1
|
Karuntu JS, Klouwer FCC, Engelen M, Boon CJF. Systematic study of ophthalmological findings in 10 patients with PEX1-mediated Zellweger spectrum disorder. Ophthalmic Genet 2024; 45:351-362. [PMID: 38664000 DOI: 10.1080/13816810.2024.2330389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE This cross-sectional study describes the ophthalmological and general phenotype of 10 patients from six different families with a comparatively mild form of Zellweger spectrum disorder (ZSD), a rare peroxisomal disorder. METHODS Ophthalmological assessment included best-corrected visual acuity (BCVA), perimetry, microperimetry, ophthalmoscopy, fundus photography, spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Medical records were reviewed for medical history and systemic manifestations of ZSD. RESULTS Nine patients were homozygous for c.2528 G > A (p.Gly843Asp) variants in PEX1 and one patient was compound heterozygous for c.2528 G>A (p.Gly843Asp) and c.2097_2098insT (p.Ile700TyrfsTer42) in PEX1. Median age was 22.6 years (interquartile range (IQR): 15.9 - 29.9 years) at the most recent examination, with a median symptom duration of 22.1 years. Symptom onset was variable with presentations of hearing loss (n = 7) or nyctalopia/reduced visual acuity (n = 3) at a median age of 6 months (IQR: 1.9-8.3 months). BCVA (median of 0.8 logMAR; IQR: 0.6-0.9 logMAR) remained stable over 10.8 years and all patients were hyperopic. Fundus examination revealed a variable retinitis pigmentosa (RP)-like phenotype with rounded hyperpigmentations as most prominent feature in six out of nine patients. Electroretinography, visual field measurements, and microperimetry further established the RP-like phenotype. Multimodal imaging revealed significant intraretinal fluid cavities on SD-OCT and a remarkable pattern of hyperautofluorescent abnormalities on FAF in all patients. CONCLUSION This study highlights the ophthalmological phenotype resembling RP with moderate to severe visual impairment in patients with mild ZSD. These findings can aid ophthalmologists in diagnosing, counselling, and managing patients with mild ZSD.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke C C Klouwer
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Paediatric Neurology/Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Dumitrescu OM, Zemba M, Brănișteanu DC, Pîrvulescu RA, Radu M, Stanca HT. Fundus Autofluorescence in Diabetic Retinopathy. J Pers Med 2024; 14:793. [PMID: 39201985 PMCID: PMC11355256 DOI: 10.3390/jpm14080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic retinopathy is a leading cause of visual morbidity worldwide. Fundus autofluorescence is a rapid, non-invasive imaging modality that has gained increased popularity in recent years in the multimodal evaluation of diabetic retinopathy and, in particular, of diabetic macular oedema. Acquired using either a fundus camera or the confocal scanning laser ophthalmoscope, short-wavelength and near-infrared autofluorescence are the most used techniques in diabetic retinopathy. In diabetic macular oedema, short-wavelength autofluorescence, in its cystoid pattern, is useful for detecting cystoid macular oedema. Increased spot hyperautofluorescence in short-wavelength and granular changes in near-infrared autofluorescence correlate well with other imaging findings, indicating photoreceptor and retinal pigment epithelium damage and being associated with decreased visual acuity. While also being a marker of oxidative stress, increased short-wavelength autofluorescence in the setting of diabetic macular oedema appears to be a prognostic factor for poor visual outcome, even after the resolution of the intraretinal fluid. Autofluorescence also helps in the assessment of diabetic retinal pigment epitheliopathy and choroidopathy. Fundus autofluorescence is an evolving technology that will assist in gaining further insight into the pathophysiology of diabetic retinopathy and allow for a more comprehensive evaluation of these patients.
Collapse
Affiliation(s)
- Otilia-Maria Dumitrescu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Mihail Zemba
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Ruxandra Angela Pîrvulescu
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Madalina Radu
- Department of Ophthalmology, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Horia Tudor Stanca
- Department of Ophthalmology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
3
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
4
|
Cohen SY, Chowers I, Nghiem-Buffet S, Mrejen S, Souied E, Gaudric A. Subretinal autofluorescent deposits: A review and proposal for clinical classification. Surv Ophthalmol 2023; 68:1050-1070. [PMID: 37392968 DOI: 10.1016/j.survophthal.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Subretinal autofluorescent deposits (SADs) may be found in the posterior pole, associated with very various conditions. These disorders usually present a typical pattern of autofluorescent lesions seen on short-wavelength fundus autofluorescence. We describe SADs according to their putative pathophysiological origin and also according to their clinical pattern, i.e., number, shape, and usual location. Five main putative pathophysiological origins of SADs were identified in disorders associated with an intrinsic impairment of phagocytosis and protein transportation, with excess of retinal pigment epithelium phagocytic capacity, with direct or indirect retinal pigment epithelium injury, and/or disorders associated with long-standing serous retinal detachment with mechanical separation between the retinal pigment epithelium and the photoreceptor outer segments. Clinically, however, they could be classified into eight subclasses of SADs, as observed on fundus autofluorescence as follows: single vitelliform macular lesion, multiple roundish or vitelliform lesions, multiple peripapillary lesions, flecked lesions, leopard-spot lesions, macular patterned lesions, patterned lesions located in the same area as the causal disorder, or nonpatterned lesions. Thus, if multimodal imaging may be required to diagnose the cause of SADs, the proposed classification based on noninvasive, widely available short-wavelength fundus autofluorescence could guide clinicians in making their diagnosis decision tree before considering the use of more invasive tools.
Collapse
Affiliation(s)
- Salomon Yves Cohen
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, University of Paris-Est Créteil, Créteil, France.
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Hospital, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Sarah Mrejen
- Ophthalmology Center for Imaging and Laser, Paris, France
| | - Eric Souied
- Department of Ophthalmology, University of Paris-Est Créteil, Créteil, France
| | - Alain Gaudric
- Ophthalmology Center for Imaging and Laser, Paris, France; Department of Ophthalmology, AP-HP, Hôpital Lariboisière, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Raimondi R, D'Esposito F, Sorrentino T, Tsoutsanis P, De Rosa FP, Stradiotto E, Barone G, Rizzato A, Allegrini D, Costagliola C, Romano MR. How to Set Up Genetic Counselling for Inherited Macular Dystrophies: Focus on Genetic Characterization. Int J Mol Sci 2023; 24:ijms24119722. [PMID: 37298674 DOI: 10.3390/ijms24119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Inherited macular dystrophies refer to a group of degenerative conditions that predominantly affect the macula in the spectrum of inherited retinal dystrophies. Recent trends indicate a clear need for genetic assessment services in tertiary referral hospitals. However, establishing such a service can be a complex task due to the diverse skills required and multiple professionals involved. This review aims to provide comprehensive guidelines to enhance the genetic characterization of patients and improve counselling efficacy by combining updated literature with our own experiences. Through this review, we hope to contribute to the establishment of state-of-the-art genetic counselling services for inherited macular dystrophies.
Collapse
Affiliation(s)
- Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Panos Tsoutsanis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | | | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24125 Bergamo, Italy
| |
Collapse
|
6
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|
7
|
Russell MW, Muste JC, Seth K, Kumar M, Rich CA, Singh RP, Traboulsi EI. Functional imaging of mitochondria in genetically confirmed retinal dystrophies using flavoprotein fluorescence. Ophthalmic Genet 2022; 43:834-840. [PMID: 36384402 DOI: 10.1080/13816810.2022.2144903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Whether by indirect oxidative stress or direct genetic defect, various genetic retinal dystrophies involve mitochondrial stress. Mitochondrial flavoprotein fluorescence (FPF), reported as either average signal intensity or variability (heterogeneity), may serve as a direct, quantifiable marker of oxidative stress. MATERIALS AND METHODS This observational study enrolled patients with genetically confirmed retinal dystrophies between January and December 2021. Patients with concomitant maculopathy and ocular hypertension were excluded. Patients were FPF imaged with OcuMet Beacon® third generation device during routine outpatient visit. RESULTS The final analysis cohort included 242 images from 157 patients. Mean FPF intensity was significantly increased between age matched controls and patients with confirmed rod-cone dystrophy, Stargardt disease, Bardet-Biedl syndrome (BBS), and Mitochondrial ATP synthase mutation (P ≤ 0.007). Mean FPF heterogeneity was significantly increased between age matched controls and patients with confirmed rod-cone dystrophy, Stargardt disease, and BBS (P ≤ 0.011). FPF lesions were noted to correlate with Fundus Autofluorescence (FAF) lesions in diseases examined. CONCLUSIONS FPF intensity and heterogeneity significantly increased in patients with retinal dystrophies. The correlation of FPF lesions with FAF lesions implies FPF may be a clinically useful biomarker in patients with IRDs.
