1
|
Misselhorn J, Fiene M, Radecke JO, Engel AK, Schneider TR. Transcranial Alternating Current Stimulation over Frontal Eye Fields Mimics Attentional Modulation of Visual Processing. J Neurosci 2024; 44:e1510232024. [PMID: 38729759 PMCID: PMC11209665 DOI: 10.1523/jneurosci.1510-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.
Collapse
Affiliation(s)
- Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marina Fiene
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan-Ole Radecke
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck 23562, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck 23562, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
2
|
Tünçok E, Carrasco M, Winawer J. Spatial attention alters visual cortical representation during target anticipation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.02.583127. [PMID: 38496524 PMCID: PMC10942396 DOI: 10.1101/2024.03.02.583127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Attention enables us to efficiently and flexibly interact with the environment by prioritizing some image features in preparation for responding to a stimulus. Using a concurrent psychophysics- fMRI experiment, we investigated how covert spatial attention affects responses in human visual cortex prior to target onset, and how it affects subsequent behavioral performance. Performance improved at cued locations and worsened at uncued locations, relative to distributed attention, demonstrating a selective tradeoff in processing. Pre-target BOLD responses in cortical visual field maps changed in two ways: First, there was a stimulus-independent baseline shift, positive in map locations near the cued location and negative elsewhere, paralleling the behavioral results. Second, population receptive field centers shifted toward the attended location. Both effects increased in higher visual areas. Together, the results show that spatial attention has large effects on visual cortex prior to target appearance, altering neural response properties throughout and across multiple visual field maps.
Collapse
|
3
|
Lee HH, Fernández A, Carrasco M. Adaptation and exogenous attention interact in the early visual cortex: A TMS study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.27.563093. [PMID: 37961163 PMCID: PMC10634897 DOI: 10.1101/2023.10.27.563093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Transcranial magnetic stimulation (TMS) to early visual cortex modulates the effect of adaptation and eliminates the effect of exogenous (involuntary) attention on contrast sensitivity. Here we investigated whether adaptation modulates exogenous attention under TMS to V1/V2. Observers performed an orientation discrimination task while attending to one of two stimuli, with or without adaptation. Following an attentional cue, two stimuli were presented in the stimulated region and its contralateral symmetric region. A response cue indicated the stimulus whose orientation observers had to discriminate. Without adaptation, in the distractor-stimulated condition, contrast sensitivity increased at the attended location and decreased at the unattended location via response gain-but these effects were eliminated in the target-stimulated condition. Critically, after adaptation, exogenous attention altered performance similarly in both distractor-stimulated and target-stimulated conditions. These results reveal that (1) adaptation and attention interact in the early visual cortex, and (2) adaptation shields exogenous attention from TMS effects.
Collapse
|
4
|
Wang X, Nandy AS, Jadi MP. Laminar compartmentalization of attention modulation in area V4 aligns with the demands of visual processing hierarchy in the cortex. Sci Rep 2023; 13:19558. [PMID: 37945642 PMCID: PMC10636153 DOI: 10.1038/s41598-023-46722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023] Open
Abstract
Attention selectively enhances neural responses to low contrast stimuli in visual area V4, a critical hub that sends projections both up and down the visual hierarchy. Veridical encoding of contrast information is a key computation in early visual areas, while later stages encoding higher level features benefit from improved sensitivity to low contrast. How area V4 meets these distinct information processing demands in the attentive state is unknown. We found that attentional modulation in V4 is cortical layer and cell-class specific. Putative excitatory neurons in the superficial layers show enhanced boosting of low contrast information, while those of deep layers exhibit contrast-independent scaling. Computational modeling suggested the extent of spatial integration of inhibitory neurons as the mechanism behind such laminar differences. Considering that superficial neurons are known to project to higher areas and deep layers to early visual areas, our findings suggest that the interactions between attention and contrast in V4 are compartmentalized, in alignment with the demands of the visual processing hierarchy.
Collapse
Affiliation(s)
- Xiang Wang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
| | - Anirvan S Nandy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA
| | - Monika P Jadi
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06511, USA.
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
5
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention. Nat Commun 2023; 14:5381. [PMID: 37666805 PMCID: PMC10477327 DOI: 10.1038/s41467-023-40678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023] Open
Abstract
Shortly before saccadic eye movements, visual sensitivity at the saccade target is enhanced, at the expense of sensitivity elsewhere. Some behavioral and neural correlates of this presaccadic shift of attention resemble those of covert attention, deployed during fixation. Microstimulation in non-human primates has shown that presaccadic attention modulates perception via feedback from oculomotor to visual areas. This mechanism also seems plausible in humans, as both oculomotor and visual areas are active during saccade planning. We investigated this hypothesis by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show their causal and differential roles in contralateral presaccadic attention effects: Whereas rFEF+ stimulation enhanced sensitivity opposite the saccade target throughout saccade preparation, V1/V2 stimulation reduced sensitivity at the saccade target only shortly before saccade onset. These findings are consistent with presaccadic attention modulating perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
Affiliation(s)
- Nina M Hanning
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA.
- Institut für Psychologie, Humboldt Universität zu Berlin, Berlin, Germany.
| | - Antonio Fernández
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Marisa Carrasco
- Department of Psychology & Center for Neural Sciences, New York University, New York, NY, USA
| |
Collapse
|
6
|
Hanning NM, Deubel H. A dynamic 1/f noise protocol to assess visual attention without biasing perceptual processing. Behav Res Methods 2023; 55:2583-2594. [PMID: 35915360 PMCID: PMC10439027 DOI: 10.3758/s13428-022-01916-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Psychophysical paradigms measure visual attention via localized test items to which observers must react or whose features have to be discriminated. These items, however, potentially interfere with the intended measurement, as they bias observers' spatial and temporal attention to their location and presentation time. Furthermore, visual sensitivity for conventional test items naturally decreases with retinal eccentricity, which prevents direct comparison of central and peripheral attention assessments. We developed a stimulus that overcomes these limitations. A brief oriented discrimination signal is seamlessly embedded into a continuously changing 1/f noise field, such that observers cannot anticipate potential test locations or times. Using our new protocol, we demonstrate that local orientation discrimination accuracy for 1/f filtered signals is largely independent of retinal eccentricity. Moreover, we show that items present in the visual field indeed shape the distribution of visual attention, suggesting that classical studies investigating the spatiotemporal dynamics of visual attention via localized test items may have obtained a biased measure. We recommend our protocol as an efficient method to evaluate the behavioral and neurophysiological correlates of attentional orienting across space and time.
Collapse
Affiliation(s)
- Nina M Hanning
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany.
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Sawetsuttipan P, Phunchongharn P, Ounjai K, Salazar A, Pongsuwan S, Intrachooto S, Serences JT, Itthipuripat S. Perceptual Difficulty Regulates Attentional Gain Modulations in Human Visual Cortex. J Neurosci 2023; 43:3312-3330. [PMID: 36963848 PMCID: PMC10162463 DOI: 10.1523/jneurosci.0519-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Perceptual difficulty is sometimes used to manipulate selective attention. However, these two factors are logically distinct. Selective attention is defined by priority given to specific stimuli based on their behavioral relevance, whereas perceptual difficulty is often determined by perceptual demands required to discriminate relevant stimuli. That said, both perceptual difficulty and selective attention are thought to modulate the gain of neural responses in early sensory areas. Previous studies found that selectively attending to a stimulus or increasing perceptual difficulty enhanced the gain of neurons in visual cortex. However, some other studies suggest that perceptual difficulty can have either a null or even reversed effect on gain modulations in visual cortex. According to Yerkes-Dodson's Law, it is possible that this discrepancy arises because of an interaction between perceptual difficulty and attentional gain modulations yielding a nonlinear inverted-U function. Here, we used EEG to measure modulations in the visual cortex of male and female human participants performing an attention-cueing task where we systematically manipulated perceptual difficulty across blocks of trials. The behavioral and neural data implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty: a focused-attention cue led to larger response gain in both neural and behavioral data at intermediate difficulty levels compared with when the task was more or less difficult. Moreover, difficulty-related changes in attentional gain positively correlated with those predicted by quantitative modeling of the behavioral data. These findings suggest that perceptual difficulty mediates attention-related changes in perceptual performance via selective neural modulations in human visual cortex.SIGNIFICANCE STATEMENT Both perceptual difficulty and selective attention are thought to influence perceptual performance by modulating response gain in early sensory areas. That said, less is known about how selective attention interacts with perceptual difficulty. Here, we measured neural gain modulations in the visual cortex of human participants performing an attention-cueing task where perceptual difficulty was systematically manipulated. Consistent with Yerkes-Dodson's Law, our behavioral and neural data implicate a nonlinear inverted-U relationship between selective attention and perceptual difficulty. These results suggest that perceptual difficulty mediates attention-related changes in perceptual performance via selective neural modulations in visual cortex, extending our understanding of the attentional operation under different levels of perceptual demands.
