- Department of Neurology; University of Düsseldorf; Düsseldorf Germany
| | | | - David Finis
- Department of Ophthalmology; University of Düsseldorf; Düsseldorf Germany
| | - Gerd Geerling
- Department of Ophthalmology; University of Düsseldorf; Düsseldorf Germany
| | - Orhan Aktas
- Department of Neurology; University of Düsseldorf; Düsseldorf Germany
| | - Rainer Guthoff
- Department of Ophthalmology; University of Düsseldorf; Düsseldorf Germany
| |
Collapse
|
32
|
Schäfer P, Karl MO. Prospective purification and characterization of Müller glia in the mouse retina regeneration assay. Glia 2017; 65:828-847. [PMID: 28220544 DOI: 10.1002/glia.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/06/2023]
Abstract
Reactive gliosis is an umbrella term for various glia functions in neurodegenerative diseases and upon injury. Specifically, Müller glia (MG) in some species readily regenerate retinal neurons to restore vision loss after insult, whereas mammalian MG respond by reactive gliosis-a heterogeneous response which frequently includes cell hypertrophy and proliferation. Limited regeneration has been stimulated in mammals, with a higher propensity in young MG, and in vitro compared to in vivo, but the underlying processes are unknown. To facilitate studies on the mechanisms regulating and limiting glia functions, we developed a strategy to purify glia and their progeny by fluorescence-activated cell sorting. Dual-transgenic nuclear reporter mice, which label neurons and glia with red and green fluorescent proteins, respectively, have enabled MG enrichment up to 93% purity. We applied this approach to MG in a mouse retina regeneration ex vivo assay. Combined cell size and cell cycle analysis indicates that most MG hypertrophy and a subpopulation proliferates which, over time, become even larger in cell size than the ones that do not proliferate. MG undergo timed differential genomic changes in genes controlling stemness and neurogenic competence; and glial markers are downregulated. Genes that are potentially required for, or associated with, regeneration and reactive gliosis are differentially regulated by retina explant culture time, epidermal growth factor stimulation, and animal age. Thus, MG enrichment facilitates cellular and molecular studies which, in combination with the mouse retina regeneration assay, provide an experimental approach for deciphering mechanisms that possibly regulate reactive gliosis and limit regeneration in mammals.
Collapse
Affiliation(s)
- Patrick Schäfer
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| | - Mike O Karl
- TU Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstr. 107, Dresden, 01307, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Arnoldstr. 13, Dresden, 01307, Germany
| |
Collapse
|
33
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
34
|
Moon CH, Cho H, Kim YK, Park TK. Nestin Expression in the Adult Mouse Retina with Pharmaceutically Induced Retinal Degeneration. J Korean Med Sci 2017; 32:343-351. [PMID: 28049248 PMCID: PMC5220003 DOI: 10.3346/jkms.2017.32.2.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/09/2016] [Indexed: 11/25/2022] Open
Abstract
The present study investigated the temporal pattern and cellular localization of nestin in the adult mouse retina with pharmaceutically induced retinal degeneration using N-methyl-N-nitrosourea (MNU). After a single intraperitoneal injection of MNU in 8-week-old C57BL/6 mice, the animals were sacrificed at 1, 3, 5, 7, and 21 days (n = 6, in each stage). The eyes were examined by means of immunohistochemical tests using nestin, ionized calcium-binding adaptor molecule (Iba-1), CD11b, F4/80, and glial fibrillary acidic protein (GFAP). Western blot analysis and manual cell counting were performed for quantification. Nestin expression was increased after MNU administration. Nestin+/Iba-1+ cells were migrated into outer nuclear layer (ONL) and peaked at day 3 post injection (PI). Nestin+/CD11b+ cells were also mainly identified in ONL at day 3 PI and peaked at day 5. Nestin+/F4/80+ cells were shown in the subretinal space and peaked at day 3 PI. Nestin+/GFAP+ cells were distinctly increased at day 1 PI and peaked at day 5 PI. The up-regulation of nestin expression after MNU administration in adult mouse retinal microglia, and monocyte/macrophage suggests that when retinal degeneration progresses, these cells may revert to a more developmentally immature state. Müller cells also showed reactive gliosis and differentiational changes.
