1
|
Hammond A, Buchynski K, Shynkaruk T, Crowe T, Schwean-Lardner K. Are turkey hens affected by light flicker? Effects on performance and health. Poult Sci 2024; 103:103747. [PMID: 38657524 PMCID: PMC11058885 DOI: 10.1016/j.psj.2024.103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Light flicker is a commonly overlooked factor of artificial light sources. This study aimed to determine the impacts of light-flicker frequency on performance, general health, and mortality of 11-wk Nicholas Select turkey hens. The experiment consisted of 2 trials (block) in a randomized complete block design, with 3 light-flicker frequency treatments (30, 90, or 195 Hz). Turkeys (n = 364 per replicate) were randomly placed into environmentally controlled rooms (3 room replicates per treatment per trial). Group body weight (BW) and feed consumption were measured at 0, 4, 8, and 11 wk, and feed efficiency (mortality corrected feed-to-gain; F:Gm) was calculated for each period. Mortality and culls were collected twice daily. Flock uniformity, feather condition and cleanliness, footpad score, and mobility were evaluated at 10 wk (30 birds per room). Litter quality and ocular weight and dimensions were evaluated (11 wk; 4 birds per room). Data were analyzed using Proc Mixed (SAS 9.4) and significance was declared when P < 0.05. At 8 wk, BW was lower under 30 Hz compared to 195 Hz (P = 0.03). Feed consumption was lowest under 30 Hz (0-4 wk and 4-8 wk; P < 0.01). Mortality-corrected F:G was improved under 30 Hz for 8 to 11 wk and 0 to 11 wk (P = 0.05 and P = 0.04, respectively). Total mortality was lower under 195 Hz compared to 30 Hz (P = 0.02). Uniformity, gait score, feather condition, and litter quality were unaffected by flicker. Footpad scores were improved under 90 Hz (P = 0.01), leading to an improved average footpad score (P = 0.02). Feather cleanliness was improved under 90 Hz compared to both 30 Hz and 195 Hz (P<0.01). Right eyeball dimensions differed across lighting treatments, with the dorso-ventral diameter being larger in birds under 30 Hz compared to 195 Hz (P = 0.05). The anterior-posterior size also increased in birds under 30 Hz compared to 90 Hz (P = 0.03). Light flicker impacted turkey hens, with the results demonstrating negative impacts on early growth and changes to ocular characteristics.
Collapse
Affiliation(s)
- A Hammond
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - K Buchynski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A9
| | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8.
| |
Collapse
|
2
|
McPhee S, Shynkaruk T, Buchynski K, Crowe T, Schwean-Lardner K. How does visible light flicker impact laying hen pullet behavior, fear, and stress levels? Poult Sci 2024; 103:103713. [PMID: 38621348 PMCID: PMC11019458 DOI: 10.1016/j.psj.2024.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Many characteristics of artificial light have been evaluated; however, light-flicker frequency (F) has not been assessed extensively in poultry. Pullets (1,344 per strain [S]; Lohmann Brown-Lite [LB] and LSL-Lite [LW]) were placed into 8 light-tight rooms, containing 6 floor pens (15 pen replicates per F × S for 30 and 250 Hz; 18 pen replicates per F x S for 90 Hz), and assigned 1 of 3 F treatments (30, 90, 250 Hz). The experiment took place over 2 trials (blocks). To evaluate long-term effects of F during rearing, birds were followed through the hen phase. Data were analyzed using Proc Mixed (SAS 9.4). Differences were considered significant when P ≤ 0.05, and behaviors are expressed as percentage of time. Pullets reared under 30 Hz spent more time performing nutritive behaviors (P < 0.01) and as "unidentified" (P = 0.02) than other treatments. Active behavior demonstrated an age x F interaction, with pullets being more active at 16 wk, regardless of F (P < 0.01). Comfort behaviors were higher at 16 wk compared to other ages, regardless of F (P < 0.01). Exploratory behaviors were lowest at 4 wk in pullets under 30 Hz (P < 0.01). Aggressive behaviors (12 wk) were higher in pullets reared under 250 Hz than those under 90 Hz (P < 0.01). Comb score was unaffected by F (P = 0.79) and all birds scored had a full plumage. Heterophil-to-lymphocyte ratio was unaffected by F at 7 or 15 wk (P = 0.85 and P = 0.54, respectively). In trial 1, pullets reared under 90 Hz had higher corticosterone concentrations than those reared under 250 Hz (P = 0.02) and trial 2 there were no effects of F (P = 0.97). For novel object test, LW pullets reared under 90 Hz had a higher latency to peck than LW pullets under 30 Hz or 250 Hz (P = 0.03). Hen behavior (wk 39) and fear tests (36 wk; novel object test (P = 0.86) and tonic immobility (P = 0.37)) were unaffected by F. Overall, minimal effects of F were seen on pullet and hen behavior and stress.