Collapse
Affiliation(s)
- Prapasiri Sawetsuttipan
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Phond Phunchongharn
- Computer Engineering Department, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Kajornvut Ounjai
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Annalisa Salazar
- Department of Psychology, University of California, San Diego, La Jolla, California 92093-1090
| | - Sarigga Pongsuwan
- Happiness Science Hub, Research & Innovation for Sustainability Center (RISC), Bangkok 10260, Thailand
| | - Singh Intrachooto
- Happiness Science Hub, Research & Innovation for Sustainability Center (RISC), Bangkok 10260, Thailand
| | - John T Serences
- Department of Psychology, University of California, San Diego, La Jolla, California 92093-1090
- Neurosciences Graduate Program and Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, California 92093-1090
| | - Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
- Big Data Experience Center, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
8
|
Jigo M, Tavdy D, Himmelberg MM, Carrasco M. Cortical magnification eliminates differences in contrast sensitivity across but not around the visual field. eLife 2023; 12:e84205. [PMID: 36961485 PMCID: PMC10089656 DOI: 10.7554/elife.84205] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Human visual performance changes dramatically both across (eccentricity) and around (polar angle) the visual field. Performance is better at the fovea, decreases with eccentricity, and is better along the horizontal than vertical meridian and along the lower than the upper vertical meridian. However, all neurophysiological and virtually all behavioral studies of cortical magnification have investigated eccentricity effects without considering polar angle. Most performance differences due to eccentricity are eliminated when stimulus size is cortically magnified (M-scaled) to equate the size of its cortical representation in primary visual cortex (V1). But does cortical magnification underlie performance differences around the visual field? Here, to assess contrast sensitivity, human adult observers performed an orientation discrimination task with constant stimulus size at different locations as well as when stimulus size was M-scaled according to stimulus eccentricity and polar angle location. We found that although M-scaling stimulus size eliminates differences across eccentricity, it does not eliminate differences around the polar angle. This finding indicates that limits in contrast sensitivity across eccentricity and around polar angle of the visual field are mediated by different anatomical and computational constraints.
Collapse
Affiliation(s)
- Michael Jigo
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Daniel Tavdy
- Department of Psychology, New York UniversityNew YorkUnited States
| | - Marc M Himmelberg
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Marisa Carrasco
- Department of Psychology, New York UniversityNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
9
|
Fernández A, Hanning NM, Carrasco M. Transcranial magnetic stimulation to frontal but not occipital cortex disrupts endogenous attention. Proc Natl Acad Sci U S A 2023; 120:e2219635120. [PMID: 36853947 PMCID: PMC10013745 DOI: 10.1073/pnas.2219635120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
Covert endogenous (voluntary) attention improves visual performance. Human neuroimaging studies suggest that the putative human homolog of macaque frontal eye fields (FEF+) is critical for this improvement, whereas early visual areas are not. Yet, correlational MRI methods do not manipulate brain function. We investigated whether rFEF+ or V1/V2 plays a causal role in endogenous attention. We used transcranial magnetic stimulation (TMS) to alter activity in the visual cortex or rFEF+ when observers performed an orientation discrimination task while attention was manipulated. On every trial, they received double-pulse TMS at a predetermined site (stimulated region) around V1/V2 or rFEF+. Two cortically magnified gratings were presented, one in the stimulated region (contralateral to the stimulated area) and another in the symmetric (ipsilateral) nonstimulated region. Grating contrast was varied to measure contrast response functions (CRFs) for all attention and stimulation combinations. In experiment 1, the CRFs were similar at the stimulated and nonstimulated regions, indicating that early visual areas do not modulate endogenous attention during stimulus presentation. In contrast, occipital TMS eliminates exogenous (involuntary) attention effects on performance [A. Fernández, M. Carrasco,Curr. Biol. 30, 4078-4084 (2020)]. In experiment 2, rFEF+ stimulation decreased the overall attentional effect; neither benefits at the attended location nor costs at the unattended location were significant. The frequency and directionality of microsaccades mimicked this pattern: Whereas occipital stimulation did not affect microsaccades, rFEF+ stimulation caused a higher microsaccade rate directed toward the stimulated hemifield. These results provide causal evidence of the role of this frontal region for endogenous attention.
Collapse
Affiliation(s)
| | - Nina M. Hanning
- Department of Psychology, New York University, New York, NY10003
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, Humboldt-Universität zu Berlin, 12489Berlin, Germany
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY10003
- Center for Neural Science, New York University, New York, NY10003
| |
Collapse
|
10
|
Hanning NM, Fernández A, Carrasco M. Dissociable roles of human frontal eye fields and early visual cortex in presaccadic attention - evidence from TMS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529691. [PMID: 36865228 PMCID: PMC9980111 DOI: 10.1101/2023.02.23.529691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Shortly before each saccadic eye movement, presaccadic attention improves visual sensitivity at the saccade target 1-5 at the expense of lowered sensitivity at non-target locations 6-11 . Some behavioral and neural correlates of presaccadic attention and covert attention -which likewise enhances sensitivity, but during fixation 12 -are similar 13 . This resemblance has led to the debatable 13-18 notion that presaccadic and covert attention are functionally equivalent and rely on the same neural circuitry 19-21 . At a broad scale, oculomotor brain structures (e.g., FEF) are also modulated during covert attention 22-24 - yet by distinct neuronal subpopulations 25-28 . Perceptual benefits of presaccadic attention rely on feedback from oculomotor structures to visual cortices 29,30 ( Fig. 1a ); micro-stimulation of FEF in non-human primates affects activity in visual cortex 31-34 and enhances visual sensitivity at the movement field of the stimulated neurons 35-37 . Similar feedback projections seem to exist in humans: FEF+ activation precedes occipital activation during saccade preparation 38,39 and FEF TMS modulates activity in visual cortex 40-42 and enhances perceived contrast in the contralateral hemifield 40 . We investigated presaccadic feedback in humans by applying TMS to frontal or visual areas during saccade preparation. By simultaneously measuring perceptual performance, we show the causal and differential roles of these brain regions in contralateral presaccadic benefits at the saccade target and costs at non-targets: Whereas rFEF+ stimulation reduced presaccadic costs throughout saccade preparation, V1/V2 stimulation reduced benefits only shortly before saccade onset. These effects provide causal evidence that presaccadic attention modulates perception through cortico-cortical feedback and further dissociate presaccadic and covert attention.
Collapse
|
11
|
Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1. Nat Commun 2022; 13:6469. [PMID: 36309512 PMCID: PMC9617970 DOI: 10.1038/s41467-022-34134-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Orientation selectivity in primate visual cortex is organized into cortical columns. Since cortical columns are at a finer spatial scale than the sampling resolution of standard BOLD fMRI measurements, analysis approaches have been proposed to peer past these spatial resolution limitations. It was recently found that these methods are predominantly sensitive to stimulus vignetting - a form of selectivity arising from an interaction of the oriented stimulus with the aperture edge. Beyond vignetting, it is not clear whether orientation-selective neural responses are detectable in BOLD measurements. Here, we leverage a dataset of visual cortical responses measured using high-field 7T fMRI. Fitting these responses using image-computable models, we compensate for vignetting and nonetheless find reliable tuning for orientation. Results further reveal a coarse-scale map of orientation preference that may constitute the neural basis for known perceptual anisotropies. These findings settle a long-standing debate in human neuroscience, and provide insights into functional organization principles of visual cortex.