Collapse
Affiliation(s)
- Chan Hee Moon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Heeyoon Cho
- Department of Ophthalmology, Hanyang University Guri Hospital, Guri, Korea
| | - Yoon Kyung Kim
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
35
|
Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina. Stem Cells Int 2017; 2017:1610691. [PMID: 28194183 PMCID: PMC5282447 DOI: 10.1155/2017/1610691] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.
Collapse
|
36
|
Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta 2016; 464:160-164. [PMID: 27876464 DOI: 10.1016/j.cca.2016.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022]
Abstract
Müller Stem cells to treat ocular diseases has triggered enthusiasm across all medical and scientific communities. Recent development in the field of stem cells has widened the prospects of applying cell based therapies to regenerate ocular tissues that have been irreversibly damaged by disease or injury. Ocular tissues such as the lens and the retina are now known to possess cell having remarkable regenerative abilities. Recent studies have shown that the Müller glia, a cell found in all vertebrate retinas, is the primary source of new neurons, and therefore are considered as the cellular basis for retinal regeneration in mammalian retinas. Here, we review the current status of retinal regeneration of the human eye by Müller stem cells. This review elucidates the current status of retinal regeneration by Müller stem cells, along with major retinal degenerative diseases where these stem cells play regenerative role in retinal repair and replacement.
Collapse
Affiliation(s)
- Annu Chohan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Kumar
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
37
|
Dysli C, Dysli M, Zinkernagel MS, Enzmann V. Effect of pharmacologically induced retinal degeneration on retinal autofluorescence lifetimes in mice. Exp Eye Res 2016; 153:178-185. [PMID: 27777124 DOI: 10.1016/j.exer.2016.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 01/26/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) was used to investigate retinal autofluorescence lifetimes in mouse models of pharmacologically induced retinal degeneration over time. Sodium iodate (NaIO3, 35 mg/kg intravenously) was used to induce retinal pigment epithelium (RPE) degeneration with subsequent loss of photoreceptors (PR) whereas N-methyl-N-nitrosourea (MNU, 45 mg/kg intraperitoneally) was employed for degeneration of the photoreceptor cell layer alone. All mice were measured at day 3, 7, 14, and 28 after the respective injection of NaIO3, MNU or NaCl (control). Fluorescence lifetime imaging was performed using a fluorescence lifetime imaging ophthalmoscope (Heidelberg Engineering, Heidelberg, Germany). Fluorescence was excited at 473 nm and fluorescence lifetimes were measured in a short and a long spectral channel (498-560 nm and 560-720 nm). Corresponding optical coherence tomography (OCT) images were consecutively acquired and histology was performed at the end of the experiments. Segmentation of OCT images and histology verified the cell type-specific degeneration process over time. Retinal autofluorescence lifetimes increased from day 3 to day 28 in mice after NaIO3 treatment. Finally, at day 28, fluorescence lifetimes were prolonged by 8% in the short and 61% in the long spectral channel compared to control animals (p = 0.21 and p = 0.004, respectively). In mice after MNU treatment, the mean retinal autofluorescence lifetimes were already decreased at day 3 and retinal lifetimes were finally shortened by 27% in the short and 51% in the long spectral channel at day 28 (p = 0.0028). In conclusion, degeneration of the RPE with subsequent photoreceptor degeneration by NaIO3 lead to longer mean fluorescence lifetimes of the retina compared to control mice, whereas during specific degeneration of the photoreceptor layer induced by MNU shorter lifetimes were measured. Therefore, short retinal fluorescence lifetimes may originate from the RPE and may be modified by the overlaying retinal layers.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Muriel Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
38
|
de Melo J, Clark BS, Blackshaw S. Multiple intrinsic factors act in concert with Lhx2 to direct retinal gliogenesis. Sci Rep 2016; 6:32757. [PMID: 27605455 PMCID: PMC5015061 DOI: 10.1038/srep32757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022] Open
Abstract