Collapse
Affiliation(s)
- S McPhee
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - K Buchynski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A9, Canada
| | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada.
| |
Collapse
|
3
|
Hammond A, Buchynski K, Shynkaruk T, Brown J, Crowe T, Schwean-Lardner K. Do flickering lights impact turkey hen behavior, stress, and fear? Poult Sci 2024; 103:103699. [PMID: 38608391 PMCID: PMC11017336 DOI: 10.1016/j.psj.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Little is known about the effect of light-flicker frequency on poultry, particularly on turkeys. This experiment examined the impact of light-flicker frequency on the behavior, stress, and fear response of Nicholas Select turkey hens reared to 11 wk. The experiment was a randomized complete block design (2 trials), with a one-way factorial analysis evaluating 3 light-flicker frequencies (30, 90, or 195 Hertz; Hz). Birds (n = 3,276 per trial) were housed in 9 individual environmentally controlled rooms (3 replicates per treatment per trial). Data collected included: behavior (4, 8, and 10 wk), incidence of aggressive damage, heterophil-to-lymphocyte ratio, and novel object test (daily d 1-7 and at 4, 8, and 11 wk). Data were analyzed using Proc Mixed (SAS 9.4), with significance declared at P ≤ 0.05. Behavior data are presented as the percentage of time spent performing the behavior. At 4 wk, gentle feather pecking and exploratory behaviors were higher under 195 Hz compared to 30 Hz (P = 0.04 and P = 0.05, respectively). Preening was higher under 90 Hz compared to 30 Hz (P = 0.05). At 8 wk, wing flapping was lowest under 195 Hz (P < 0.01). Gentle feather pecking was higher under 90 and 195 Hz compared to 30 Hz (P = 0.02). Fighting (P = 0.05), aggressive pecking (P = 0.02), and aggressive behaviors (P = 0.01) were lower under 30 Hz compared to 90 Hz. At 10 wk, preening was decreased under 30 Hz (P = 0.03). Incidences of aggressive damage were reduced under 30 Hz compared to 90 Hz (0 d-4 wk; P = 0.01) and under 30 compared to both 90 and 195 Hz (4-8 wk; P = 0.01). At 11 wk, heterophil-to-lymphocyte ratios were lowest under 30 Hz (P = 0.04). The novel object test was unaffected by flicker treatment. In conclusion, many behaviors and the stress and fear responses were unaffected by either visible or non-visible flicker. However, visible flicker (30 Hz) reduced some comfort and exploratory behaviors early in life, and the impact on preening continued to older ages, suggesting minor negative impacts of flicker, particularly early in life.
Collapse
Affiliation(s)
- A Hammond
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - K Buchynski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - J Brown
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A9, Canada
| | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada.