Collapse
|
12
|
Zhou Y, Curtis CE, Sreenivasan KK, Fougnie D. Common Neural Mechanisms Control Attention and Working Memory. J Neurosci 2022; 42:7110-7120. [PMID: 35927036 PMCID: PMC9480871 DOI: 10.1523/jneurosci.0443-22.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Although previous studies point to qualitative similarities between working memory (WM) and attention, the degree to which these two constructs rely on shared neural mechanisms remains unknown. Focusing on one such potentially shared mechanism, we tested the hypothesis that selecting an item within WM utilizes similar neural mechanisms as selecting a visible item via a shift of attention. We used fMRI and machine learning to decode both the selection among items visually available and the selection among items stored in WM in human subjects (both sexes). Patterns of activity in visual, parietal, and to a lesser extent frontal cortex predicted the locations of the selected items. Critically, these patterns were strikingly interchangeable; classifiers trained on data during attentional selection predicted selection from WM, and classifiers trained on data during selection from memory predicted attentional selection. Using models of voxel receptive fields, we visualized topographic population activity that revealed gain enhancements at the locations of the externally and internally selected items. Our results suggest that selecting among perceived items and selecting among items in WM share a common mechanism. This common mechanism, analogous to a shift of spatial attention, controls the relative gains of neural populations that encode behaviorally relevant information.SIGNIFICANCE STATEMENT How we allocate our attention to external stimuli that we see and to internal representations of stimuli stored in memory might rely on a common mechanism. Supporting this hypothesis, we demonstrated that not only could patterns of human brain activity predict which items were selected during perception and memory, but that these patterns were interchangeable during external and internal selection. Additionally, this generalized selection mechanism operates by changes in the gains of the neural populations both encoding attended sensory representations and storing relevant memory representations.
Collapse
Affiliation(s)
- Ying Zhou
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
| | - Clayton E Curtis
- Department of Psychology, New York University, New York, New York 10003
- Center for Neural Science, New York University, New York, New York 10003
| | - Kartik K Sreenivasan
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
| | - Daryl Fougnie
- Program in Psychology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates 129188
- Department of Psychology, New York University, New York, New York 10003
| |
Collapse
|
13
|
Merholz G, Grabot L, VanRullen R, Dugué L. Periodic attention operates faster during more complex visual search. Sci Rep 2022; 12:6688. [PMID: 35461325 PMCID: PMC9035177 DOI: 10.1038/s41598-022-10647-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Attention has been found to sample visual information periodically, in a wide range of frequencies below 20 Hz. This periodicity may be supported by brain oscillations at corresponding frequencies. We propose that part of the discrepancy in periodic frequencies observed in the literature is due to differences in attentional demands, resulting from heterogeneity in tasks performed. To test this hypothesis, we used visual search and manipulated task complexity, i.e., target discriminability (high, medium, low) and number of distractors (set size), while electro-encephalography was simultaneously recorded. We replicated previous results showing that the phase of pre-stimulus low-frequency oscillations predicts search performance. Crucially, such effects were observed at increasing frequencies within the theta-alpha range (6-18 Hz) for decreasing target discriminability. In medium and low discriminability conditions, correct responses were further associated with higher post-stimulus phase-locking than incorrect ones, in increasing frequency and latency. Finally, the larger the set size, the later the post-stimulus effect peaked. Together, these results suggest that increased complexity (lower discriminability or larger set size) requires more attentional cycles to perform the task, partially explaining discrepancies between reports of attentional sampling. Low-frequency oscillations structure the temporal dynamics of neural activity and aid top-down, attentional control for efficient visual processing.
Collapse
Affiliation(s)
- Garance Merholz
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France.
| | - Laetitia Grabot
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
| | - Rufin VanRullen
- Centre National de la Recherche Scientifique, CerCo Unité Mixte de Recherche 5549, Université de Toulouse, 31052, Toulouse, France
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
14
|
Exogenous attention generalizes location transfer of perceptual learning in adults with amblyopia. iScience 2022; 25:103839. [PMID: 35243224 PMCID: PMC8857599 DOI: 10.1016/j.isci.2022.103839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/19/2021] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Visual perceptual learning (VPL) is a behavioral manifestation of brain neuroplasticity. However, its practical effectiveness is limited because improvements are often specific to the trained conditions and require significant time and effort. It is critical to understand the conditions that promote learning and transfer. Covert endogenous (voluntary) and exogenous (involuntary) spatial attention help overcome VPL location specificity in neurotypical adults, but whether they also do so for people with atypical visual development is unknown. This study investigates the role of exogenous attention during VPL in adults with amblyopia, an ideal population given their asymmetrically developed, but highly plastic, visual cortex. Here we show that training on a discrimination task leads to improvements in foveal contrast sensitivity, acuity, and stereoacuity. Notably, exogenous attention helps generalize learning beyond trained spatial locations. Future large-scale studies can verify the extent to which attention enhances the effectiveness of perceptual learning during rehabilitation of visual disorders. Contrast sensitivity (CS)-based VPL in amblyopes improves CS, acuity and stereoacuity Similar improvement in trained amblyopic eye and untrained fellow eye Exogenous spatial attention facilitates location transfer of VPL in amblyopic adults
Collapse
|
15
|
Awareness-Dependent Normalization Framework of Visual Bottom-up Attention. J Neurosci 2021; 41:9593-9607. [PMID: 34611027 DOI: 10.1523/jneurosci.1110-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Although bottom-up attention can improve visual performance with and without awareness to the exogenous cue, whether they are governed by a common neural computation remains unclear. Using a modified Posner paradigm with backward masking, we found that the cueing effect displayed a monotonic gradient profile (Gaussian-like), both with and without awareness, whose scope, however, was significantly wider with than without awareness. This awareness-dependent scope offered us a unique opportunity to change the relative size of the attention field to the stimulus, differentially modulating the gain of attentional selection, as proposed by the normalization model of attention. Therefore, for each human subject (male and female), the stimulus size was manipulated as their respective mean attention fields with and without awareness while stimulus contrast was varied in a spatial cueing task. By measuring the gain pattern of contrast-response functions on the spatial cueing effect derived by visible or invisible cues, we observed changes in the cueing effect consonant with changes in contrast gain for visible cues and response gain for invisible cues. Importantly, a complementary analysis confirmed that subjects' awareness-dependent attention fields can be simulated by using the normalization model of attention. Together, our findings indicate an awareness-dependent normalization framework of visual bottom-up attention, placing a necessary constraint, namely, awareness, on our understanding of the neural computations underlying visual attention.SIGNIFICANCE STATEMENT Bottom-up attention is known to improve visual performance with and without awareness. We discovered that manipulating subjects' awareness can modulate their attention fields of visual bottom-up attention, which offers a unique opportunity to regulate its normalization processes. On the one hand, by measuring the gain pattern of contrast-response functions on the spatial cueing effect derived by visible or invisible cues, we observed changes in the cueing effect consonant with changes in contrast gain for visible cues and response gain for invisible cues. On the other hand, by using the normalization model of attention, subjects' awareness-dependent attention fields can be simulated successfully. Our study supports important predictions of the normalization model of visual bottom-up attention and further reveals its dependence on awareness.
Collapse
|
16
|
Purokayastha S, Roberts M, Carrasco M. Voluntary attention improves performance similarly around the visual field. Atten Percept Psychophys 2021; 83:2784-2794. [PMID: 34036535 PMCID: PMC8514247 DOI: 10.3758/s13414-021-02316-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Performance as a function of polar angle at isoeccentric locations across the visual field is known as a performance field (PF) and is characterized by two asymmetries: the HVA (horizontal-vertical anisotropy) and VMA (vertical meridian asymmetry). Exogenous (involuntary) spatial attention does not affect the shape of the PF, improving performance similarly across polar angle. Here we investigated whether endogenous (voluntary) spatial attention, a flexible mechanism, can attenuate these perceptual asymmetries. Twenty participants performed an orientation discrimination task while their endogenous attention was either directed to the target location or distributed across all possible locations. The effects of attention were assessed either using the same stimulus contrast across locations or equating difficulty across locations using individually titrated contrast thresholds. In both experiments, endogenous attention similarly improved performance at all locations, maintaining the canonical PF shape. Thus, despite its voluntary nature, like exogenous attention, endogenous attention cannot alleviate perceptual asymmetries at isoeccentric locations.