Müller glia (MG) are the principal glial cell type in the vertebrate retina. Recent work has identified the LIM homeodomain factor encoding gene Lhx2 as necessary for both Notch signaling and MG differentiation in late-stage retinal progenitor cells (RPCs). However, the extent to which Lhx2 interacts with other intrinsic regulators of MG differentiation is unclear. We investigated this question by investigating the effects of overexpression of multiple transcriptional regulators that are either known or hypothesized to control MG formation, in both wildtype and Lhx2-deficient RPCs. We observe that constitutively elevated Notch signaling, induced by N1ICD electroporation, inhibited gliogenesis in wildtype animals, but rescued MG development in Lhx2-deficient retinas. Electroporation of Nfia promoted the formation of cells with MG-like radial morphology, but did not drive expression of MG molecular markers. Plagl1 and Sox9 did not induce gliogenesis in wildtype animals, but nonetheless activated expression of the Müller marker P27Kip1 in Lhx2-deficient cells. Finally, Sox2, Sox8, and Sox9 promoted amacrine cell formation in Lhx2-deficient cells, but not in wildtype retinas. These findings demonstrate that overexpression of individual gliogenic factors typically regulates only a subset of characteristic MG markers, and that these effects are differentially modulated by Lhx2.
Collapse
Affiliation(s)
- Jimmy de Melo
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA
| | - Brian S Clark
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA
| | - Seth Blackshaw
- Johns Hopkins University School of Medicine, Solomon H. Snyder Department of Neuroscience, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Department of Ophthalmology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Center for Human Systems Biology, Baltimore, 21205, USA.,Johns Hopkins University School of Medicine, Institute for Cell Engineering, Baltimore, 21205, USA
| |
Collapse
|
39
|
Wilken MS, Reh TA. Retinal regeneration in birds and mice. Curr Opin Genet Dev 2016; 40:57-64. [PMID: 27379897 DOI: 10.1016/j.gde.2016.05.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Retinal regeneration from resident Müller glia cells is robust in teleost fish, but is severely limited in birds and mammals. After neurotoxic injury, chick Müller glia can proliferate, and activate neurogenic genes, but they display limited capacity to differentiate into neurons. Developmental signaling molecules enhance this process. Regeneration of retinal neurons in rodents is even more limited. However, studies show evidence of proliferation and neurogenic gene expression after injury, with stronger effects in rats than mice, and differences between mouse strains. Mitogenic growth factors and Wnt signaling potentiate the proliferative response, while misexpression of the proneural transcription factor, Ascl1, reprograms to generate neurons from Müller glial in vitro, and stimulates neuronal regeneration in young mice, in vivo.
Collapse
Affiliation(s)
- Matthew S Wilken
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States
| | - Thomas A Reh
- Department of Biological Structure, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
40
|
Katow H, Katow T, Yoshida H, Kiyomoto M, Uemura I. Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus. Front Zool 2016; 13:27. [PMID: 27313654 PMCID: PMC4910247 DOI: 10.1186/s12983-016-0159-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The swimming activity of sea urchin larvae is dependent on the ciliary band (CB) on the larval surface and is regulated by several neurotransmitters, including serotonin (5HT), dopamine, and γ-aminobutyric acid (GABA). However, the CB signal transmission mechanism remains unknown. The present study investigated the structural relationship between the CB and external signal receptors by immunohistochemical and transmission electron microscopic analyses of sea urchin, Hemicentrotus pulcherrimus, larvae. RESULTS Glutamate decarboxylase (GAD; GABA synthetase) was detected in a strand of multiple cells along the circumoral CB in 6-arm plutei. The GAD-expressing strand was closely associated with the CB on the oral ectoderm side. The ciliary band-associated strand (CBAS) also expressed the 5HT receptor (5HThpr) and encephalopsin (ECPN) throughout the cytoplasm and comprised 1- to 2-μm diameter axon-like long stretched regions and sporadic 6- to 7-μm diameter bulbous nucleated regions (perikarya) that protruded into the oral ectoderm side. Besides the laterally polarized morphology of the CBAS cells, Epith-2, which is the epithelial lateral cell surface-specific protein of the sea urchin embryo and larva, was expressed exclusively by perikarya but not by the axon-like regions. The CBAS exposed its narrow apical surface on the larval epithelium between the CB and squamous cells and formed adherens junctions (AJs) on the apical side between them. Despite the presence of the CBAS axon-like regions, tubulins, such as α-, β-, and acetylated α-tubulins, were not detected. However, the neuroendocrine cell marker protein synaptophysin was detected in the axon-like regions and in bouton-like protrusions that contained numerous small ultrastructural vesicles. CONCLUSIONS The unique morphology of the CBAS in the sea urchin larva epithelium had not been reported. The CBAS expresses a remarkable number of receptors to environmental stimuli and proteins that are probably involved in signal transmission to the CB. The properties of the CBAS explain previous reports that larval swimming is triggered by environmental stimuli and suggest crosstalk among receptors and potential plural sensory functions of the CBAS.