| |
Collapse
|
4
|
Tan M, Zhang S, Stevens M, Li D, Tan EJ. Antipredator defences in motion: animals reduce predation risks by concealing or misleading motion signals. Biol Rev Camb Philos Soc 2024; 99:778-796. [PMID: 38174819 DOI: 10.1111/brv.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Motion is a crucial part of the natural world, yet our understanding of how animals avoid predation whilst moving remains rather limited. Although several theories have been proposed for how antipredator defence may be facilitated during motion, there is often a lack of supporting empirical evidence, or conflicting findings. Furthermore, many studies have shown that motion often 'breaks' camouflage, as sudden movement can be detected even before an individual is recognised. Whilst some static camouflage strategies may conceal moving animals to a certain extent, more emphasis should be given to other modes of camouflage and related defences in the context of motion (e.g. flicker fusion camouflage, active motion camouflage, motion dazzle, and protean motion). Furthermore, when motion is involved, defence strategies are not necessarily limited to concealment. An animal can also rely on motion to mislead predators with regards to its trajectory, location, size, colour pattern, or even identity. In this review, we discuss the various underlying antipredator strategies and the mechanisms through which they may be linked to motion, conceptualising existing empirical and theoretical studies from two perspectives - concealing and misleading effects. We also highlight gaps in our understanding of these antipredator strategies, and suggest possible methodologies for experimental designs/test subjects (i.e. prey and/or predators) and future research directions.
Collapse
Affiliation(s)
- Min Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Shichang Zhang
- Centre for Behavioural Ecology & Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR10 9FE, UK
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- Centre for Behavioural Ecology & Evolution, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China
| | - Eunice J Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore
| |
Collapse
|
5
|
McPhee S, Shynkaruk T, Buchynski K, Beaulieu D, Brown J, Crowe T, Schwean-Lardner K. Do flickering LED lights reduce productivity of layer pullets and hens? Poult Sci 2024; 103:103456. [PMID: 38277888 PMCID: PMC10840343 DOI: 10.1016/j.psj.2024.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024] Open
Abstract
Most characteristics of artificial light sources are well studied, however light-flicker frequency (F) has been overlooked. The purpose of this study was to determine the effect of F on performance of Lohmann LSL-Lite (LW) pullets and Lohmann Brown-Lite (LB) pullets. In addition, pullets were followed through to the laying phase to evaluate long-term effects of F during rearing on productivity. Two trials were conducted with 3 F (30, 90, or 250 Hz) treatments. LW and LB pullets (n = 2,688 per strain [S]) were randomly assigned to floor pens within 8 light-tight rooms (15 pen replicates per F × S for 30 and 250 Hz; 18 pen replicates per F × S for 90 Hz). At 16 wk, pullets were transferred to conventional layer cages, with no flicker treatment applied. Pullet data collected included BW, feed disappearance, flock uniformity, and overall mortality. Hen data collected included BW, feed intake (feed efficiency calculated), mortality, egg production, and egg quality. Data were analyzed using Proc Mixed (SAS 9.4) and differences were considered significant when P ≤ 0.05. Frequency did not affect pullet uniformity or feed disappearance (0-8 wk and 0-16 wk). Pullets reared under 30 Hz had higher mortality (caused by "other") than those reared under 250 Hz. Lohmann Brown-Lite pullets reared under 30 Hz had the highest feed disappearance. Overall mortality was higher for LW pullets reared under 30 Hz compared to LB reared under 30 Hz or 250 Hz. Lohmann Brown-Lite hens reared under 30 Hz were heavier at the beginning of the hen phase (17 wk), however differences related to F were not seen at 40 or 48 wk. Hen day production (%) was higher for hens reared under 30 compared to 90 Hz (P = 0.03), however no other egg parameters were affected by F. Hen feed efficiency and mortality were unaffected by F. These results indicate minor effects of F, during either the pullet or hen phases. The data also suggest that S (LW vs. LB) may affect response to F.
Collapse
Affiliation(s)
- S McPhee
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - T Shynkaruk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - K Buchynski
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - D Beaulieu
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - J Brown
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8
| | - T Crowe
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A9
| | - K Schwean-Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, S7N5A8.