Collapse
Affiliation(s)
- Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Education, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Justin C Muste
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Cleveland Clinic, Cole Eye Institute, Cleveland, Ohio, USA
| | - Kanika Seth
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Madhukar Kumar
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Education, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
8
|
Toutounchian S, Ahmadbeigi N, Mansouri V. Retinal and Choroidal Neovascularization Antivascular Endothelial Growth Factor Treatments: The Role of Gene Therapy. J Ocul Pharmacol Ther 2022; 38:529-548. [PMID: 36125411 DOI: 10.1089/jop.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neovascularization in ocular vessels causes a major disease burden. The most common causes of choroidal neovascularization (CNV) are age-related macular degeneration and diabetic retinopathy, which are the leading causes of irreversible vision loss in the adult population. Vascular endothelial growth factor (VEGF) is critical for the formation of new vessels and is the main regulator in ocular angiogenesis and vascular permeability through its receptors. Laser therapy and antiangiogenic factors have been used for CNV treatment. Bevacizumab, ranibizumab, and aflibercept are commonly used anti-VEGF agents; however, high costs and the need for frequent intraocular injections are major drawbacks of anti-VEGF drugs. Gene therapy, given the potency of one-time treatment and no need for frequent injections offers the real possibility of such a lasting treatment, with fewer adverse effects and higher patient quality of life. Herein, we reviewed the role of gene therapy in the CNV treatment. In addition, we discuss the advantages and challenges of current treatments compared with gene therapy.
Collapse
Affiliation(s)
- Samaneh Toutounchian
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Nowomiejska K, Nasser F, Stingl K, Schimpf‐Linzenbold S, Biskup S, Brzozowska A, Rejdak R, Kohl S, Zrenner E. Disease expression caused by different variants in the BEST1 gene: genotype and phenotype findings in bestrophinopathies. Acta Ophthalmol 2022; 100:e847-e858. [PMID: 34327816 PMCID: PMC9328113 DOI: 10.1111/aos.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Purpose: To analyse the spectrum of clinical features and molecular genetic data in a series of patients carrying likely disease-associated variants in the BEST1 gene. Methods: Retrospective observational analysis of clinical data extracted from the medical records of visual function, multimodal imaging and electrophysiology of 62 eyes of 31 patients. Molecular genetic analysis was performed by means of panel-based NGS or Sanger sequencing. Results: The spectrum of variants in the BEST1 gene comprised 19 different variants and three of which are novel. Fundus photographs and OCT images allowed categorization of 52 eyes as Best vitelliform macular dystrophy (BVMD) with stages 1 to 5 and 10 eyes with autosomal recessive bestrophinopathy (ARB), with more severe phenotype. One patient was shown to be heterozygous for a variant, which has so far been described only in ARB, but this patient had the BVMD phenotype. There was no significant progression of the visual acuity during the follow-up period of 5 years both in BVMD and ARB. The most prevalent pattern of fundus autofluorescence (FAF) in BVMD was ‘patchy’. There were diverse visual field defects in static automated perimetry (SAP) depending on the stage. The Arden ratio was significantly lower in ARB patients and in eyes with stage 5 of BVMD. Conclusions: The genotype does not always predict the phenotype in patients with BVMD and ARB; however, having two mutations in the BEST1 gene causes a more severephenotype. FAFhelped to distinguish ARB from BVMD. Most of the observed eyesdidnotprogressfunctionallyduringthefollow-up.ARBandtheatrophicstageof BVMD as the disease end-stage had the worst visual functions and EOG results.
Collapse
Affiliation(s)
- Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Fadi Nasser
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Katarina Stingl
- University Eye Hospital Center for Ophthalmology University of Tübingen Tübingen Germany
- Center for Rare Eye Diseases University of Tübingen Tübingen Germany
| | | | | | - Agnieszka Brzozowska
- Department of Mathematics and Medical Biostatistics Medical University of Lublin Lublin Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
| | - Susanne Kohl
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
- Werner Reichardt Centre for Integrative Neuroscience University of Tübingen Tübingen Germany
| |
Collapse
|
10
|
Jimenez-Rolando B, Garcia-Sandoval B, Del Pozo-Valero M, Ayuso C, Garcia-Ferreira M, Abellanas M, Campos-Seco S, Carreño E. Prevalence, multimodal imaging and genotype-phenotype assessment of trauma related subretinal fibrosis in stargardt disease. Eur J Ophthalmol 2022; 32:3201-3207. [DOI: 10.1177/11206721221093986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background and Objectives Stargardt disease produces lipofuscin accumulation predisposing to subretinal fibrosis (SRFib) after ocular trauma. Noninvasive imaging techniques allow in vivo assessment. The purpose of this study is to determine the prevalence of SRFib in a cohort of Stargardt patients, the presence of history of ocular trauma, the clinical features and possible genotype-phenotype associations in Stargardt patients with SRFib. Methods We evaluated retrospectively 106 Stargardt patients and analysed the multimodal imaging and the genotype of patients with SRFib. Results Six patients exhibited SRFib, three of them with history of ocular trauma. Multimodal imaging showed extensive SRFib principally in the temporal midperipheral retina with no fluid associated. SRFib was better defined by short wavelength autofluorescence and spectral domain optical coherence tomography and appeared clinically stable over time. There was no particular genotype associated to SRFib. Conclusion SRFib occurs in a significant percentage of patients with Stargardt disease and can be diagnosed through multimodal imaging regardless the history of trauma, further sustaining the importance of an appropriate imaging in such patients. No genotype-phenotype association has been established, supporting the traumatic etiology in half of cases. The remaining cases may be classified as idiopathic or have a minimal trauma occurring early in life that may be not recalled by the patients.
Collapse
Affiliation(s)
- B Jimenez-Rolando
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - B Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Del Pozo-Valero
- Department of Genetics, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - C Ayuso
- Department of Genetics, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Garcia-Ferreira
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - M Abellanas
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - S Campos-Seco
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - E Carreño
- Department of Ophthalmology, Instituto de Investigacion Sanitaria–Fundacion Jimenez Diaz University Hospital, Universidad Autonoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
11
|
Poncet AF, Grunewald O, Vaclavik V, Meunier I, Drumare I, Pelletier V, Bocquet B, Todorova MG, Le Moing AG, Devos A, Schorderet DF, Jobic F, Defoort-Dhellemmes S, Dollfus H, Smirnov VM, Dhaenens CM. Contribution of Whole-Genome Sequencing and Transcript Analysis to Decipher Retinal Diseases Associated with MFSD8 Variants. Int J Mol Sci 2022; 23:ijms23084294. [PMID: 35457110 PMCID: PMC9032189 DOI: 10.3390/ijms23084294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Biallelic gene defects in MFSD8 are not only a cause of the late-infantile form of neuronal ceroid lipofuscinosis, but also of rare isolated retinal degeneration. We report clinical and genetic data of seven patients compound heterozygous or homozygous for variants in MFSD8, issued from a French cohort with inherited retinal degeneration, and two additional patients retrieved from a Swiss cohort. Next-generation sequencing of large panels combined with whole-genome sequencing allowed for the identification of twelve variants from which seven were novel. Among them were one deep intronic variant c.998+1669A>G, one large deletion encompassing exon 9 and 10, and a silent change c.750A>G. Transcript analysis performed on patients’ lymphoblastoid cell lines revealed the creation of a donor splice site by c.998+1669A>G, resulting in a 140 bp pseudoexon insertion in intron 10. Variant c.750A>G produced exon 8 skipping. In silico and in cellulo studies of these variants allowed us to assign the pathogenic effect, and showed that the combination of at least one severe variant with a moderate one leads to isolated retinal dystrophy, whereas the combination in trans of two severe variants is responsible for early onset severe retinal dystrophy in the context of late-infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Anaïs F. Poncet
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Olivier Grunewald
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Veronika Vaclavik
- University of Lausanne, Jules-Gonin Eye Hospital, 1004 Lausanne, Switzerland;
- Cantonal Hospital, Department of Ophthalmology, 1700 Fribourg, Switzerland
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Isabelle Drumare
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Valérie Pelletier
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Béatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Sensgene Care Network, ERN-EYE Network, F-34000 Montpellier, France; (I.M.); (B.B.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, F-34000 Montpellier, France
| | - Margarita G. Todorova
- Department of Ophthalmology, Cantonal Hospital, 9007 St. Gallen, Switzerland;
- Department of Ophthalmology, University of Zürich, 8091 Zürich, Switzerland
- Department of Ophthalmology, University of Basel, 4056 Basel, Switzerland
| | - Anne-Gaëlle Le Moing
- Department of Child Neurology, Amiens-Picardy University Hospital, F-80000 Amiens, France;
| | - Aurore Devos
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
| | - Daniel F. Schorderet
- Faculty of Biology and Medicine, University of Lausanne and Faculty of Life Sciences, Ecole Polytechnique Fédérale of Lausanne, 1004 Lausanne, Switzerland;
| | - Florence Jobic
- Unité de Génétique Médicale et Oncogénétique, Centre Hospitalier Universitaire Amiens Picardie, F-80000 Amiens, France;
| | - Sabine Defoort-Dhellemmes
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologiques, Hopitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; (V.P.); (H.D.)