Collapse
Affiliation(s)
- Hideki Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Tomoko Katow
- />Research Center for Marine Biology, Tohoku University, Asamushi, Aomori, Aomori 039-3501 Japan
| | - Hiromi Yoshida
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
| | - Masato Kiyomoto
- />Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575 Japan
- />Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301 Japan
| | - Isao Uemura
- />Division of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 Japan
| |
Collapse
|
41
|
Taylor L, Arnér K, Ghosh F. N-methyl-N-nitrosourea-induced neuronal cell death in a large animal model of retinal degeneration in vitro. Exp Eye Res 2016; 148:55-64. [PMID: 27237409 DOI: 10.1016/j.exer.2016.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 11/29/2022]
Abstract
N-methyl-N-nitrosourea (MNU) has been reported to induce photoreceptor-specific degeneration with minimal inner retinal impact in small animals in vivo. Pending its use within a retinal transplantation paradigm, we here explore the effects of MNU on outer and inner retinal neurons and glia in an in vitro large animal model of retinal degeneration. The previously described degenerative culture explant model of adult porcine retina was used and compared with explants receiving 10 or 100 μg/ml MNU (MNU10 and MNU100) supplementation. All explants were kept for 5 days in vitro, and examined for morphology as well as for glial and neuronal immunohistochemical markers. Rhodopsin-labeled photoreceptors were present in all explants. The number of cone photoreceptors (transducin), rod bipolar cells (PKC) and horizontal cells (calbindin) was significantly lower in MNU treated explants (p < 0.001). Gliosis was attenuated in MNU10 treated explants, with expression of vimentin, glial fibrillary protein (GFAP), glutamine synthetase (GS), and bFGF comparable to in vivo controls. In corresponding MNU100 counterparts, the expression of Müller cell proteins was almost extinguished. We here show that MNU causes degeneration of outer and inner retinal neurons and glia in the adult porcine retina in vitro. MNU10 explants display attenuation of gliosis, despite decreased neuronal survival compared with untreated controls. Our results have impact on the use of MNU as a large animal photoreceptor degeneration model, on tissue engineering related to retinal transplantation, and on our understanding of gliosis related neuronal degenerative cell death.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden.
| | - Karin Arnér
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, SE 22184, Lund, Sweden
| |
Collapse
|
42
|
Abstract
The mammalian retina has the potential to regenerate rod cells, bipolar cells, and amacrine cells in vivo to repair damaged nervous tissue through the Müller glial cell (MGC)-mediated response. Both horizontal cell (HC) and amacrine cell are interneurons in the inner nuclear layer (INL) and are generated under the control of some common transcription factors during retinal development. However, to date, the ability of HC regeneration in vivo in mammals remains unclear. Here, ouabain (a Na/K-ATPase inhibitor) was injected into rat eyes to induce an obvious cell loss in the INL. The proliferation, dedifferentiation of MGC and production of new neurons after ouabain injection were examined by BrdU incorporation and immunohistochemistry. Our results showed that 2 days after ouabain treatment, MGCs incorporated BrdU and upregulated the expression of Nestin, which is a marker for retinal progenitor cells. Several weeks after ouabain injection, the BrdU-positive cells in the outer border of the INL expressed Prox1 and Calbindin D-28k, which are specific markers for HC. Taken together, these results suggest that the mammalian retina can regenerate new type of interneurons (HC) in vivo, which advances our understanding of mammalian retinal regeneration after damage.