| |
Collapse
|
6
|
Gil R, Valente M, Shemesh N. Rat superior colliculus encodes the transition between static and dynamic vision modes. Nat Commun 2024; 15:849. [PMID: 38346973 PMCID: PMC10861507 DOI: 10.1038/s41467-024-44934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The visual continuity illusion involves a shift in visual perception from static to dynamic vision modes when the stimuli arrive at high temporal frequency, and is critical for recognizing objects moving in the environment. However, how this illusion is encoded across the visual pathway remains poorly understood, with disparate frequency thresholds at retinal, cortical, and behavioural levels suggesting the involvement of other brain areas. Here, we employ a multimodal approach encompassing behaviour, whole-brain functional MRI, and electrophysiological measurements, for investigating the encoding of the continuity illusion in rats. Behavioural experiments report a frequency threshold of 18±2 Hz. Functional MRI reveal that superior colliculus signals transition from positive to negative at the behaviourally-driven threshold, unlike thalamic and cortical areas. Electrophysiological recordings indicate that these transitions are underpinned by neural activation/suppression. Lesions in the primary visual cortex reveal this effect to be intrinsic to the superior colliculus (under a cortical gain effect). Our findings highlight the superior colliculus' crucial involvement in encoding temporal frequency shifts, especially the change from static to dynamic vision modes.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Mafalda Valente
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
7
|
Raabe J, Raveendran G, Otten W, Homeyer K, Bartels T. Research Note: Irritating flashing light or poultry-friendly lighting-are flicker frequencies of LED luminaires a potential stress factor in the husbandry of male fattening turkeys? Poult Sci 2024; 103:103214. [PMID: 37980754 PMCID: PMC10679936 DOI: 10.1016/j.psj.2023.103214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023] Open
Abstract
Conventional fluorescent tubes are increasingly being replaced with innovative light-emitting diodes (LEDs) for lighting poultry houses. However, little is known about whether the flicker frequencies of LED luminaires are potential stressors in poultry husbandry. The term "light flicker" describes the fluctuations in the brightness of an electrically operated light source caused by the design and/or control of the light source. In this context, the critical flicker frequency (CFF) characterizes the frequency at which a sequence of light flashes is perceived as continuous light. It is known that CFF in birds is higher than that in humans and that light flicker can affect behavioral patterns and stress levels in several bird species. As there is a lack of knowledge about the impact of flicker frequency on fattening turkeys, this study aimed to investigate the effects of flicker frequency on the behavior, performance, and stress response in male turkeys. In 3 trials, a total of 1,646 male day-old turkey poults of the strain B.U.T. 6 with intact beaks were reared for 20 wk in 12 barn compartments of 18 m² each. Each barn compartment was illuminated using 2 full-spectrum LED lamps. Flicker frequencies of 165 Hz, 500 Hz, and 16 kHz were set in the luminaires to illuminate the compartments. Analyses of feather corticosterone concentration were performed on fully grown third-generation primaries (P 3) of 5 turkeys from each compartment. No significant differences were found in the development of live weight, feed consumption, or prevalence of injured or killed turkeys by conspecifics reared under the above flicker frequencies. The flicker frequencies also did not significantly influence feather corticosterone concentrations in the primaries of the turkeys. In conclusion, the present results indicate that flicker frequencies of 165 Hz or higher have no detrimental effect on growth performance, injurious pecking, or endocrine stress response in male turkeys and, thus, may be suitable for use as animal-friendly lighting.
Collapse
Affiliation(s)
- J Raabe
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - G Raveendran
- Faculty I - Electrical Engineering and Information Technology, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
| | - W Otten
- Research Institute for Farm Animal Biology (FBN), Institute of Behavioural Physiology, Dummerstorf, Germany
| | - K Homeyer
- Faculty I - Electrical Engineering and Information Technology, Hochschule Hannover - University of Applied Sciences and Arts, Hannover, Germany
| | - T Bartels
- Friedrich-Loeffler-Institut, Institute of Animal Welfare and Animal Husbandry, Celle, Germany.