| | - Vasily M. Smirnov
- Exploration de la Vision et Neuro-Ophtalmology, CHU de Lille, F-59000 Lille, France; (I.D.); (S.D.-D.); (V.M.S.)
- Université de Lille, Faculté de Médecine, F-59000 Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France; (A.F.P.); (O.G.); (A.D.)
- Correspondence: ; Tel.: +33-320444953
| |
Collapse
|
12
|
Dowd-Schoeman TJ, Rosenbloom J, Ameri H. Patterns of Autofluorescence in Common Genotypes of Retinitis Pigmentosa. Ophthalmic Surg Lasers Imaging Retina 2021; 52:426-431. [PMID: 34410191 DOI: 10.3928/23258160-20210727-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE To investigate whether different forms of retinitis pigmentosa (RP) could be distinguished from one another using fundus autofluorescence (FAF) imaging. PATIENTS AND METHODS The National Institutes of Health EyeGene database was used to gather FAF images from 31 patients with RP, which were separated into 11 groups based on the RP-associated gene that was mutated. Investigators reviewed the images for patterns of autofluorescence (AF) and recorded qualitative observations. RESULTS Four patterns of AF were noted within the macula, including central foveal hyper AF, a perifoveal hyper AF ring, a macular hyper AF ring, and a bull's-eye pattern of AF. Four patterns of AF were noted outside of the macula, including a mid-peripheral hyper AF ring, extramacular spots of hyper AF, patches of hypo AF, and diffuse hypo AF in the periphery. Double hyper AF rings were present in RHO, RPGR, USH2A, and NR2E3-linked RP. CONCLUSIONS Similar patterns of AF were seen in different forms of RP, and AF failed to distinguish different genotypes. [Ophthalmic Surg Lasers Imaging Retina. 2021;52:426-431.].
Collapse
|
13
|
Schmitz-Valckenberg S, Pfau M, Fleckenstein M, Staurenghi G, Sparrow JR, Bindewald-Wittich A, Spaide RF, Wolf S, Sadda SR, Holz FG. Fundus autofluorescence imaging. Prog Retin Eye Res 2021; 81:100893. [PMID: 32758681 DOI: 10.1016/j.preteyeres.2020.100893] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Fundus autofluorescence (FAF) imaging is an in vivo imaging method that allows for topographic mapping of naturally or pathologically occurring intrinsic fluorophores of the ocular fundus. The dominant sources are fluorophores accumulating as lipofuscin in lysosomal storage bodies in postmitotic retinal pigment epithelium cells as well as other fluorophores that may occur with disease in the outer retina and subretinal space. Photopigments of the photoreceptor outer segments as well as macular pigment and melanin at the fovea and parafovea may act as filters of the excitation light. FAF imaging has been shown to be useful with regard to understanding of pathophysiological mechanisms, diagnostics, phenotype-genotype correlation, identification of prognostic markers for disease progression, and novel outcome parameters to assess efficacy of interventional strategies in chorio-retinal diseases. More recently, the spectrum of FAF imaging has been expanded with increasing use of green in addition to blue FAF, introduction of spectrally-resolved FAF, near-infrared FAF, quantitative FAF imaging and fluorescence life time imaging (FLIO). This article gives an overview of basic principles, FAF findings in various retinal diseases and an update on recent developments.
Collapse
Affiliation(s)
- Steffen Schmitz-Valckenberg
- Department of Ophthalmology, University of Bonn, Bonn, Germany; John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Biomedical Data Science, Stanford University, USA
| | | | - Giovanni Staurenghi
- Department of Biomedical and Clinical Science "Luigi Sacco", Luigi Sacco Hospital University of Milan, Italy
| | - Janet R Sparrow
- Departments of Ophthalmology and Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Almut Bindewald-Wittich
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Augenheilkunde Heidenheim MVZ, Heidenheim, Germany
| | - Richard F Spaide
- Vitreous Retina Macula Consultants of New York, New York, NY, USA
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Srinivas R Sadda
- Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany.
| |
Collapse
|
14
|
Lin FL, Wang PY, Chuang YF, Wang JH, Wong VHY, Bui BV, Liu GS. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol Ther 2020; 28:2120-2138. [PMID: 32649860 PMCID: PMC7544979 DOI: 10.1016/j.ymthe.2020.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
Collapse
Affiliation(s)
- Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
15
|
IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY. Retina 2020; 39:558-569. [PMID: 29215532 DOI: 10.1097/iae.0000000000001987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To examine the involvement of the retinal pigment epithelium (RPE) in the presence of vitelliform macular lesions (VML) in Best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy, and adult-onset vitelliform macular degeneration using polarization-sensitive optical coherence tomography (PS-OCT). METHODS A total of 35 eyes of 18 patients were imaged using a PS-OCT system and blue light fundus autofluorescence imaging. Pathogenic mutations in the BEST1 gene, 3 of which were new, were detected in all patients with BVMD and autosomal recessive bestrophinopathy. RESULTS Polarization-sensitive optical coherence tomography showed a characteristic pattern in all three diseases with nondepolarizing material in the subretinal space consistent with the yellowish VML seen on funduscopy with a visible RPE line below it. A focal RPE thickening was seen in 26 eyes under or at the edge of the VML. Retinal pigment epithelium thickness outside the VML was normal or mildly thinned in patients with BVMD and adult-onset vitelliform macular degeneration but was diffusely thinned or atrophic in patients with autosomal recessive bestrophinopathy. Patients with autosomal recessive bestrophinopathy showed sub-RPE fibrosis alongside the subretinal VML. Polarization-sensitive optical coherence tomography was more reliable in assessing the localization and the integrity of the RPE than spectral domain OCT alone. On spectral domain OCT, identification of the RPE was not possible in 19.4% of eyes. Polarization-sensitive optical coherence tomography allowed for definite identification of the location of VML in respect to the RPE in all eyes, since it provides a tissue-specific contrast. CONCLUSION Polarization-sensitive optical coherence tomography confirms in vivo the subretinal location of VML and is useful in the assessment of RPE integrity.