Collapse
Affiliation(s)
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA.
- Center for Neural Science, New York University, 6 Washington Place, Room 970, New York, NY, 10003, USA.
| |
Collapse
|
17
|
Jigo M, Heeger DJ, Carrasco M. An image-computable model of how endogenous and exogenous attention differentially alter visual perception. Proc Natl Acad Sci U S A 2021; 118:e2106436118. [PMID: 34389680 PMCID: PMC8379934 DOI: 10.1073/pnas.2106436118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention alters perception across the visual field. Typically, endogenous (voluntary) and exogenous (involuntary) attention similarly improve performance in many visual tasks, but they have differential effects in some tasks. Extant models of visual attention assume that the effects of these two types of attention are identical and consequently do not explain differences between them. Here, we develop a model of spatial resolution and attention that distinguishes between endogenous and exogenous attention. We focus on texture-based segmentation as a model system because it has revealed a clear dissociation between both attention types. For a texture for which performance peaks at parafoveal locations, endogenous attention improves performance across eccentricity, whereas exogenous attention improves performance where the resolution is low (peripheral locations) but impairs it where the resolution is high (foveal locations) for the scale of the texture. Our model emulates sensory encoding to segment figures from their background and predict behavioral performance. To explain attentional effects, endogenous and exogenous attention require separate operating regimes across visual detail (spatial frequency). Our model reproduces behavioral performance across several experiments and simultaneously resolves three unexplained phenomena: 1) the parafoveal advantage in segmentation, 2) the uniform improvements across eccentricity by endogenous attention, and 3) the peripheral improvements and foveal impairments by exogenous attention. Overall, we unveil a computational dissociation between each attention type and provide a generalizable framework for predicting their effects on perception across the visual field.
Collapse
Affiliation(s)
- Michael Jigo
- Center for Neural Science, New York University, New York, NY 10003;
| | - David J Heeger
- Center for Neural Science, New York University, New York, NY 10003
- Department of Psychology, New York University, New York, NY 10003
| | - Marisa Carrasco
- Center for Neural Science, New York University, New York, NY 10003
- Department of Psychology, New York University, New York, NY 10003
| |
Collapse
|
18
|
Li HH, Hanning NM, Carrasco M. To look or not to look: dissociating presaccadic and covert spatial attention. Trends Neurosci 2021; 44:669-686. [PMID: 34099240 PMCID: PMC8552810 DOI: 10.1016/j.tins.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
Attention is a central neural process that enables selective and efficient processing of visual information. Individuals can attend to specific visual information either overtly, by making an eye movement to an object of interest, or covertly, without moving their eyes. We review behavioral, neuropsychological, neurophysiological, and computational evidence of presaccadic attentional modulations that occur while preparing saccadic eye movements, and highlight their differences from those of covert spatial endogenous (voluntary) and exogenous (involuntary) attention. We discuss recent studies and experimental procedures on how these different types of attention impact visual performance, alter appearance, differentially modulate the featural representation of basic visual dimensions (orientation and spatial frequency), engage different neural computations, and recruit partially distinct neural substrates. We conclude that presaccadic attention and covert attention are dissociable.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
19
|
Li HH, Pan J, Carrasco M. Different computations underlie overt presaccadic and covert spatial attention. Nat Hum Behav 2021; 5:1418-1431. [PMID: 33875838 DOI: 10.1038/s41562-021-01099-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Perception and action are tightly coupled: visual responses at the saccade target are enhanced right before saccade onset. This phenomenon, presaccadic attention, is a form of overt attention-deployment of visual attention with concurrent eye movements. Presaccadic attention is well-documented, but its underlying computational process remains unknown. This is in stark contrast to covert attention-deployment of visual attention without concurrent eye movements-for which the computational processes are well characterized by a normalization model. Here, a series of psychophysical experiments reveal that presaccadic attention modulates visual performance only via response gain changes. A response gain change was observed even when attention field size increased, violating the predictions of a normalization model of attention. Our empirical results and model comparisons reveal that the perceptual modulations by overt presaccadic and covert spatial attention are mediated through different computations.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, NY, USA. .,Center for Neural Science, New York University, New York, NY, USA.
| | - Jasmine Pan
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
20
|
Das A, Ray S. Effect of Cross-Orientation Normalization on Different Neural Measures in Macaque Primary Visual Cortex. Cereb Cortex Commun 2021; 2:tgab009. [PMID: 34095837 PMCID: PMC8152940 DOI: 10.1093/texcom/tgab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/14/2022] Open
Abstract
Divisive normalization is a canonical mechanism that can explain a variety of sensory phenomena. While normalization models have been used to explain spiking activity in response to different stimulus/behavioral conditions in multiple brain areas, it is unclear whether similar models can also explain modulation in population-level neural measures such as power at various frequencies in local field potentials (LFPs) or steady-state visually evoked potential (SSVEP) that is produced by flickering stimuli and popular in electroencephalogram studies. To address this, we manipulated normalization strength by presenting static as well as flickering orthogonal superimposed gratings (plaids) at varying contrasts to 2 female monkeys while recording multiunit activity (MUA) and LFP from the primary visual cortex and quantified the modulation in MUA, gamma (32-80 Hz), high-gamma (104-248 Hz) power, as well as SSVEP. Even under similar stimulus conditions, normalization strength was different for the 4 measures and increased as: spikes, high-gamma, SSVEP, and gamma. However, these results could be explained using a normalization model that was modified for population responses, by varying the tuned normalization parameter and semisaturation constant. Our results show that different neural measures can reflect the effect of stimulus normalization in different ways, which can be modeled by a simple normalization model.
Collapse
Affiliation(s)
- Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
21
|
Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci Rep 2020; 10:21274. [PMID: 33277552 PMCID: PMC7718281 DOI: 10.1038/s41598-020-78172-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
How do endogenous (voluntary) and exogenous (involuntary) attention modulate activity in visual cortex? Using ROI-based fMRI analysis, we measured fMRI activity for valid and invalid trials (target at cued/un-cued location, respectively), pre- or post-cueing endogenous or exogenous attention, while participants performed the same orientation discrimination task. We found stronger modulation in contralateral than ipsilateral visual regions, and higher activity in valid- than invalid-trials. For endogenous attention, modulation of stimulus-evoked activity due to a pre-cue increased along the visual hierarchy, but was constant due to a post-cue. For exogenous attention, modulation of stimulus-evoked activity due to a pre-cue was constant along the visual hierarchy, but was not modulated due to a post-cue. These findings reveal that endogenous and exogenous attention distinctly modulate activity in visuo-occipital areas during orienting and reorienting; endogenous attention facilitates both the encoding and the readout of visual information whereas exogenous attention only facilitates the encoding of information.
Collapse
|
22
|
Jigo M, Carrasco M. Differential impact of exogenous and endogenous attention on the contrast sensitivity function across eccentricity. J Vis 2020; 20:11. [PMID: 32543651 PMCID: PMC7416906 DOI: 10.1167/jov.20.6.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Both exogenous and endogenous covert spatial attention enhance contrast sensitivity, a fundamental measure of visual function that depends substantially on the spatial frequency and eccentricity of a stimulus. Whether and how each type of attention systematically improves contrast sensitivity across spatial frequency and eccentricity are fundamental to our understanding of visual perception. Previous studies have assessed the effects of spatial attention at individual spatial frequencies and, separately, at different eccentricities, but this is the first study to do so parametrically with the same task and observers. Using an orientation discrimination task, we investigated the effect of attention on contrast sensitivity over a wide range of spatial frequencies and eccentricities. Targets were presented alone or among distractors to assess signal enhancement and distractor suppression mechanisms of spatial attention. At each eccentricity, we found that exogenous attention preferentially enhanced spatial frequencies higher than the peak frequency in the baseline condition. In contrast, endogenous attention similarly enhanced a broad range of lower and higher spatial frequencies. The presence or absence of distractors did not alter the pattern of enhancement by each type of attention. Our findings reveal how the two types of covert spatial attention differentially shape how we perceive basic visual dimensions across the visual field.