| |
Collapse
|
8
|
Mathis U, Feldkaemper M, Liu H, Schaeffel F. Studies on the interactions of retinal dopamine with choroidal thickness in the chicken. Graefes Arch Clin Exp Ophthalmol 2023; 261:409-425. [PMID: 36192457 PMCID: PMC9837001 DOI: 10.1007/s00417-022-05837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Recently, an increasing number of studies relied on the assumption that visually induced changes in choroidal thickness can serve as a proxy to predict future axial eye growth. The retinal signals controlling choroidal thickness are, however, not well defined. We have studied the potential roles of dopamine, released from the retina, in the choroidal response in the chicken. METHODS Changes in retinal dopamine release and choroidal thickness changes were induced by intravitreal injections of either atropine (250 µg or 360 nMol), atropine combined with a dopamine antagonist, spiperone (500 µMol), or spiperone alone and were tracked by optical coherence tomography (OCT). To visually stimulate dopamine release, other chicks were exposed to flicker light of 1, 10, or 400 Hz (duty cycle 0.2) and choroidal thickness was tracked. In all experiments, dopamine and 3,4-Dihydroxyphenylacetic acid (DOPAC) were measured in vitreous, retina, and choroid by high-performance liquid chromatography with electrochemical detection (HLPC-ED). The distribution of the rate-limiting enzyme of dopamine synthesis, tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), vascular endothelial growth factor (VEGF), and alpha2A adrenoreceptors (alpha2A-ADR) was studied in the choroid by immunofluorescence. RESULTS The choroid thickened strongly in atropine-injected eyes, less so in atropine + spiperone-injected eyes and became thinner over the day in spiperone alone-, vehicle-, or non-injected eyes. Flickering light at 20 lx, both 1 and 10 Hz, prevented diurnal choroidal thinning, compared to 400 Hz, and stimulated retinal dopamine release. Correlation analysis showed that the higher retinal dopamine levels or release, the thicker became the choroid. TH-, nNOS-, VEGF-, and alpha2A adrenoreceptor-positive nerve fibers were localized in the choroid around lacunae and in the walls of blood vessels with colocalization of TH and nNOS, and TH and VEGF. CONCLUSIONS Retinal DOPAC and dopamine levels were positively correlated with choroidal thickness. TH-positive nerve fibers in the choroid were closely associated with peptides known to play a role in myopia development. Findings are in line with the hypothesis that dopamine is related to retinal signals controlling choroidal thickness.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Marita Feldkaemper
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Hong Liu
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
- Institute for Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
9
|
Zanon M, Lemaire BS, Vallortigara G. Steps towards a computational ethology: an automatized, interactive setup to investigate filial imprinting and biological predispositions. BIOLOGICAL CYBERNETICS 2021; 115:575-584. [PMID: 34272970 PMCID: PMC8642325 DOI: 10.1007/s00422-021-00886-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Soon after hatching, the young of precocial species, such as domestic chicks or ducklings, learn to recognize their social partner by simply being exposed to it (imprinting process). Even artificial objects or stimuli displayed on monitor screens can effectively trigger filial imprinting, though learning is canalized by spontaneous preferences for animacy signals, such as certain kinds of motion or a face-like appearance. Imprinting is used as a behavioural paradigm for studies on memory formation, early learning and predispositions, as well as number and space cognition, and brain asymmetries. Here, we present an automatized setup to expose and/or test animals for a variety of imprinting experiments. The setup consists of a cage with two high-frequency screens at the opposite ends where stimuli are shown. Provided with a camera covering the whole space of the cage, the behaviour of the animal is recorded continuously. A graphic user interface implemented in Matlab allows a custom configuration of the experimental protocol, that together with Psychtoolbox drives the presentation of images on the screens, with accurate time scheduling and a highly precise framerate. The setup can be implemented into a complete workflow to analyse behaviour in a fully automatized way by combining Matlab (and Psychtoolbox) to control the monitor screens and stimuli, DeepLabCut to track animals' behaviour, Python (and R) to extract data and perform statistical analyses. The automated setup allows neuro-behavioural scientists to perform standardized protocols during their experiments, with faster data collection and analyses, and reproducible results.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
| | - Bastien S Lemaire
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | | |
Collapse
|
10
|
Mankowska ND, Marcinkowska AB, Waskow M, Sharma RI, Kot J, Winklewski PJ. Critical Flicker Fusion Frequency: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1096. [PMID: 34684133 PMCID: PMC8537539 DOI: 10.3390/medicina57101096] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
This review presents the current knowledge of the usage of critical flicker fusion frequency (CFF) in human and animal model studies. CFF has a wide application in different fields, especially as an indicator of cortical arousal and visual processing. In medicine, CFF may be helpful for diagnostic purposes, for example in epilepsy or minimal hepatic encephalopathy. Given the environmental studies and a limited number of other methods, it is applicable in diving and hyperbaric medicine. Current research also shows the relationship between CFF and other electrophysiological methods, such as electroencephalography. The human eye can detect flicker at 50-90 Hz but reports are showing the possibility to distinguish between steady and modulated light up to 500 Hz. Future research with the use of CFF is needed to better understand its utility and application.