Collapse
|
16
|
Müller PL, Pfau M, Möller PT, Nadal J, Schmid M, Lindner M, de Sisternes L, Stöhr H, Weber BHF, Neuhaus C, Herrmann P, Schmitz-Valckenberg S, Holz FG, Fleckenstein M. Choroidal Flow Signal in Late-Onset Stargardt Disease and Age-Related Macular Degeneration: An OCT-Angiography Study. ACTA ACUST UNITED AC 2018; 59:AMD122-AMD131. [DOI: 10.1167/iovs.18-23819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Philipp T. Möller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Jennifer Nadal
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Moritz Lindner
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- The Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Luis de Sisternes
- Department of Radiology, Stanford University, Stanford, California, United States
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | | - Philipp Herrmann
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
| | | | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| | - Monika Fleckenstein
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- GRADE Reading Center, Bonn, Germany
| |
Collapse
|
17
|
Charng J, Tan R, Luu CD, Sadigh S, Stambolian D, Guymer RH, Jacobson SG, Cideciyan AV. Imaging Lenticular Autofluorescence in Older Subjects. Invest Ophthalmol Vis Sci 2017; 58:4940-4947. [PMID: 28973367 PMCID: PMC5627676 DOI: 10.1167/iovs.17-22540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose To evaluate whether a practical method of imaging lenticular autofluorescence (AF) can provide an individualized measure correlated with age-related lens yellowing in older subjects undergoing tests involving shorter wavelength lights. Methods Lenticular AF was imaged with 488-nm excitation using a confocal scanning laser ophthalmoscope (cSLO) routinely used for retinal AF imaging. There were 75 older subjects (ages 47–87) at two sites; a small cohort of younger subjects served as controls. At one site, the cSLO was equipped with an internal reference to allow quantitative AF measurements; at the other site, reduced-illuminance AF imaging (RAFI) was used. In a subset of subjects, lens density index was independently estimated from dark-adapted spectral sensitivities performed psychophysically. Results Lenticular AF intensity was significantly higher in the older eyes than the younger cohort when measured with the internal reference (59.2 ± 15.4 vs. 134.4 ± 31.7 gray levels; P < 0.05) as well as when recorded with RAFI without the internal reference (10.9 ± 1.5 vs. 26.1 ± 5.7 gray levels; P < 0.05). Lenticular AF was positively correlated with age; however, there could also be large differences between individuals of similar age. Lenticular AF intensity correlated well with lens density indices estimated from psychophysical measures. Conclusions Lenticular AF measured with a retinal cSLO can provide a practical and individualized measure of lens yellowing, and may be a good candidate to distinguish between preretinal and retinal deficits involving short-wavelength lights in older eyes.
Collapse
Affiliation(s)
- Jason Charng
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rose Tan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Parkville, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Parkville, Victoria, Australia
| | - Sam Sadigh
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Dwight Stambolian
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Department of Surgery (Ophthalmology), The University of Melbourne, Parkville, Victoria, Australia
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
18
|
Guziewicz KE, Sinha D, Gómez NM, Zorych K, Dutrow EV, Dhingra A, Mullins RF, Stone EM, Gamm DM, Boesze-Battaglia K, Aguirre GD. Bestrophinopathy: An RPE-photoreceptor interface disease. Prog Retin Eye Res 2017; 58:70-88. [PMID: 28111324 PMCID: PMC5441932 DOI: 10.1016/j.preteyeres.2017.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA.
| | - Divya Sinha
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Néstor M Gómez
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Kathryn Zorych
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Emily V Dutrow
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Robert F Mullins
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
19
|
Fundus autofluorescence imaging: systematic review of test accuracy for the diagnosis and monitoring of retinal conditions. Eye (Lond) 2017; 31:995-1007. [PMID: 28282065 DOI: 10.1038/eye.2017.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
We conducted a systematic review of the accuracy of fundus autofluorescence (FAF) imaging for diagnosing and monitoring retinal conditions. Searches in November 2014 identified English language references. Sources included MEDLINE, EMBASE, the Cochrane Library, Web of Science, and MEDION databases; reference lists of retrieved studies; and internet pages of relevant organisations, meetings, and trial registries. For inclusion, studies had to report FAF imaging accuracy quantitatively. Studies were critically appraised using QUADAS risk of bias criteria. Two reviewers conducted all review steps. From 2240 unique references identified, eight primary research studies met the inclusion criteria. These investigated diagnostic accuracy of FAF imaging for choroidal neovascularisation (one study), reticular pseudodrusen (three studies), cystoid macular oedema (two studies), and diabetic macular oedema (two studies). Diagnostic sensitivity of FAF imaging ranged from 32 to 100% and specificity from 34 to 100%. However, owing to methodological limitations, including high and/or unclear risks of bias, none of these studies provides conclusive evidence of the diagnostic accuracy of FAF imaging. Study heterogeneity precluded meta-analysis. In most studies, the patient spectrum was not reflective of those who would present in clinical practice and no studies adequately reported whether FAF images were interpreted consistently. No studies of monitoring accuracy were identified. An update in October 2016, based on MEDLINE and internet searches, identified four new studies but did not alter our conclusions. Robust quantitative evidence on the accuracy of FAF imaging and how FAF images are interpreted is lacking. We provide recommendations to address this.
Collapse
|
20
|
COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE. Retina 2016; 36:1216-21. [PMID: 26583307 DOI: 10.1097/iae.0000000000000870] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To evaluate manual and semiautomated grading techniques for assessing decreased fundus autofluorescence (DAF) in patients with Stargardt disease phenotype. METHODS Certified reading center graders performed manual and semiautomated (region finder-based) grading of confocal scanning laser ophthalmoscopy (cSLO) fundus autofluorescence (FAF) images for 41 eyes of 22 patients. Lesion types were defined based on the black level and sharpness of the border: definite decreased autofluorescence (DDAF), well, and poorly demarcated questionably decreased autofluorescence (WDQDAF, PDQDAF). Agreement in grading between the two methods and inter- and intra-grader agreement was assessed by kappa coefficients (κ) and intraclass correlation coefficients (ICC). RESULTS The mean ± standard deviation (SD) area was 3.07 ± 3.02 mm for DDAF (n = 31), 1.53 ± 1.52 mm for WDQDAF (n = 9), and 6.94 ± 10.06 mm for PDQDAF (n = 17). The mean ± SD absolute difference in area between manual and semiautomated grading was 0.26 ± 0.28 mm for DDAF, 0.20 ± 0.26 mm for WDQDAF, and 4.05 ± 8.32 mm for PDQDAF. The ICC (95% confidence interval) for method comparison was 0.992 (0.984-0.996) for DDAF, 0.976 (0.922-0.993) for WDQDAF, and 0.648 (0.306-0.842) for PDQDAF. Inter- and intra-grader agreement in manual and semiautomated quantitative grading was better for DDAF (0.981-0.996) and WDQDAF (0.995-0.999) than for PDQDAF (0.715-0.993). CONCLUSION Manual and semiautomated grading methods showed similar levels of reproducibility for assessing areas of decreased autofluorescence in patients with Stargardt disease phenotype. Excellent agreement and reproducibility were observed for well demarcated lesions.
Collapse
|
21
|
Abstract
Fundus autofluorescence (FAF) is a relatively new imaging technique that can be used to study retinal diseases. It provides information on retinal metabolism and health. Several different pathologies can be detected. Peculiar AF alterations can help the clinician to monitor disease progression and to better understand its pathogenesis. In the present article, we review FAF principles and clinical applications.
Collapse
Affiliation(s)
| | | | - Paolo Lanzetta
- Department of Medical and Biological Sciences - Ophthalmology, University of Udine, Udine; Istituto Europeo di Microchirurgia Oculare, Udine, Italy
| |
Collapse
|
22
|
Calvo-Maroto AM, Esteve-Taboada JJ, Domínguez-Vicent A, Pérez-Cambrodí RJ, Cerviño A. Confocal scanning laser ophthalmoscopy versus modified conventional fundus camera for fundus autofluorescence. Expert Rev Med Devices 2016; 13:965-978. [PMID: 27634136 DOI: 10.1080/17434440.2016.1236678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Fundus autofluorescence (FAF) is a noninvasive imaging method to detect fundus endogenous fluorophores, mainly lipofuscin located in the retinal pigment epithelium (RPE). The FAF provides information about lipofuscin distribution and RPE health, and consequently an increased accumulation of lipofuscin has been correlated with ageing and development of certain retinal conditions. Areas covered: An exhaustive literature search in MEDLINE (via OVID) and PUBMED for articles related to ocular FAF in retinal diseases and different devices used for acquiring FAF imaging was conducted. Expert commentary: This review aims to show an overview about autofluorescence in the RPE and the main devices used for acquiring these FAF images. The knowledge of differences in the optical principles, acquisition images and the image post-processing between confocal scanning laser ophthalmoscopy and modified conventional fundus camera will improve the FAF images interpretation when are used as a complementary diagnosis and monitoring tool of retinal diseases.