Collapse
|
43
|
Krishnamoorthy V, Cherukuri P, Poria D, Goel M, Dagar S, Dhingra NK. Retinal Remodeling: Concerns, Emerging Remedies and Future Prospects. Front Cell Neurosci 2016; 10:38. [PMID: 26924962 PMCID: PMC4756099 DOI: 10.3389/fncel.2016.00038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Deafferentation results not only in sensory loss, but also in a variety of alterations in the postsynaptic circuitry. These alterations may have detrimental impact on potential treatment strategies. Progressive loss of photoreceptors in retinal degenerative diseases, such as retinitis pigmentosa and age-related macular degeneration, leads to several changes in the remnant retinal circuitry. Müller glial cells undergo hypertrophy and form a glial seal. The second- and third-order retinal neurons undergo morphological, biochemical and physiological alterations. A result of these alterations is that retinal ganglion cells (RGCs), the output neurons of the retina, become hyperactive and exhibit spontaneous, oscillatory bursts of spikes. This aberrant electrical activity degrades the signal-to-noise ratio in RGC responses, and thus the quality of information they transmit to the brain. These changes in the remnant retina, collectively termed “retinal remodeling”, pose challenges for genetic, cellular and bionic approaches to restore vision. It is therefore crucial to understand the nature of retinal remodeling, how it affects the ability of remnant retina to respond to novel therapeutic strategies, and how to ameliorate its effects. In this article, we discuss these topics, and suggest that the pathological state of the retinal output following photoreceptor loss is reversible, and therefore, amenable to restorative strategies.
Collapse
Affiliation(s)
| | - Pitchaiah Cherukuri
- Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen Göttingen, Germany
| | - Deepak Poria
- National Brain Research Centre Manesar, Haryana, India
| | - Manvi Goel
- National Brain Research Centre Manesar, Haryana, India
| | - Sushma Dagar
- Institute of Neuro- and Sensory Physiology, Heinrich-Heine University Düsseldorf, Germany
| | | |
Collapse
|
44
|
Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: An overview across vertebrate model systems. Dev Dyn 2016; 245:727-38. [PMID: 26661417 PMCID: PMC4900950 DOI: 10.1002/dvdy.24375] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/12/2015] [Accepted: 11/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal dystrophies are a major cause of blindness for which there are currently no curative treatments. Transplantation of stem cell‐derived neuronal progenitors to replace lost cells has been widely investigated as a therapeutic option. Another promising strategy would be to trigger self‐repair mechanisms in patients, through the recruitment of endogenous cells with stemness properties. Accumulating evidence in the past 15 year0s has revealed that several retinal cell types possess neurogenic potential, thus opening new avenues for regenerative medicine. Among them, Müller glial cells have been shown to be able to undergo a reprogramming process to re‐acquire a stem/progenitor state, allowing them to proliferate and generate new neurons for repair following retinal damages. Although Müller cell–dependent spontaneous regeneration is remarkable in some species such as the fish, it is extremely limited and ineffective in mammals. Understanding the cellular events and molecular mechanisms underlying Müller cell activities in species endowed with regenerative capacities could provide knowledge to unlock the restricted potential of their mammalian counterparts. In this context, the present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field. Developmental Dynamics 245:727–738, 2016. © 2015 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. The present review provides an overview of Müller cell responses to injury across vertebrate model systems and summarizes recent advances in this rapidly evolving field.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Xian-Jie Yang
- Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France.,Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France.,Stein Eye Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
45
|
Faustino-Rocha AI, Ferreira R, Oliveira PA, Gama A, Ginja M. N-Methyl-N-nitrosourea as a mammary carcinogenic agent. Tumour Biol 2015; 36:9095-117. [PMID: 26386719 DOI: 10.1007/s13277-015-3973-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
The administration of chemical carcinogens is one of the most commonly used methods to induce tumors in several organs in laboratory animals in order to study oncologic diseases of humans. The carcinogen agent N-methyl-N-nitrosourea (MNU) is the oldest member of the nitroso compounds that has the ability to alkylate DNA. MNU is classified as a complete, potent, and direct alkylating compound. Depending on the animals' species and strain, dose, route, and age at the administration, MNU may induce tumors' development in several organs. The aim of this manuscript was to review MNU as a carcinogenic agent, taking into account that this carcinogen agent has been frequently used in experimental protocols to study the carcinogenesis in several tissues, namely breast, ovary, uterus, prostate, liver, spleen, kidney, stomach, small intestine, colon, hematopoietic system, lung, skin, retina, and urinary bladder. In this paper, we also reviewed the experimental conditions to the chemical induction of tumors in different organs with this carcinogen agent, with a special emphasis in the mammary carcinogenesis.