Collapse
Affiliation(s)
- Natalia D. Mankowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Monika Waskow
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Rita I. Sharma
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anaesthesiology and Intensive Care, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Pawel J. Winklewski
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
11
|
Chen X, Shafer D, Sifri M, Lilburn M, Karcher D, Cherry P, Wakenell P, Fraley S, Turk M, Fraley GS. Centennial Review: History and husbandry recommendations for raising Pekin ducks in research or commercial production. Poult Sci 2021; 100:101241. [PMID: 34229220 PMCID: PMC8261006 DOI: 10.1016/j.psj.2021.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
By some accounts, ducks were domesticated between 400 and 10,000 yr ago and have been a growing portion of the poultry industry for decades. Ducks specifically, and waterfowl in general, have unique health, housing, nutrition and welfare concerns compared to their galliform counterparts. Although there have been many research publications in regards to health, nutrition, behavior, and welfare of ducks there have been very few reviews to provide an overview of these numerous studies, and only one text has attempted to review all aspects of the duck industry, from breeders to meat ducks. This review covers incubation, hatching, housing, welfare, nutrition, and euthanasia and highlights the needs for additional research at all levels of duck production. The purpose of this review is to provide guidelines to raise and house ducks for research as specifically related to industry practices.
Collapse
Affiliation(s)
- X Chen
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - D Shafer
- Maple Leaf Farms, Inc., Leesburg, IN, USA
| | - M Sifri
- Sifri Solutions, LLC, Quincy, IL, USA
| | - M Lilburn
- Ohio State University, Wooster, OH, USA
| | - D Karcher
- Purdue University, West Lafeyette, IN, USA
| | - P Cherry
- Consultant, Lincoln, LN2 2NH United Kingdom
| | - P Wakenell
- Purdue University, West Lafeyette, IN, USA
| | - S Fraley
- Purdue University, West Lafeyette, IN, USA
| | - M Turk
- Dux Consulting, LLC, Milford, IN, USA
| | - G S Fraley
- Purdue University, West Lafeyette, IN, USA.
| |
Collapse
|
12
|
Seifert M, Baden T, Osorio D. The retinal basis of vision in chicken. Semin Cell Dev Biol 2020; 106:106-115. [PMID: 32295724 DOI: 10.1016/j.semcdb.2020.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
The Avian retina is far less known than that of mammals such as mouse and macaque, and detailed study is overdue. The chicken (Gallus gallus) has potential as a model, in part because research can build on developmental studies of the eye and nervous system. One can expect differences between bird and mammal retinas simply because whereas most mammals have three types of visual photoreceptor birds normally have six. Spectral pathways and colour vision are of particular interest, because filtering by oil droplets narrows cone spectral sensitivities and birds are probably tetrachromatic. The number of receptor inputs is reflected in the retinal circuitry. The chicken probably has four types of horizontal cell, there are at least 11 types of bipolar cell, often with bi- or tri-stratified axon terminals, and there is a high density of ganglion cells, which make complex connections in the inner plexiform layer. In addition, there is likely to be retinal specialisation, for example chicken photoreceptors and ganglion cells have separate peaks of cell density in the central and dorsal retina, which probably serve different types of behaviour.
Collapse
Affiliation(s)
- M Seifert
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK.
| | - T Baden
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK; Institute for Ophthalmic Research, University of Tuebingen, Germany
| | - D Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, UK
| |
Collapse
|
13
|
Entrainment within neuronal response in optic tectum of pigeon to video displays. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:845-855. [PMID: 32809044 DOI: 10.1007/s00359-020-01442-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The cathode ray tube (CRT) is a common and important tool that has been in use for decades, with which behavioral and visual neuroscientists deliver specific visual images generated by computers. Considering the operating principle of the CRT, the image it presents can flick at a constant rate, which will introduce distractions to the visual experiments on subjects with higher temporal resolutions. While this entrainment has been proved common in recordings of the primary visual cortex of mammals, it is uncertain whether it also exists in the intermediate to deep layers of pigeon's optic tectum, which is relevant to the spatial attention. Here, we present continuous visual stimuli with different refresh rates and luminances couples shown on a CRT to pigeons. The recordings in the intermediate to deep layers of optic tectum were significantly phase locking to the refresh of the CRT, and lower refresh rates of the CRT with higher brightness more likely introduced artifacts in electrophysiological recordings of pigeons, which may seriously damage their visual information perception.