Collapse
Affiliation(s)
- Ana M Calvo-Maroto
- a Optometry Research Group, Department of Optics & Optometry & Vision Sciences , University of Valencia , Valencia , Spain
| | - Jose J Esteve-Taboada
- a Optometry Research Group, Department of Optics & Optometry & Vision Sciences , University of Valencia , Valencia , Spain
| | - Alberto Domínguez-Vicent
- a Optometry Research Group, Department of Optics & Optometry & Vision Sciences , University of Valencia , Valencia , Spain
| | | | - Alejandro Cerviño
- a Optometry Research Group, Department of Optics & Optometry & Vision Sciences , University of Valencia , Valencia , Spain
| |
Collapse
|
23
|
Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol 2016; 101:25-30. [PMID: 27491360 PMCID: PMC5256119 DOI: 10.1136/bjophthalmol-2016-308823] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD1; MIM 248200) is the most prevalent inherited macular dystrophy and is associated with disease-causing sequence variants in the gene ABCA4. Significant advances have been made over the last 10 years in our understanding of both the clinical and molecular features of STGD1, and also the underlying pathophysiology, which has culminated in ongoing and planned human clinical trials of novel therapies. The aims of this review are to describe the detailed phenotypic and genotypic characteristics of the disease, conventional and novel imaging findings, current knowledge of animal models and pathogenesis, and the multiple avenues of intervention being explored.
Collapse
Affiliation(s)
- Preena Tanna
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Rupert W Strauss
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK.,Departments of Ophthalmology, Medical University Graz and Johannes Kepler University, Linz, Austria
| | - Kaoru Fujinami
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK.,National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Centre, Tokyo, Japan
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| |
Collapse
|
24
|
Gelman R, Smith RT, Tsang SH. DIAGNOSTIC ACCURACY EVALUATION OF VISUAL ACUITY AND FUNDUS AUTOFLUORESCENCE MACULAR GEOGRAPHIC ATROPHY AREA FOR THE DISCRIMINATION OF STARGARDT GROUPS. Retina 2016; 36:1596-601. [PMID: 26818478 PMCID: PMC4961576 DOI: 10.1097/iae.0000000000000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate diagnostic accuracy of visual acuity and fundus autofluorescence (FAF) macular geographic atrophy (GA) area for the discrimination of autosomal recessive Stargardt groups. METHODS Subjects aged <50 years old with confirmed molecular diagnoses were classified to Groups 1, 2, or 3 according to a full-field electroretinogram reference standard. Diagnostic accuracy of visual acuity and the FAF macular GA area was assessed with generalized estimating equations, receiver operating characteristic curve area under the curve, and support vector machines. RESULTS Ten eyes were classified as Group 1 and 7 as Group 2. The mean log minimum angle resolution (Snellen equivalent) was 0.64 (20/87) for group 1 and 0.96 (20/182) for group 2. Mean FAF macular GA area was 0.96 mm for Group 1 and 3.23 mm for Group 2. The generalized estimating equation analysis showed an 8.3% increase in odds of Group 2 classification with each 0.1-unit increase in log minimum angle resolution and a 24% increase with each 1-mm increase in FAF macular GA area. Multivariate generalized estimating equation analysis showed that only the FAF macular GA area was significant. Area under the curve was 0.79 for log minimum angle resolution and 0.89 for FAF macular GA area. The support vector machine classification accuracy was 71% for log minimum angle resolution and 82% for FAF macular GA area. CONCLUSION Visual acuity and FAF macular GA area had good independent accuracy for the discrimination of groups 1 and 2, indicating that they may serve as useful diagnostic parameters.
Collapse
Affiliation(s)
- Rony Gelman
- Bernard & Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Stem Cell Laboratory, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, New York, NY
| | - R. Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, NY
| | - Stephen H. Tsang
- Bernard & Shirlee Brown Glaucoma Laboratory and Barbara & Donald Jonas Stem Cell Laboratory, Edward S. Harkness Eye Institute, Columbia University College of Physicians and Surgeons, New York, NY
- Institute of Human Nutrition, Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
25
|
Yung M, Klufas MA, Sarraf D. Clinical applications of fundus autofluorescence in retinal disease. Int J Retina Vitreous 2016; 2:12. [PMID: 27847630 PMCID: PMC5088473 DOI: 10.1186/s40942-016-0035-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 12/30/2022] Open
Abstract
Fundus autofluorescence (FAF) is a non-invasive retinal imaging modality used in clinical practice to provide a density map of lipofuscin, the predominant ocular fluorophore, in the retinal pigment epithelium. Multiple commercially available imaging systems, including the fundus camera, the confocal scanning laser ophthalmoscope, and the ultra-widefield imaging device, are available to the clinician. Each offers unique advantages for evaluating various retinal diseases. The clinical applications of FAF continue to expand. It is now an essential tool for evaluating age related macular degeneration, macular dystrophies, retinitis pigmentosa, white dot syndromes, retinal drug toxicities, and various other retinal disorders. FAF may detect abnormalities beyond those detected on funduscopic exam, fluorescein angiography, or optical coherence tomography, and can be used to elucidate disease pathogenesis, form genotype-phenotype correlations, diagnose and monitor disease, and evaluate novel therapies. Given its ease of use, non-invasive nature, and value in characterizing retinal disease, FAF enjoys increasing clinical relevance. This review summarizes common ocular fluorophores, imaging modalities, and FAF findings for a wide spectrum of retinal disorders.
Collapse
Affiliation(s)
- Madeline Yung
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
| | - Michael A. Klufas
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine at University of California, Los Angeles, CA 90095 USA
- Greater Los Angeles VA Healthcare Center, Los Angeles, CA 90024 USA
| |
Collapse
|
26
|
Functional assessment of the fundus autofluorescence pattern in Best vitelliform macular dystrophy. Graefes Arch Clin Exp Ophthalmol 2015; 254:1297-302. [DOI: 10.1007/s00417-015-3194-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 11/26/2022] Open
|
27
|
Cideciyan AV, Swider M, Jacobson SG. Autofluorescence imaging with near-infrared excitation:normalization by reflectance to reduce signal from choroidal fluorophores. Invest Ophthalmol Vis Sci 2015; 56:3393-406. [PMID: 26024124 DOI: 10.1167/iovs.15-16726] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We previously developed reduced-illuminance autofluorescence imaging (RAFI) methods involving near-infrared (NIR) excitation to image melanin-based fluorophores and short-wavelength (SW) excitation to image lipofuscin-based flurophores. Here, we propose to normalize NIR-RAFI in order to increase the relative contribution of retinal pigment epithelium (RPE) fluorophores. METHODS Retinal imaging was performed with a standard protocol holding system parameters invariant in healthy subjects and in patients. Normalized NIR-RAFI was derived by dividing NIR-RAFI signal by NIR reflectance point-by-point after image registration. RESULTS Regions of RPE atrophy in Stargardt disease, AMD, retinitis pigmentosa, choroideremia, and Leber congenital amaurosis as defined by low signal on SW-RAFI could correspond to a wide range of signal on NIR-RAFI depending on the contribution from the choroidal component. Retinal pigment epithelium atrophy tended to always correspond to high signal on NIR reflectance. Normalizing NIR-RAFI reduced the choroidal component of the signal in regions of atrophy. Quantitative evaluation of RPE atrophy area showed no significant differences between SW-RAFI and normalized NIR-RAFI. CONCLUSIONS Imaging of RPE atrophy using lipofuscin-based AF imaging has become the gold standard. However, this technique involves bright SW lights that are uncomfortable and may accelerate the rate of disease progression in vulnerable retinas. The NIR-RAFI method developed here is a melanin-based alternative that is not absorbed by opsins and bisretinoid moieties, and is comfortable to view. Further development of this method may result in a nonmydriatic and comfortable imaging method to quantify RPE atrophy extent and its expansion rate.
Collapse
|
28
|
Nõupuu K, Lee W, Zernant J, Greenstein VC, Tsang S, Allikmets R. Recessive Stargardt disease phenocopying hydroxychloroquine retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 254:865-72. [PMID: 26311262 DOI: 10.1007/s00417-015-3142-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To describe a series of patients with Stargardt disease (STGD1) exhibiting a phenotype usually associated with hydroxychloroquine (HCQ) retinopathy on spectral domain-optical coherence tomography (SD-OCT). METHODS Observational case series from Columbia University Medical Center involving eight patients with genetically-confirmed STGD1. Patients selected for the study presented no history of HCQ use. Horizontal macular SD-OCT scans and accompanying 488-nm autofluorescence (AF) images, color fundus photographs, and full-field electroretinograms were analyzed. RESULTS All study patients exhibited an abrupt thinning of the parafoveal region or disruption of the outer retinal layers on SD-OCT resembling the transient HCQ retinopathy phenotype. Funduscopy and AF imaging revealed variations of bull's eye maculopathy (BEM). Five patients exhibited local fleck-like deposits around the lesion. Genetic screening confirmed two disease-causing ABCA4 mutations in five patients and one mutation in three patients. CONCLUSIONS A transient SD-OCT phenotype ascribed to patients with HCQ retinopathy is associated with an early subtype of STGD1. This finding may also present with HCQ retinopathy-like BEM lesions on AF imaging and funduscopy. A possible phenotypic overlap is unsurprising, given certain shared mechanistic disease processes between the two conditions. A thorough work-up, including screening of genes that are causal in retinal dystrophies associated with foveal sparing, may prevent misdiagnosis of more ambiguous cases.