Collapse
|
23
|
Fernández A, Carrasco M. Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation. Curr Biol 2020; 30:4078-4084.e3. [PMID: 32795447 PMCID: PMC7577948 DOI: 10.1016/j.cub.2020.07.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Orienting covert exogenous (involuntary) attention to a target location improves performance in many visual tasks [1, 2]. It is unknown whether early visual cortical areas are necessary for this improvement. To establish a causal link between these areas and attentional modulations, we used transcranial magnetic stimulation (TMS) to briefly alter cortical excitability and determine whether early visual areas mediate the effect of exogenous attention on performance. Observers performed an orientation discrimination task. After a peripheral valid, neutral, or invalid cue, two cortically magnified gratings were presented, one in the stimulated region and the other in the symmetric region in the opposite hemifield. Observers received two successive TMS pulses around their occipital pole while the stimuli were presented. Shortly after, a response cue indicated the grating whose orientation observers had to discriminate. The response cue either matched-target stimulated-or did not match-distractor stimulated-the stimulated side. Grating contrast was varied to measure contrast response functions (CRF) for all combinations of attention and TMS conditions. When the distractor was stimulated, exogenous attention yielded response gain-performance benefits in the valid-cue condition and costs in the invalid-cue condition compared with the neutral condition at the high contrast levels. Crucially, when the target was stimulated, this response gain was eliminated. Therefore, TMS extinguished the effect of exogenous attention. These results establish a causal link between early visual areas and the modulatory effect of exogenous attention on performance.
Collapse
Affiliation(s)
- Antonio Fernández
- Department of Psychology, New York University, New York, NY 10003, USA.
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
24
|
Konstantinou N, Lavie N. Effects of visual short-term memory load and attentional demand on the contrast response function. J Vis 2020; 20:6. [PMID: 33007080 PMCID: PMC7545077 DOI: 10.1167/jov.20.10.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/01/2020] [Indexed: 11/30/2022] Open
Abstract
Visual short-term memory (VSTM) load leads to impaired perception during maintenance. Here, we fitted the contrast response function to psychometric orientation discrimination data while also varying attention demand during maintenance to investigate: (1) whether VSTM load effects on perception are mediated by a modulation of the contrast threshold, consistent with contrast gain accounts, or by the function asymptote (1 lapse rate), consistent with response gain accounts; and (2) whether the VSTM load effects on the contrast response function depend on the availability of attentional resources. We manipulated VSTM load via the number of items in the memory set in a color and location VSTM task and assessed the contrast response function for an orientation discrimination task during maintenance. Attention demand was varied through spatial cuing of the orientation stimulus. Higher VSTM load increased the estimated contrast threshold of the contrast response function without affecting the estimated asymptote, but only when the discrimination task demanded attention. When attentional demand was reduced (in the cued conditions), the VSTM load effects on the contrast threshold were eliminated. The results suggest that VSTM load reduces perceptual sensitivity by increasing contrast thresholds, suggestive of a contrast gain modulation mechanism, as long as the perceptual discrimination task demands attention. These findings support recent claims that attentional resources are shared between perception and VSTM maintenance processes.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Department of Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Nilli Lavie
- Institute of Cognitive Neuroscience, University College London, UK
| |
Collapse
|
25
|
Zazio A, Schreiber M, Miniussi C, Bortoletto M. Modelling the effects of ongoing alpha activity on visual perception: The oscillation-based probability of response. Neurosci Biobehav Rev 2020; 112:242-253. [DOI: 10.1016/j.neubiorev.2020.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
|
26
|
Dugué L, Merriam EP, Heeger DJ, Carrasco M. Specific Visual Subregions of TPJ Mediate Reorienting of Spatial Attention. Cereb Cortex 2019; 28:2375-2390. [PMID: 28981585 DOI: 10.1093/cercor/bhx140] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/18/2017] [Indexed: 02/07/2023] Open
Abstract
The temporo-parietal junction (TPJ) has been associated with various cognitive and social functions, and is critical for attentional reorienting. Attention affects early visual processing. Neuroimaging studies dealing with such processes have thus far concentrated on striate and extrastriate areas. Here, we investigated whether attention orienting or reorienting modulate activity in visually driven TPJ subregions. For each observer we identified 3 visually responsive subregions within TPJ: 2 bilateral (vTPJant and vTPJpost) and 1 right lateralized (vTPJcent). Cortical activity in these subregions was measured using fMRI while observers performed a 2-alternative forced-choice orientation discrimination task. Covert spatial endogenous (voluntary) or exogenous (involuntary) attention was manipulated using either a central or a peripheral cue with task, stimuli and observers constant. Both endogenous and exogenous attention increased activity for invalidly cued trials in right vTPJpost; only endogenous attention increased activity for invalidly cued trials in left vTPJpost and in right vTPJcent; and neither type of attention modulated either right or left vTPJant. These results demonstrate that vTPJpost and vTPJcent mediate the reorientation of covert attention to task relevant stimuli, thus playing a critical role in visual attention. These findings reveal a differential reorienting cortical response after observers' attention has been oriented to a given location voluntarily or involuntarily.
Collapse
Affiliation(s)
- Laura Dugué
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Elisha P Merriam
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - David J Heeger
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
27
|
Carrasco M, Barbot A. Spatial attention alters visual appearance. Curr Opin Psychol 2019; 29:56-64. [PMID: 30572280 PMCID: PMC7661009 DOI: 10.1016/j.copsyc.2018.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 10/27/2022]
Abstract
It is well established that attention improves performance on many visual tasks. However, for more than 100 years, psychologists, philosophers, and neurophysiologists have debated its phenomenology-whether attention actually changes one's subjective experience. Here, we show that it is possible to objectively and quantitatively investigate the effects of attention on subjective experience. First, we review evidence showing that attention alters the appearance of many static and dynamic basic visual dimensions, which mediate changes in appearance of higher-level perceptual aspects. Then, we summarize current views on how attention alters appearance. These findings have implications for our understanding of perception and attention, illustrating that attention affects not only how we perform in visual tasks, but actually alters our experience of the visual world.
Collapse
Affiliation(s)
- Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, USA.
| | - Antoine Barbot
- Department of Psychology and Center for Neural Science, New York University, USA
| |
Collapse
|
28
|
Birman D, Gardner JL. A flexible readout mechanism of human sensory representations. Nat Commun 2019; 10:3500. [PMID: 31375665 PMCID: PMC6677769 DOI: 10.1038/s41467-019-11448-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022] Open
Abstract
Attention can both enhance and suppress cortical sensory representations. However, changing sensory representations can also be detrimental to behavior. Behavioral consequences can be avoided by flexibly changing sensory readout, while leaving the representations unchanged. Here, we asked human observers to attend to and report about either one of two features which control the visibility of motion while making concurrent measurements of cortical activity with BOLD imaging (fMRI). We extend a well-established linking model to account for the relationship between these measurements and find that changes in sensory representation during directed attention are insufficient to explain perceptual reports. Adding a flexible downstream readout is necessary to best explain our data. Such a model implies that observers should be able to recover information about ignored features, a prediction which we confirm behaviorally. Thus, flexible readout is a critical component of the cortical implementation of human adaptive behavior.