Collapse
Affiliation(s)
- Ana I Faustino-Rocha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal. .,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal.
| | - Rita Ferreira
- Organic Chemistry of Natural Products and Agrifood (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| | - Adelina Gama
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Animal and Veterinary Research Center (CECAV), School of Agrarian and Veterinary Sciences, UTAD, 5001-911, Vila Real, Portugal
| | - Mário Ginja
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, UTAD, 5001-911, Vila Real, Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-911, Vila Real, Portugal
| |
Collapse
|
46
|
Kim KA, Kang SW, Ahn HR, Song Y, Yang SJ, Jung SH. Leaves of Persimmon (Diospyros kaki Thunb.) Ameliorate N-Methyl-N-nitrosourea (MNU)-Induced Retinal Degeneration in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7750-7759. [PMID: 26260943 DOI: 10.1021/acs.jafc.5b02578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of the study was to investigate the protective effects of the ethanol extract of Diospyros kaki (EEDK) persimmon leaves to study N-methyl-N-nitrosourea (MNU)-induced retinal degeneration in mice. EEDK was orally administered after MNU injection. Retinal layer thicknesses were significantly increased in the EEDK-treated group compared with the MNU-treated group. The outer nuclear layer was preserved in the retinas of EEDK-treated mice. Moreover, EEDK treatment reduced the MNU-dependent up-regulation of glial fibrillary acidic protein (GFAP) and nestin expression in Müller and astrocyte cells. EEDK treatment also inhibited MNU-dependent down-regulation of rhodopsin expression. Quercetin exposure significantly attenuated the negative effects of H2O2 in R28 cells, suggesting that quercetin can act in an antioxidative capacity. Thus, EEDK may be considered as an agent for treating or preventing degenerative retinal diseases, such as retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Kyung-A Kim
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Korea
- Department of Biological Chemistry, University of Science and Technology (UST) , Daejeon, Korea
| | - Suk Woo Kang
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Korea
| | - Hong Ryul Ahn
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Korea
| | - Youngwoo Song
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Korea
| | - Sung Jae Yang
- Department of Ophthalmology, University of Ulsan, Gangneung Asan Hospital , Gangneung, Korea
| | - Sang Hoon Jung
- Natural Products Research Center, Korea Institute of Science and Technology (KIST) , Gangneung, Korea
- Department of Biological Chemistry, University of Science and Technology (UST) , Daejeon, Korea
| |
Collapse
|
47
|
Löffler K, Schäfer P, Völkner M, Holdt T, Karl MO. Age-dependent Müller glia neurogenic competence in the mouse retina. Glia 2015; 63:1809-24. [PMID: 25943952 DOI: 10.1002/glia.22846] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 11/10/2022]
Abstract
The mechanisms limiting neuronal regeneration in mammals and their relationship with reactive gliosis are unknown. Müller glia (MG), common to all vertebrate retinas, readily regenerate neuron loss in some species, but normally not in mammals. However, experimental stimulation of limited mammalian retina regeneration has been reported. Here, we use a mouse retina organ culture approach to investigate the MG responses at different mouse ages. We found that MG undergo defined spatio-temporal changes upon stimulation. In EGF-stimulated juvenile postmitotic retinas, most MG upregulate cell-cycle regulators (Mcm6, Pcna, Ki67, Ccnd1) within 48 h ex vivo; some also express the neurogenic factors Ascl1, Pax6, and Vsx2; up to 60% re-enter the cell cycle, some of which delaminate to divide mostly apically; and the majority cease to proliferate after stimulation. A subpopulation of MG progeny starts to express transcription factors (Ptf1a, Nr4a2) and neuronal (Calb1, Calb2, Rbfox3), but not glial, markers, indicating neurogenesis. BrdU-tracking, genetic lineage-tracing, and