Collapse
Affiliation(s)
- Kalev Nõupuu
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA.,Department of Ophthalmology, University of Tartu, Tartu, Estonia
| | - Winston Lee
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA
| | - Vivienne C Greenstein
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA
| | - Stephen Tsang
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA.,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, Eye Research Annex Rm 202, 160 Ft Washington Ave, New York, NY, 10032, USA. .,Department of Pathology & Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
29
|
Characterization of kjellin syndrome using spectral-domain optical coherence tomography and fundus autofluorescence. Retin Cases Brief Rep 2014; 5:49-55. [PMID: 25389682 DOI: 10.1097/icb.0b013e3181d5e942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to describe the characteristic funduscopic appearance of Kjellin syndrome, to report unique spectral-domain optical coherence tomography (Carl Zeiss Meditec, Dublin, CA) and fundus autofluorescence findings, and to provide long-term follow-up observations about this patient. METHODS A 43-year-old man presented for an ophthalmologic examination with a known diagnosis of hereditary spastic paraplegia and no visual complaints. RESULTS Retinal flecks were present throughout the macula in both eyes of the patient. Fluorescein angiography showed flecks with central hypofluorescence and peripheral hyperfluorescence. Fundus autofluorescence showed hyperautofluorescence in the center of the visible flecks and a surrounding halo of hypoautofluorescence. An abnormal latticelike network of hyperautofluorescence was present in the nasal retina of both eyes. Spectral domain-optical coherence tomography showed hyperreflective material, accounting for the flecks located at the level of the retinal pigment epithelium. At the 6-year follow-up, this patient had not developed any subjective visual changes, and the appearance of his fundus remained relatively unchanged. CONCLUSION The presence of hyperautofluorescent material outside the posterior pole in patients with Kjellin syndrome has not been previously reported and suggests that retinal pigment epithelium involvement in this condition is not limited to the macula. Spectral domain-optical coherence tomography of this patient showed that the accumulation of hyperreflective material accounting for the flecks was located at the level of the retinal pigment epithelium. The 6-year follow-up findings suggest that this condition is either stationary or slowly progressive.
Collapse
|
30
|
Parodi MB, Iacono P, Campa C, Del Turco C, Bandello F. Fundus autofluorescence patterns in Best vitelliform macular dystrophy. Am J Ophthalmol 2014; 158:1086-92. [PMID: 25068640 DOI: 10.1016/j.ajo.2014.07.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE To provide a systematic classification of fundus autofluorescence (FAF) patterns in patients affected by Best vitelliform macular dystrophy. DESIGN Cross-sectional prospective study. METHODS Patients affected by Best vitelliform macular dystrophy at different stages of the disease were prospectively enrolled from January 2012 to July 2013. Eighty eyes of 40 patients were included in the study. All patients underwent a complete ophthalmologic examination, including genetic characterization, short-wavelength FAF, and near-infrared FAF. Main outcome measures were the recognition of the FAF patterns in the different stages and the identification of a relationship between FAF patterns and best-corrected visual acuity (BCVA). RESULTS Six FAF patterns for both short-wavelength and near-infrared FAF were identified, including normal, hyper-autofluorescent, hypo-autofluorescent, patchy, multifocal, and spoke-like patterns. Applying Gass's classification for defining consecutive stages of Best vitelliform macular dystrophy (namely vitelliform, pseudohypopyon, vitelliruptive, atrophic, and cicatricial) identified no pattern as stage-specific. Patchy patterns had the highest prevalence. A statistically significant difference (Kruskal-Wallis ANOVA) was found among hyper-autofluorescent, patchy, and hypo-autofluorescent patterns, both in short-wavelength (P = .001) and near-infrared FAF (P = .001). Hyper-autofluorescent and hypo-autofluorescent patterns were associated with better and worse BCVA, respectively. CONCLUSIONS Six main patterns on both short-wavelength and near-infrared FAF were identified in Best vitelliform macular dystrophy. No FAF pattern can be considered stage-specific. Although a difference in the BCVA among the FAF patterns was registered, only a longitudinal study designed to evaluate the clinical and FAF modifications over the follow-up will help clarify the prognostic implications of each FAF pattern.
Collapse
|
31
|
Park SP, Siringo FS, Pensec N, Hong IH, Sparrow J, Barile G, Tsang SH, Chang S. Comparison of fundus autofluorescence between fundus camera and confocal scanning laser ophthalmoscope-based systems. Ophthalmic Surg Lasers Imaging Retina 2014; 44:536-43. [PMID: 24221461 DOI: 10.3928/23258160-20131105-04] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm(2) via cSLO and 3.81 ± 1.94 mm(2) via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer.
Collapse
|
32
|
Burke TR, Duncker T, Woods RL, Greenberg JP, Zernant J, Tsang SH, Smith RT, Allikmets R, Sparrow JR, Delori FC. Quantitative fundus autofluorescence in recessive Stargardt disease. Invest Ophthalmol Vis Sci 2014; 55:2841-52. [PMID: 24677105 DOI: 10.1167/iovs.13-13624] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To quantify fundus autofluorescence (qAF) in patients with recessive Stargardt disease (STGD1). METHODS A total of 42 STGD1 patients (ages: 7-52 years) with at least one confirmed disease-associated ABCA4 mutation were studied. Fundus AF images (488-nm excitation) were acquired with a confocal scanning laser ophthalmoscope equipped with an internal fluorescent reference to account for variable laser power and detector sensitivity. The gray levels (GLs) of each image were calibrated to the reference, zero GL, magnification, and normative optical media density to yield qAF. Texture factor (TF) was calculated to characterize inhomogeneities in the AF image and patients were assigned to the phenotypes of Fishman I through III. RESULTS Quantified fundus autofluorescence in 36 of 42 patients and TF in 27 of 42 patients were above normal limits for age. Young patients exhibited the relatively highest qAF, with levels up to 8-fold higher than healthy eyes. Quantified fundus autofluorescence and TF were higher in Fishman II and III than Fishman I, who had higher qAF and TF than healthy eyes. Patients carrying the G1916E mutation had lower qAF and TF than most other patients, even in the presence of a second allele associated with severe disease. CONCLUSIONS Quantified fundus autofluorescence is an indirect approach to measuring RPE lipofuscin in vivo. We report that ABCA4 mutations cause significantly elevated qAF, consistent with previous reports indicating that increased RPE lipofuscin is a hallmark of STGD1. Even when qualitative differences in fundus AF images are not evident, qAF can elucidate phenotypic variation. Quantified fundus autofluorescence will serve to establish genotype-phenotype correlations and as an outcome measure in clinical trials.
Collapse
Affiliation(s)
- Tomas R Burke
- Department of Ophthalmology and Columbia University, New York, New York, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
North V, Gelman R, Tsang SH. Juvenile-onset macular degeneration and allied disorders. DEVELOPMENTS IN OPHTHALMOLOGY 2014; 53:44-52. [PMID: 24732760 DOI: 10.1159/000357293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While age-related macular degeneration (AMD) is a leading cause of central vision loss among the elderly, many inherited diseases that present earlier in life share features of AMD. These diseases of juvenile-onset macular degeneration include Stargardt disease, Best disease, retinitis pigmentosa, X-linked retinoschisis, and other allied disorders. In particular, they can be accompanied by the appearance of drusen, geographic atrophy, macular hyperpigmentation, choroidal neovascularization, and disciform scarring just as in AMD, and often may be confused for the adult form of the disease. Diagnosis based on funduscopic findings alone can be challenging. However, the use of diagnostic studies such as electroretinography, electrooculography, optical coherence tomography, and fundus autofluorescence in conjunction with genetic testing can lead to an accurate diagnosis.