Collapse
Affiliation(s)
- Daniel Birman
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA.
| | - Justin L Gardner
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
29
|
Senoussi M, Moreland JC, Busch NA, Dugué L. Attention explores space periodically at the theta frequency. J Vis 2019; 19:22. [DOI: 10.1167/19.5.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mehdi Senoussi
- ISAE-Supaéro, Université Fédérale de Toulouse, Toulouse, France
- Present address: Department of Experimental Psychology, Ghent University, Ghent, Belgium
- ://sites.google.com/site/senoussim/
| | - James C. Moreland
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Niko A. Busch
- Institute of Psychology, Westfälische Wilhelms-Universität, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-Universität, Münster, Germany
| | - Laura Dugué
- CNRS (Integrative Neuroscience and Cognition Center, UMR 8002), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- ://duguelaura.wixsite.com/mysite
| |
Collapse
|
30
|
Grillini A, Renken RJ, Cornelissen FW. Attentional Modulation of Visual Spatial Integration: Psychophysical Evidence Supported by Population Coding Modeling. J Cogn Neurosci 2019; 31:1329-1342. [PMID: 30990389 DOI: 10.1162/jocn_a_01412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Two prominent strategies that the human visual system uses to reduce incoming information are spatial integration and selective attention. Whereas spatial integration summarizes and combines information over the visual field, selective attention can single it out for scrutiny. The way in which these well-known mechanisms-with rather opposing effects-interact remains largely unknown. To address this, we had observers perform a gaze-contingent search task that nudged them to deploy either spatial or feature-based attention to maximize performance. We found that, depending on the type of attention employed, visual spatial integration strength changed either in a strong and localized or a more modest and global manner compared with a baseline condition. Population code modeling revealed that a single mechanism can account for both observations: Attention acts beyond the neuronal encoding stage to tune the spatial integration weights of neural populations. Our study shows how attention and integration interact to optimize the information flow through the brain.
Collapse
Affiliation(s)
- Alessandro Grillini
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Netherlands
| | - Remco J Renken
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Netherlands
| | - Frans W Cornelissen
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Netherlands
| |
Collapse
|
31
|
Abstract
Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.
Collapse
|
32
|
Agaoglu S, Breitmeyer B, Ogmen H. Effects of Exogenous and Endogenous Attention on Metacontrast Masking. Vision (Basel) 2018; 2:vision2040039. [PMID: 31735902 PMCID: PMC6836134 DOI: 10.3390/vision2040039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/16/2022] Open
Abstract
To efficiently use its finite resources, the visual system selects for further processing only a subset of the rich sensory information. Visual masking and spatial attention control the information transfer from visual sensory-memory to visual short-term memory. There is still a debate whether these two processes operate independently or interact, with empirical evidence supporting both arguments. However, recent studies pointed out that earlier studies showing significant interactions between common-onset masking and attention suffered from ceiling and/or floor effects. Our review of previous studies reporting metacontrast-attention interactions revealed similar artifacts. Therefore, we investigated metacontrast-attention interactions by using an experimental paradigm, in which ceiling/floor effects were avoided. We also examined whether metacontrast masking is differently influenced by endogenous and exogenous attention. We analyzed mean absolute-magnitude of response-errors and their statistical distribution. When targets are masked, our results support the hypothesis that manipulations of the levels of metacontrast and of endogenous/exogenous attention have largely independent effects. Moreover, statistical modeling of the distribution of response-errors suggests weak interactions modulating the probability of "guessing" behavior for some observers in both types of attention. Nevertheless, our data suggest that any joint effect of attention and metacontrast can be adequately explained by their independent and additive contributions.
Collapse
Affiliation(s)
- Sevda Agaoglu
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
- Center for Neuroengineering & Cognitive Science, University of Houston, Houston, TX 77204-4005, USA
| | - Bruno Breitmeyer
- Center for Neuroengineering & Cognitive Science, University of Houston, Houston, TX 77204-4005, USA
- Department of Psychology, University of Houston, Houston, TX 77204-5022, USA
| | - Haluk Ogmen
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204-4005, USA
- Center for Neuroengineering & Cognitive Science, University of Houston, Houston, TX 77204-4005, USA
- Department of Electrical and Computer Engineering, University of Denver, Denver, CO 80208, USA
- Correspondence: ; Tel.: +1-303-871-2621
| |
Collapse
|
33
|
Donovan I, Carrasco M. Endogenous spatial attention during perceptual learning facilitates location transfer. J Vis 2018; 18:7. [PMID: 30347094 PMCID: PMC6181190 DOI: 10.1167/18.11.7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022] Open
Abstract
Covert attention and perceptual learning enhance perceptual performance. The relation between these two mechanisms is largely unknown. Previously, we showed that manipulating involuntary, exogenous spatial attention during training improved performance at trained and untrained locations, thus overcoming the typical location specificity. Notably, attention-induced transfer only occurred for high stimulus contrasts, at the upper asymptote of the psychometric function (i.e., via response gain). Here, we investigated whether and how voluntary, endogenous attention, the top-down and goal-based type of covert visual attention, influences perceptual learning. Twenty-six participants trained in an orientation discrimination task at two locations: half of participants received valid endogenous spatial precues (attention group), while the other half received neutral precues (neutral group). Before and after training, all participants were tested with neutral precues at two trained and two untrained locations. Within each session, stimulus contrast varied on a trial basis from very low (2%) to very high (64%). Performance was fit by a Weibull psychometric function separately for each day and location. Performance improved for both groups at the trained location, and unlike training with exogenous attention, at the threshold level (i.e., via contrast gain). The neutral group exhibited location specificity: Thresholds decreased at the trained locations, but not at the untrained locations. In contrast, participants in the attention group showed significant location transfer: Thresholds decreased to the same extent at both trained and untrained locations. These results indicate that, similar to exogenous spatial attention, endogenous spatial attention induces location transfer, but influences contrast gain instead of response gain.
Collapse
Affiliation(s)
- Ian Donovan
- Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
34
|
Abstract
Visual attention is essential for visual perception. Spatial attention allows us to grant priority in processing and selectively process information at a given location. In this paper, I explain how two kinds of spatial attention: covert (allocated to the target location, without accompanying eye movements) and presaccadic (allocated to the location of the upcoming saccade's target) affect performance and alter appearance. First, I highlight some behavioral and neuroimaging research on covert attention, which alters performance and appearance in many basic visual tasks. Second, I review studies showing that presaccadic attention improves performance and alters appearance at the saccade target location. Further, these modulations change the processing of feature information automatically, even when it is detrimental to the task at hand. We propose that saccade preparation may support transsaccadic integration. Systematically investigating the common and differential characteristics of covert attention and presaccadic attention will continue to further our understanding of the pervasive selective processing of information, which enables us to make sense of our complex visual world.
Collapse
Affiliation(s)
- Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, USA.
| |
Collapse
|
35
|
Abstract
Amblyopia, a developmental disorder of vision, affects many aspects of spatial vision as well as motion perception and some cognitive skills. Current models of amblyopic vision based on known neurophysiological deficiencies have yet to provide an understanding of the wide range of amblyopic perceptual losses. Visual spatial attention is known to enhance performance in a variety of detection and discrimination tasks in visually typical humans and nonhuman primates. We investigated whether and how voluntary spatial attention affected psychophysical performance in amblyopic macaques. Full-contrast response functions for motion direction discrimination were measured for each eye of six monkeys: five amblyopic and one control. We assessed whether the effect of a valid spatial cue on performance corresponded to a change in contrast gain, a leftward shift of the function, or response gain, an upward scaling of the function. Our results showed that macaque amblyopes benefit from a valid spatial cue. Performance with amblyopic eyes viewing showed enhancement of both contrast and response gain whereas fellow and control eyes' performance showed only contrast gain. Reaction time analysis showed no speed accuracy trade-off in any case. The valid spatial cue improved contrast sensitivity for the amblyopic eye, effectively eliminating the amblyopic contrast sensitivity deficit. These results suggest that engaging endogenous spatial attention may confer substantial benefit to amblyopic vision.
Collapse
Affiliation(s)
- Amelie Pham
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Marisa Carrasco
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| | - Lynne Kiorpes
- Center for Neural Science and Department of Psychology, New York University, New York, NY, USA
| |
Collapse
|
36
|
Abstract
Visual masking and attention have been known to control the transfer of information from sensory memory to visual short-term memory. A natural question is whether these processes operate independently or interact. Recent evidence suggests that studies that reported interactions between masking and attention suffered from ceiling and/or floor effects. The objective of the present study was to investigate whether metacontrast masking and attention interact by using an experimental design in which saturation effects are avoided. We asked observers to report the orientation of a target bar randomly selected from a display containing either two or six bars. The mask was a ring that surrounded the target bar. Attentional load was controlled by set-size and masking strength by the stimulus onset asynchrony between the target bar and the mask ring. We investigated interactions between masking and attention by analyzing two different aspects of performance: (i) the mean absolute response errors and (ii) the distribution of signed response errors. Our results show that attention affects observers' performance without interacting with masking. Statistical modeling of response errors suggests that attention and metacontrast masking exert their effects by independently modulating the probability of "guessing" behavior. Implications of our findings for models of attention are discussed.