Collapse
|
14
|
Lemaire BS. No evidence of spontaneous preference for slowly moving objects in visually naïve chicks. Sci Rep 2020; 10:6277. [PMID: 32286487 PMCID: PMC7156419 DOI: 10.1038/s41598-020-63428-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
It has been recently reported that young chicks that have received equal exposure to slowly- and fast-rotating objects showed a preference for slowly-rotating objects. This would suggest that visual experience with slowly moving objects is necessary for object recognition in newborns. I attempted to duplicate this finding in newborn chicks using a simple rotating blue cube. No significant preference was found. Using objects similar to the ones used in the previous study (digital embryos), I observed a strong and robust preference for the fast- (not for the slow-) rotating object. To clarify whether the discrepancies with the previous study could be due to the stimuli frame-frequency used (the chicks' visual system is characterized by high temporal resolution), I repeated the experiments by presenting the stimuli with a lower-frame frequency (from 120 fps to 24 fps). However, similar preferences for the fast-rotating objects were found, this time also for the rotating blue cube. These results suggest a preference for fast-rotating objects that is modulated by the shape and, in part, by the frame-frequency. It remains to be established whether the discrepancies between this study and the previous study can be explained by differences related to strains or artefacts due to the use of monitors with a low-refresh rate.
Collapse
Affiliation(s)
- Bastien S Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068, Rovereto, TN, Italy.
| |
Collapse
|
15
|
Potier S, Lieuvin M, Pfaff M, Kelber A. How fast can raptors see? ACTA ACUST UNITED AC 2020; 223:jeb.209031. [PMID: 31822552 DOI: 10.1242/jeb.209031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022]
Abstract
Birds, and especially raptors, are highly visual animals. Some of them have the highest spatial resolving power known in the animal kingdom, allowing prey detection at distance. While many raptors visually track fast-moving and manoeuvrable prey, requiring high temporal resolution, this aspect of their visual system has never been studied before. In this study, we estimated how fast raptors can see, by measuring the flicker fusion frequency of three species with different lifestyles. We found that flicker fusion frequency differed among species, being at least 129 Hz in the peregrine falcon, Falco peregrinus, 102 Hz in the saker falcon, Falco cherrug, and 81 Hz in the Harris's hawk, Parabuteo unicinctus We suggest a potential link between fast vision and hunting strategy, with high temporal resolution in the fast-flying falcons that chase fast-moving, manoeuvrable prey and a lower resolution in the Harris's hawk, which flies more slowly and targets slower prey.
Collapse
Affiliation(s)
- Simon Potier
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Margaux Lieuvin
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Michael Pfaff
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| | - Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, Lund S-22362, Sweden
| |
Collapse
|
16
|
Yin H, Li D, Wang Y, Zhu Q. Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection. 3 Biotech 2019; 9:383. [PMID: 31656721 DOI: 10.1007/s13205-019-1902-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Chinese indigenous chickens have experienced strong selective pressure in genes or genomic regions controlling critical agricultural traits. To exploit the genetic features that may be useful in agriculture and are caused by artificial selection, we performed whole-genome sequencing of six Pengxian Yellow Chickens and downloaded the sequence data of five Red Jungle fowls from the NCBI. Through selective sweep analysis, we detected several regions with strong selection signals, containing 497 protein-coding genes. These genes were involved in developmental processes, metabolic processes, the response to external stimuli and other biological processes including digestion (ABCG5, ABCG8 and ADRB1), muscle development and growth (SMPD3, NELL1, and BICC1) and reduced immune function (CD86 and MTA3). Interestingly, we identified several genes with extremely strong selection signals associated with the loss of visual capability of domestic chickens relative to their wild ancestors. Amongst them, we propose that CTNND2 is involved in the evolutionary changes of domestic chickens toward reduced visual ability through the diopter system. VAT1 was also likely to contribute to these processes through its regulation of mitochondrial fusion. In summary, these data illustrate the patterns of genetic changes in Pengxian yellow chickens during domestication and provide valuable genetic resources that facilitate the utilization of chickens in agricultural production.