Collapse
Affiliation(s)
- Victoria North
- Department of Ophthalmology, University of Southern California Eye Institute, University of Southern California, Los Angeles, Calif., USA
| | | | | |
Collapse
|
34
|
Greenberg JP, Sherman J, Zweifel SA, Chen RWS, Duncker T, Kohl S, Baumann B, Wissinger B, Yannuzzi LA, Tsang SH. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia. JAMA Ophthalmol 2014; 132:437-45. [PMID: 24504161 PMCID: PMC4423754 DOI: 10.1001/jamaophthalmol.2013.7987] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3 patients (18%) displayed only increased autofluorescence, and 1 individual (6%) exhibited decreased macular pigment contrast. Inner segment ellipsoid line loss generally correlated with the area of reduced autofluorescence, but hyperautofluorescence extended into this region in 2 patients (12%). Bilateral coloboma-like atrophic macular lesions were observed in 1 patient (6%). Five novel mutations were identified (4 in the CNGA3 gene and 1 in the CNGB3 gene). CONCLUSIONS AND RELEVANCE Achromatopsia often demonstrates hyperautofluorescence suggestive of progressive retinal degeneration. The proposed staging system facilitates classification of the disease into different phases of progression and may have therapeutic implications.
Collapse
Affiliation(s)
| | - Jerome Sherman
- Department of Clinical Sciences, State University of New York College of Optometry, New York, New York
| | - Sandrine A Zweifel
- The Vitreous, Retina, Macula Consultants of New York, New York4The LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, New York
| | - Royce W S Chen
- Department of Ophthalmology, Columbia University, New York, New York
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University, New York, New York
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lawrence A Yannuzzi
- The Vitreous, Retina, Macula Consultants of New York, New York4The LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear, and Throat Hospital, New York, New York
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York6Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York 7Department of Pathology and Cell Biology, Columbia Un
| |
Collapse
|
35
|
Fundus autofluorescence imaging: Fundamentals and clinical relevance. Saudi J Ophthalmol 2014; 28:111-6. [PMID: 24843303 DOI: 10.1016/j.sjopt.2014.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/26/2014] [Accepted: 03/13/2014] [Indexed: 11/22/2022] Open
Abstract
Fundus autofluorescence (FAF), a relatively new imaging modality, focuses on the fluorescent properties of pigments in the retina to generate images that help us view various disease processes from a different perspective. It aids us in the understanding of the pathophysiology of different retinal disorders. Recently, FAF imaging is being used commonly to help us in the diagnosis, prognosis as well as in determining the treatment response of various retinal disorders. It generates an image based on the distribution pattern of a fluorescent pigment called lipofuscin. Knowing the distribution pattern of lipofuscin in the normal retina is key to understanding an FAF image representing a retinal pathology. Like most other imaging modalities, FAF comes with its own limitations, taking steps to overcome these limitations will be of utmost importance in using this imaging modality to its fullest potential.
Collapse
|
36
|
Saksens NT, Fleckenstein M, Schmitz-Valckenberg S, Holz FG, den Hollander AI, Keunen JE, Boon CJ, Hoyng CB. Macular dystrophies mimicking age-related macular degeneration. Prog Retin Eye Res 2014; 39:23-57. [PMID: 24291520 DOI: 10.1016/j.preteyeres.2013.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/30/2023]
|
37
|
Witkin AJ, Shah R, Garg SJ. Optical coherence tomography and fundus autofluorescence imaging in uveitis. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Mutations in IMPG1 cause vitelliform macular dystrophies. Am J Hum Genet 2013; 93:571-8. [PMID: 23993198 DOI: 10.1016/j.ajhg.2013.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/27/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022] Open
Abstract
Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507(∗)). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD.
Collapse
|
39
|
Reznicek L, Dabov S, Haritoglou C, Kampik A, Kernt M, Neubauer AS. Green-light fundus autofluorescence in diabetic macular edema. Int J Ophthalmol 2013; 6:75-80. [PMID: 23549658 DOI: 10.3980/j.issn.2222-3959.2013.01.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/30/2013] [Indexed: 01/07/2023] Open
Abstract
AIM To evaluate the role of central green-light fundus autofluorescence (FAF) in diabetic macular edema (DME). METHODS A consecutive series of 92 study eyes with diabetic retinopathy were included. Out of those, 51 diabetic eyes had DME and were compared to 41 diabetic eyes without DME. In all subjects, green-light FAF images were obtained, quantified and classified into various FAF patterns. Cross-sectional optical coherence tomography (OCT) scans were obtained for evaluation of Inner/Outer segment (IS/OS) layer integrity, measurements of central RPE-IS/OS layer thickness as well as classification of DME into various subtypes. RESULTS Mean central green-light FAF intensity of eyes with DME (1.289±0.140)log did not significantly differ from diabetic patients without DME (1.317±0.137)log. Most classifiable FAF patterns were seen in patients with cystoid DME. Mean central retinal thickness (CRT) of all study eyes with DME was (501.9±112.4)µm compared to (328.2±27.0)µm in diabetic patients without DME. Patients with DME had significantly more disrupted photoreceptor IS/OS layers than diabetic patients without DME (28/51 vs 5/41, P<0.001). Mean RPE-IS/OS thickness of patients with DME (60.7±14.1)µm was significantly (P<0.001) lower than in diabetic eyes without DME (73.5±9.4)µm. Correlation analys1s revealed non-significant correlations of green-light FAF intensity and OCT parameters in all subtypes of DME. CONCLUSION Our results indicate a poor correlation of central green-light FAF intensity with CRT, IS/OS layer integrity or RPE-IS/OS layer thickness in diabetic patients with or without DME and its various subtypes. Thus, central green-light FAF is not suitable for detection of retinal thickening in DME.
Collapse
Affiliation(s)
- Lukas Reznicek
- Department of Ophthalmology, Ludwig Maximilians University, Mathildenstr. 8, Munich 80336, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Cuba J, Gómez-Ulla F. Fundus autofluorescence: applications and perspectives. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2013; 88:50-55. [PMID: 23433192 DOI: 10.1016/j.oftal.2011.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/05/2011] [Accepted: 11/08/2011] [Indexed: 06/01/2023]
Abstract
PURPOSE To describe the findings of the study of autofluorescence of the different retinal diseases included in the study. To determine in which diseases autofluorescence may be more, or just as, useful as fluorescein angiography (FAG) in terms of diagnostic information. MATERIAL AND METHODS We studied the retinal autofluorescence of 123 eyes of 93 patients, including various diseases of the eye fundus. In all cases we explored the fundus, retinal autofluorescence, and, if indicated, FAG was performed. Analysis of the autofluorescence was performed using the Heidelberg Retina angiography Angiograph 2 (HRA2) Heidelberg Engineering (Germany). RESULTS The autofluorescence information provided was equal or better (than FAG) in: 68.18% of cases of macular edema, 50% of pigment epithelium detachments, 100% of pigment epithelium atrophies, 100% of central serous chorioretinopathy; 55.55% of choroidal neovascularization, 100% of retinal dystrophies with deposition of lipofuscin, 100% of hard exudates and pre-retinal hemorrhages. CONCLUSIONS Autofluorescence is a quick and non-invasive examination method, comfortable for both patient and examiner, and with a very short learning curve. It provides diagnostic information about many eye fundus diseases. While more studies and more experience with its use are needed, its interest lies in the possibility of avoiding the performing of angiography in patients with these diseases, and in the additional information autofluorescence provides about the functional situation of cells and retinal pigments.