Collapse
|
37
|
Abstract
Feature and conjunction searches are widely used to study attentional deployment. However, the spatiotemporal behavior of attention integration in these tasks remains under debate. Are multiple search stimuli processed in parallel or sequentially? Does sampling of visual information and attentional deployment differ between these two types of search? If so, how? We used an innovative methodology to estimate the distribution of attention on a single-trial basis for feature and conjunction searches. Observers performed feature- and conjunction-search tasks. They had to detect and discriminate a tilted low-spatial-frequency grating among three low-spatial-frequency vertical gratings (feature search) or low-spatial-frequency vertical gratings and high-spatial-frequency tilted gratings (conjunction search). After a variable delay, two probes were flashed at random locations. Performance in reporting the probes was used to infer attentional deployment to those locations. By solving a second-degree equation, we determined the probability of probe report at the most (P1) and least (P2) attended locations on a given trial. Were P1 and P2 equal, we would conclude that attention had been uniformly distributed across all four locations. Otherwise, we would conclude that visual information sampling and attentional deployment had been nonuniformly distributed. Our results show that processing was nonuniformly distributed across the four locations in both searches, and was modulated periodically over time at ∼5 Hz for the conjunction search and ∼12 Hz for the feature search. We argue that the former corresponds to the periodicity of attentional deployment during the search, whereas the latter corresponds to ongoing sampling of visual information. Because different locations were not simultaneously processed, this study rules out a strict parallel model for both search types.
Collapse
Affiliation(s)
- Laura Dugué
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USAhttp://duguelaura.wixsite.com/
| | | | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USAhttps://sites.google.com/site/carrascolabnyu/
| |
Collapse
|
38
|
Schwedhelm P, Krishna BS, Treue S. An Extended Normalization Model of Attention Accounts for Feature-Based Attentional Enhancement of Both Response and Coherence Gain. PLoS Comput Biol 2016; 12:e1005225. [PMID: 27977679 PMCID: PMC5157945 DOI: 10.1371/journal.pcbi.1005225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Paying attention to a sensory feature improves its perception and impairs that of others. Recent work has shown that a Normalization Model of Attention (NMoA) can account for a wide range of physiological findings and the influence of different attentional manipulations on visual performance. A key prediction of the NMoA is that attention to a visual feature like an orientation or a motion direction will increase the response of neurons preferring the attended feature (response gain) rather than increase the sensory input strength of the attended stimulus (input gain). This effect of feature-based attention on neuronal responses should translate to similar patterns of improvement in behavioral performance, with psychometric functions showing response gain rather than input gain when attention is directed to the task-relevant feature. In contrast, we report here that when human subjects are cued to attend to one of two motion directions in a transparent motion display, attentional effects manifest as a combination of input and response gain. Further, the impact on input gain is greater when attention is directed towards a narrow range of motion directions than when it is directed towards a broad range. These results are captured by an extended NMoA, which either includes a stimulus-independent attentional contribution to normalization or utilizes direction-tuned normalization. The proposed extensions are consistent with the feature-similarity gain model of attention and the attentional modulation in extrastriate area MT, where neuronal responses are enhanced and suppressed by attention to preferred and non-preferred motion directions respectively. We report a pattern of feature-based attentional effects on human psychophysical performance, which cannot be accounted for by the Normalization Model of Attention using biologically plausible parameters. Specifically, this prominent model of attentional modulation predicts that attention to a visual feature like a specific motion direction will lead to a response gain in the input-response function, rather than the input gain that we actually observe. In our data, the input gain is greater when attention is directed towards a narrow range of motion directions, again contrary to the model’s prediction. We therefore propose two physiologically testable extensions of the model that include direction-tuned normalization mechanisms of attention. Both extensions account for our data without affecting the previously demonstrated successful performance of the NMoA.
Collapse
Affiliation(s)
- Philipp Schwedhelm
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
- * E-mail: (PS); (ST)
| | - B. Suresh Krishna
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- * E-mail: (PS); (ST)
| |
Collapse
|
39
|
Roberts M, Cymerman R, Smith RT, Kiorpes L, Carrasco M. Covert spatial attention is functionally intact in amblyopic human adults. J Vis 2016; 16:30. [PMID: 28033433 PMCID: PMC5215291 DOI: 10.1167/16.15.30] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/20/2016] [Indexed: 11/24/2022] Open
Abstract
Certain abnormalities in behavioral performance and neural signaling have been attributed to a deficit of visual attention in amblyopia, a neurodevelopmental disorder characterized by a diverse array of visual deficits following abnormal binocular childhood experience. Critically, most have inferred attention's role in their task without explicitly manipulating and measuring its effects against a baseline condition. Here, we directly investigate whether human amblyopic adults benefit from covert spatial attention-the selective processing of visual information in the absence of eye movements-to the same degree as neurotypical observers. We manipulated both involuntary (Experiment 1) and voluntary (Experiment 2) attention during an orientation discrimination task for which the effects of covert spatial attention have been well established in neurotypical and special populations. In both experiments, attention significantly improved accuracy and decreased reaction times to a similar extent (a) between the eyes of the amblyopic adults and (b) between the amblyopes and their age- and gender-matched controls. Moreover, deployment of voluntary attention away from the target location significantly impaired task performance (Experiment 2). The magnitudes of the involuntary and voluntary attention benefits did not correlate with amblyopic depth or severity. Both groups of observers showed canonical performance fields (better performance along the horizontal than vertical meridian and at the lower than upper vertical meridian) and similar effects of attention across locations. Despite their characteristic low-level vision impairments, covert spatial attention remains functionally intact in human amblyopic adults.
Collapse
Affiliation(s)
- Mariel Roberts
- Department of Psychology, New York University, New York, NY, USA
| | - Rachel Cymerman
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - R Theodore Smith
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Lynne Kiorpes
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USACenter for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
40
|
Apparent Motion Suppresses Responses in Early Visual Cortex: A Population Code Model. PLoS Comput Biol 2016; 12:e1005155. [PMID: 27783622 PMCID: PMC5081194 DOI: 10.1371/journal.pcbi.1005155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022] Open
Abstract
Two stimuli alternately presented at different locations can evoke a percept of a stimulus continuously moving between the two locations. The neural mechanism underlying this apparent motion (AM) is thought to be increased activation of primary visual cortex (V1) neurons tuned to locations along the AM path, although evidence remains inconclusive. AM masking, which refers to the reduced detectability of stimuli along the AM path, has been taken as evidence for AM-related V1 activation. AM-induced neural responses are thought to interfere with responses to physical stimuli along the path and as such impair the perception of these stimuli. However, AM masking can also be explained by predictive coding models, predicting that responses to stimuli presented on the AM path are suppressed when they match the spatio-temporal prediction of a stimulus moving along the path. In the present study, we find that AM has a distinct effect on the detection of target gratings, limiting the maximum performance at high contrast levels. This masking is strongest when the target orientation is identical to the orientation of the inducers. We developed a V1-like population code model of early visual processing, based on a standard contrast normalization model. We find that AM-related activation in early visual cortex is too small to either cause masking or to be perceived as motion. Our model instead predicts strong suppression of early sensory responses during AM, consistent with the theoretical framework of predictive coding. Two spatially separate stimuli presented in rapid succession often induce the illusory perception of a moving stimulus (apparent motion or AM). Its underlying mechanism is thought to be increased activation in primary visual cortex representing the motion path. Indirect evidence for this account comes from the reduced detectability of stimuli presented along the motion path (AM masking). Here, we developed a computational model of AM-related effects on visual processing in early visual cortex, which predicted a neural activation that is too small to either account for the observed masking or the perception of motion. Instead, our model predicts strong suppression of neural responses to stimuli presented along the motion path, especially when they match the spatio-temporal prediction of a stimulus moving along the path. Our findings support predictive coding models of visual processing, in which higher-level predictions about motion explain away lower-level responses to expected sensory input.