transgenic-reporter experiments suggest that MG reprogram to a neurogenic stage and proliferate; and that some MG progeny differentiate into neuronal-like cells, most likely amacrines, no photoreceptors; most others remain in a de-differentiated state. The mouse MG regeneration potential becomes restricted, dependent on the age of the animal, as observed by limited activation of the cell cycle and neurogenic factors. The stage-dependent analysis of mouse MG revealed similarities and differences when compared with MG-derived regeneration in fish and chicks. Therefore, the mouse retina ex vivo approach is a potential assay for understanding and overcoming the limitations of mammalian MG-derived neuronal regeneration. Postmitotic MG in mouse retina ex vivo can be stimulated to proliferate, express neurogenic factors, and generate progeny expressing neuronal or glial markers. This potential regenerative competence becomes limited with increasing mouse age.
Collapse
Affiliation(s)
- Kati Löffler
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany
| | - Patrick Schäfer
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Manuela Völkner
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Tina Holdt
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| | - Mike O Karl
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, 01307, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, 01307, Germany
| |
Collapse
|
48
|
|
49
|
Li Y, Zhou GM. MMP-9 inhibition facilitates amacrine cell loss after ouabain-induced retinal damage. Exp Eye Res 2015; 135:174-81. [PMID: 25752698 DOI: 10.1016/j.exer.2015.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/20/2015] [Accepted: 03/05/2015] [Indexed: 02/05/2023]
Abstract
Retinal ischemia is a common risk factor for visual impairment and blindness. Two common changes after retinal ischemia are retinal ganglion cell (RGC) loss and Müller glial cell (MGC)-mediated endogenous repair. Matrix metalloproteinase 9 (MMP-9) has been shown to be responsible to RGC death. However, the effects of MMP-9 on the loss of other neurons and the reactivity of MGCs after retinal injury remain unclear. Ouabain, a Na/K-ATPase inhibitor, was injected into the vitreous body of rat eyes to induce cell death in the inner nuclear layer (INL). MMP-9 expression and activation in the retinas were examined by gelatin zymography and immunohistochemistry. The role of MMP-9 inhibitor (MMP-9i) in ouabain-treated retinas was assessed. After ouabain injection, there was an upregulation of MMP-9 activity in the inner retinas, and the activation of MMP-9 reached a maximum at 2 day. Unexpectedly, MMP-9i enhanced the thinning of the INL, the loss of Calbindin D-28k-positive cells and Syntaxin-positive amacrine cells (ACs) in the INL and decreased levels of Calbindin D-28k protein, while leaving the outer nuclear layer (ONL) unchanged. In addition, MMP-9i led to a minor increase in the number of BrdU positive cells that did not express GS in the INL. Collectively, these results revealed that the inhibition of MMP-9 activity facilitated AC loss and promoted the generation of MGC-derived cells in ouabain-treated retinas, which indicates that treating retinal diseases with drugs that inhibit MMP-9 activity should be considered with caution.
Collapse
Affiliation(s)
- Yan Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China.
| | - Guo-Min Zhou
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
50
|
Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res 2015; 46:31-66. [PMID: 25660226 DOI: 10.1016/j.preteyeres.2015.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 02/08/2023]
Abstract
Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means.
Collapse
Affiliation(s)
- Sujatha A Jayakody
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Anai Gonzalez-Cordero
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK
| | - Robin R Ali
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Rachael A Pearson
- Gene and Cell Therapy Group, Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath St, London EC1V 9EL, UK.
| |
Collapse
|