Collapse
Affiliation(s)
- J Cuba
- Servicio de Oftalmología, Hospital Médico-Quirúrxico de Conxo, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
| | | |
Collapse
|
41
|
|
42
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
43
|
Maurizio BP, Pierluigi I, Stelios K, Stefano V, Marialucia C, Ilaria Z, Francesco B. Retro-mode imaging and fundus autofluorescence with scanning laser ophthalmoscope of retinal dystrophies. BMC Ophthalmol 2012; 12:8. [PMID: 22587380 PMCID: PMC3444890 DOI: 10.1186/1471-2415-12-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background Retinal dystrophies display a considerably wide range of phenotypic variability, which can make diagnosis and clinical staging difficult. The aim of the study is to analyze the contribution of retro-mode imaging (RMI) and fundus autofluorescence (FAF) to the characterization of retinal dystrophies. Methods Eighteen consecutive patients affected by retinal dystrophies underwent a complete ophthalmological examination, including best corrected visual acuity with ETDRS charts, blue-light fundus autofluorescence, (BL-FAF), near-infrared fundus autofluorescence (NIR-FAF), and RMI. The primary outcome was the identification of abnormal patterns on RMI. The secondary outcome was the correlation with the findings on BL-FAF and NIR-FAF. Results Overall, the main feature of RMI is represented by a pseudo-3D pattern of all the lesions at the posterior pole. More specifically, any accumulation of material within the retina appears as an area of elevation of different shape and size, displaying irregular and darker borders. No precise correlations between RMI, BL-AF, and NIR-AF imaging was found. Conclusions RMI and FAF appear to be useful tools for characterizing retinal dystrophies. Non-invasive diagnostic tools may yield additional information on the clinical setting and the monitoring of the patients.
Collapse
Affiliation(s)
- Battaglia Parodi Maurizio
- Department of Ophthalmology, Vita-Salute University, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Shinji Makino
- Department of Ophthalmology, Jichi Medical University, Japan.
| | | | | |
Collapse
|
45
|
Seidensticker F, Neubauer AS, Wasfy T, Stumpf C, Thurau SR, Kampik A, Kernt M. Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients. Clin Ophthalmol 2011; 5:1667-71. [PMID: 22174575 PMCID: PMC3236712 DOI: 10.2147/opth.s26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and objectives Detection of peripheral fundus autofluorescence (FAF) using conventional scanning laser ophthalmoscopes (SLOs) is difficult and requires pupil dilation. Here we evaluated the diagnostic properties of wide-field FAF detected by a two-laser wavelength wide-field SLO in uveitis patients. Study design/materials and methods Observational case series of four patients suffering from different types of posterior uveitis/chorioretinitis. Wide-field FAF images were compared to visual fields. Panretinal FAF was detected by a newly developed SLO, which allows FAF imaging of up to 200° of the retina in one scan without the need for pupil dilation. Visual fields were obtained by Goldmann manual perimetry. Results Findings from wide-field FAF imaging showed correspondence to visual field defects in all cases. Conclusion Wide-field FAF allowed the detection of visual field defect-related alterations of the retinal pigment epithelium in all four uveitis cases.
Collapse
|
46
|
Abstract
Since the discovery of the ABCA4 gene as the cause of autosomal recessive Stargardt disease/fundus flavimaculatus much has been written of the phenotypic variability in ABCA4 retinopathy. In this review the authors discuss the findings seen on examination and the disease features detected using various clinical tests. Important differential diagnoses are presented and unusual presentations of ABCA4 disease highlighted.
Collapse
Affiliation(s)
- Tomas R Burke
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, 160 Fort Washington Avenue, New York, NY, 10032, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, 160 Fort Washington Avenue, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Bernard and Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, Columbia University, 160 Fort Washington Avenue, New York, NY, 10032, USA
| |
Collapse
|
47
|
Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M, McMullen S, Travis GH, Bok D. Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 2011; 286:18593-601. [PMID: 21464132 PMCID: PMC3099675 DOI: 10.1074/jbc.m110.191866] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/22/2011] [Indexed: 11/06/2022] Open
Abstract
Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for complement regulatory proteins (CRP), causing chronic inflammation of the RPE. Here we explore the possible relationship between lipofuscin accumulation and complement activation in vivo. Using the abca4(-/-) mouse model for recessive Stargardt, we investigated the role of lipofuscin fluorophores (A2E-lipofuscin) on oxidative stress and complement activation. We observed higher expression of oxidative-stress genes and elevated products of lipid peroxidation in eyes from abca4(-/-) versus wild-type mice. We also observed higher levels of complement-activation products in abca4(-/-) RPE cells. Unexpectedly, expression of multiple CRPs, which protect cells from attack by the complement system, were lower in abca4(-/-) versus wild-type RPE. To test whether acute exposure of healthy RPE cells to A2E-lipofuscin affects oxidative stress and expression of CRPs, we fed cultured fetal-derived human RPE cells with rod outer segments from wild-type or abca4(-/-) retinas. In contrast to RPE cells in abca4(-/-) mice, human RPE cells exposed to abca4(-/-) rod outer segments adaptively increased expression of both oxidative-stress and CRP genes. These results suggest that A2E accumulation causes oxidative stress, complement activation, and down-regulation of protective CRP in the Stargardt mouse model. Thus, Stargardt disease and age-related macular degeneration may both be caused by chronic inflammation of the RPE.
Collapse
Affiliation(s)
- Roxana A Radu
- Jules Stein Eye Institute, the Department of Ophthalmology, University of California, Los Angeles School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chen Y, Ratnam K, Sundquist SM, Lujan B, Ayyagari R, Gudiseva VH, Roorda A, Duncan JL. Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. Invest Ophthalmol Vis Sci 2011; 52:3281-92. [PMID: 21296825 DOI: 10.1167/iovs.10-6538] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. To study the relationship between macular cone structure, fundus autofluorescence (AF), and visual function in patients with Stargardt disease (STGD). METHODS. High-resolution images of the macula were obtained with adaptive optics scanning laser ophthalmoscopy (AOSLO) and spectral domain optical coherence tomography in 12 patients with STGD and 27 age-matched healthy subjects. Measures of retinal structure and AF were correlated with visual function, including best-corrected visual acuity, color vision, kinetic and static perimetry, fundus-guided microperimetry, and full-field electroretinography. Mutation analysis of the ABCA4 gene was completed in all patients. RESULTS. Patients were 15 to 55 years old, and visual acuity ranged from 20/25-20/320. Central scotomas were present in all patients, although the fovea was spared in three patients. The earliest cone spacing abnormalities were observed in regions of homogeneous AF, normal visual function, and normal outer retinal structure. Outer retinal structure and AF were most normal near the optic disc. Longitudinal studies showed progressive increases in AF followed by reduced AF associated with losses of visual sensitivity, outer retinal layers, and cones. At least one disease-causing mutation in the ABCA4 gene was identified in 11 of 12 patients studied; 1 of 12 patients showed no disease-causing ABCA4 mutations. CONCLUSIONS. AOSLO imaging demonstrated abnormal cone spacing in regions of abnormal fundus AF and reduced visual function. These findings provide support for a model of disease progression in which lipofuscin accumulation results in homogeneously increased AF with cone spacing abnormalities, followed by heterogeneously increased AF with cone loss, then reduced AF with cone and RPE cell death.
Collapse
|
49
|
Rougier MB, Delyfer MN, Korobelnik JF. Macular pigment distribution in Stargardt macular disease. J Fr Ophtalmol 2011; 34:287-93. [PMID: 21492959 DOI: 10.1016/j.jfo.2011.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 12/17/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate macular pigment optical density (MPOD) and distribution in patients with Stargardt disease. METHODS Prospective observational case series. The study included 13 eyes of 13 consecutive patients. A modified confocal scanning laser ophthalmoscope (SLO, Heidelberg, Germany) was used for MPOD measurement. It calculated the MPOD at 0.5° of the center of the fovea, and MPOD in the 0.5° and 2° areas. RESULTS Two different MPOD profile patterns were observed: group 1 was composed of patients with a flat profile, i.e., with very low MPOD in all locations, and group 2 presented a normal profile. In group 2, all eyes but one had good visual acuity (VA); in group 1, some displayed poor VA, but others had good VA. All patients in group 1 displayed a thinning of the macular area on OCT. CONCLUSIONS These results suggest that the flat MPOD profile, even if the visual acuity is good, could be associated with poor prognosis. The two different patterns of MPOD distribution described could reflect two different stages in the course of Stargardt disease. No strong correlations were found between MPOD profiles and visual acuity or macular thickness, but a straight trend was brought out that may indicate that the flat MPOD profile has a poor functional prognosis. Long follow-up is required to confirm this hypothesis.
Collapse
Affiliation(s)
- M-B Rougier
- Unité rétine - uvéites - neuro-ophtalmologie, service d'ophtalmologie, hôpital Pellegrin, CHU de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux cedex, France.
| | | | | |
Collapse
|
50
|
Diagnostic and therapeutic challenges. Retina 2010; 31:413-8. [PMID: 20458258 DOI: 10.1097/iae.0b013e3181dc58db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|