Collapse
|
41
|
Dugué L, Roberts M, Carrasco M. Attention Reorients Periodically. Curr Biol 2016; 26:1595-1601. [PMID: 27265395 DOI: 10.1016/j.cub.2016.04.046] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/15/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Reorienting of voluntary attention enables the processing of stimuli at previously unattended locations. Although studies have identified a ventral fronto-parietal network underlying attention [1, 2], little is known about whether and how early visual areas are involved in involuntary [3, 4] and even less in voluntary [5] reorienting, and their temporal dynamics are unknown. We used transcranial magnetic stimulation (TMS) over the occipital cortex to interfere with attentional reorienting and study its role and temporal dynamics in this process. Human observers performed an orientation discrimination task, with either valid or invalid attention cueing, across a range of stimulus contrasts. Valid cueing induced a behavioral response gain increase, higher asymptotic performance for attended than unattended locations. During subsequent TMS sessions, observers performed the same task, with high stimulus contrast. Based on phosphene mapping, TMS double pulses were applied at one of various delays to a consistent brain location in retinotopic areas (V1/V2), corresponding to the evoked signal of the target or distractor, in a valid or invalid trial. Thus, the stimulation was identical for the four experimental conditions (valid/invalid cue condition × target/distractor-stimulated). TMS modulation of the target and distractor were both periodic (5 Hz, theta) and out of phase with respect to each other in invalid trials only, when attention had to be disengaged from the distractor and reoriented to the target location. Reorientation of voluntary attention periodically involves V1/V2 at the theta frequency. These results suggest that TMS probes theta phase-reset by attentional reorienting and help link periodic sampling in time and attention reorienting in space.
Collapse
Affiliation(s)
- Laura Dugué
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Mariel Roberts
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
42
|
Li HH, Carrasco M, Heeger DJ. Deconstructing Interocular Suppression: Attention and Divisive Normalization. PLoS Comput Biol 2015; 11:e1004510. [PMID: 26517321 PMCID: PMC4627721 DOI: 10.1371/journal.pcbi.1004510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression. In interocular suppression, a visible target presented in one eye can be rendered invisible by a competing image (the competitor) presented in the other eye. This phenomenon is a striking demonstration of the discrepancy between physical inputs to the visual system and perception, and it also allows neuroscientists to study how perceptual systems regulate competing information. Interocular suppression has been explained by mutually suppressive interactions (modeled by divisive normalization) between neurons that respond differentially to the two eyes. Attention, which selects relevant information in natural viewing condition, has also been found to play a role in interocular suppression. But the specific role of attentional modulation is still an open question. In this study, we proposed a computational model of interocular suppression integrating both attentional modulation and divisive normalization. By modeling the hypothetical neural responses and fitting the model to psychophysical data, we showed that interocular suppression involves an attentional modulation selective for the orientation of the competitor, and covering the spatial extent of the competitor. We conclude that both attention and divisive normalization contribute to interocular suppression, and that their impacts are distinguishable.
Collapse
Affiliation(s)
- Hsin-Hung Li
- Department of Psychology, New York University, New York, New York, United States of America
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - David J. Heeger
- Department of Psychology, New York University, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Quentin R, Elkin Frankston S, Vernet M, Toba MN, Bartolomeo P, Chanes L, Valero-Cabré A. Visual Contrast Sensitivity Improvement by Right Frontal High-Beta Activity Is Mediated by Contrast Gain Mechanisms and Influenced by Fronto-Parietal White Matter Microstructure. Cereb Cortex 2015; 26:2381-90. [PMID: 25899709 DOI: 10.1093/cercor/bhv060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance.
Collapse
Affiliation(s)
- Romain Quentin
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France
| | - Seth Elkin Frankston
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, USA
| | - Marine Vernet
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France
| | - Monica N Toba
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens, France University of Picardy Jules Verne, France
| | - Paolo Bartolomeo
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France Department of Psychology, Catholic University, Milan, Italy
| | - Lorena Chanes
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Centre de Recherche de l'Institut du Cerveau et de la Möelle Epinière, ICM, CNRS UMR 7225, INSERM UMRS 1127 and Université Pierre et Marie Curie, Paris, France Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA, USA Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
| |
Collapse
|
44
|
Donovan I, Szpiro S, Carrasco M. Exogenous attention facilitates location transfer of perceptual learning. J Vis 2015; 15:11. [PMID: 26426818 PMCID: PMC4594468 DOI: 10.1167/15.10.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/15/2015] [Indexed: 01/07/2023] Open
Abstract
Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.
Collapse
|
45
|
Cutrone EK, Heeger DJ, Carrasco M. Attention enhances contrast appearance via increased input baseline of neural responses. J Vis 2014; 14:16. [PMID: 25549920 DOI: 10.1167/14.14.16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Covert spatial attention increases the perceived contrast of stimuli at attended locations, presumably via enhancement of visual neural responses. However, the relation between perceived contrast and the underlying neural responses has not been characterized. In this study, we systematically varied stimulus contrast, using a two-alternative, forced-choice comparison task to probe the effect of attention on appearance across the contrast range. We modeled performance in the task as a function of underlying neural contrast-response functions. Fitting this model to the observed data revealed that an increased input baseline in the neural responses accounted for the enhancement of apparent contrast with spatial attention.
Collapse
Affiliation(s)
| | - David J Heeger
- Department of Psychology, New York University, New York, NY, USA Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
46
|
Pack W, Klein SA, Carney T. Bias corrected double judgment accuracy during spatial attention cueing: Unmasked stimuli with non-predictive and semi-predictive cues. Vision Res 2014; 105:213-25. [DOI: 10.1016/j.visres.2014.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 01/01/2023]
|
47
|
Hetley R, Dosher BA, Lu ZL. Generating a taxonomy of spatially cued attention for visual discrimination: effects of judgment precision and set size on attention. Atten Percept Psychophys 2014; 76:2286-304. [PMID: 24939234 PMCID: PMC4927301 DOI: 10.3758/s13414-014-0705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy.
Collapse
Affiliation(s)
- Richard Hetley
- Department of Cognitive Sciences, University of California, Irvine, CA, 92697-5100, USA
| | | | | |
Collapse
|
48
|
Baruch O, Yeshurun Y. Attentional attraction of receptive fields can explain spatial and temporal effects of attention. VISUAL COGNITION 2014. [DOI: 10.1080/13506285.2014.911235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Abstract
Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention.
Collapse
|
50
|
Grubb MA, Behrmann M, Egan R, Minshew NJ, Heeger DJ, Carrasco M. Exogenous spatial attention: evidence for intact functioning in adults with autism spectrum disorder. J Vis 2013; 13:9. [PMID: 24326863 PMCID: PMC3859176 DOI: 10.1167/13.14.9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022] Open
Abstract
Deficits or atypicalities in attention have been reported in individuals with autism spectrum disorder (ASD), yet no consensus on the nature of these deficits has emerged. We conducted three experiments that paired a peripheral precue with a covert discrimination task, using protocols for which the effects of covert exogenous spatial attention on early vision have been well established in typically developing populations. Experiment 1 assessed changes in contrast sensitivity, using orientation discrimination of a contrast-defined grating; Experiment 2 evaluated the reduction of crowding in the visual periphery, using discrimination of a letter-like figure with flanking stimuli at variable distances; and Experiment 3 assessed improvements in visual search, using discrimination of the same letter-like figure with a variable number of distractor elements. In all three experiments, we found that exogenous attention modulated visual discriminability in a group of high-functioning adults with ASD and that it did so in the same way and to the same extent as in a matched control group. We found no evidence to support the hypothesis that deficits in exogenous spatial attention underlie the emergence of core ASD symptomatology.
Collapse
Affiliation(s)
- Michael A. Grubb
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ryan Egan
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nancy J. Minshew
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David J. Heeger
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|