Collapse
|
17
|
Ronald KL, Fernández-Juricic E, Lucas JR. Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences. Proc Biol Sci 2019; 285:rspb.2018.0713. [PMID: 29769366 DOI: 10.1098/rspb.2018.0713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 01/27/2023] Open
Abstract
A common assumption in sexual selection studies is that receivers decode signal information similarly. However, receivers may vary in how they rank signallers if signal perception varies with an individual's sensory configuration. Furthermore, receivers may vary in their weighting of different elements of multimodal signals based on their sensory configuration. This could lead to complex levels of selection on signalling traits. We tested whether multimodal sensory configuration could affect preferences for multimodal signals. We used brown-headed cowbird (Molothrus ater) females to examine how auditory sensitivity and auditory filters, which influence auditory spectral and temporal resolution, affect song preferences, and how visual spatial resolution and visual temporal resolution, which influence resolution of a moving visual signal, affect visual display preferences. Our results show that multimodal sensory configuration significantly affects preferences for male displays: females with better auditory temporal resolution preferred songs that were shorter, with lower Wiener entropy, and higher frequency; and females with better visual temporal resolution preferred males with less intense visual displays. Our findings provide new insights into mate-choice decisions and receiver signal processing. Furthermore, our results challenge a long-standing assumption in animal communication which can affect how we address honest signalling, assortative mating and sensory drive.
Collapse
Affiliation(s)
- Kelly L Ronald
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA .,Department of Biological Sciences, Purdue University, Lilly Hall, 915 West State Street, West Lafayette, IN 47907, USA
| | - Esteban Fernández-Juricic
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| | - Jeffrey R Lucas
- Department of Biology, Indiana University, Jordan Hall, 1001 E 3rd Street, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Bartels T, Lütgeharm JH, Wähner M, Berk J. UV reflection properties of plumage and skin of domesticated turkeys (Meleagris gallopavo f. dom.) as revealed by UV photography. Poult Sci 2017; 96:4134-4139. [PMID: 29053857 DOI: 10.3382/ps/pex256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022] Open
Abstract
Reflection and fluorescence properties of feathered and non-feathered body regions of white- and bronze-colored fattening turkeys of various ages were examined by ultraviolet (UV) photography. The examinations were carried out on 20 white-feathered fattening turkeys (B.U.T. 6; 10 males, 10 females) and 20 bronze-feathered fattening turkeys (Grelier 708; 10 males, 10 females) over a period of 21 weeks. The turkeys were photographed once a wk under long-wave UV (UVA) radiation illumination (λ = 344-407 nm) using a digital camera. A bandpass filter was used for UV reflectography to filter out the visible components of the used light source. A longpass filter was used for UV fluorescence photography to avoid blurring in the image due to chromatic aberration as a result of UV illumination. We found that natal down feathers of white-feathered turkeys showed an intense yellowish-green fluorescence under UVA light. UVA fluorescence also was shown by the natal downs of the slightly melanized plumage areas of bronze turkeys. Vaned feathers of white fattening turkeys reflected UVA radiation. Freshly molted feathers were optically distinguishable from the previous feather generation due to their more intense UVA reflection. In bronze turkeys, both the bright end seams of the dark pennaceous feathers and rectrices and the bright banding of primary and secondary remiges reflected UVA radiation. Intense UVA fluorescence was recognizable in day-old chicks of both color variants on the scutellate scales of the legs and toes. In male turkeys of both color variants, UVA-reflecting parts were recognizable with increasing age on the featherless head region. The UVA-fluorescent and UVA-reflective characteristics of the plumage of fattening turkeys were closely related to the plumage color, the feather type, the molting state, and the age of the birds. Further research is needed regarding the UVA-reflecting properties of the turkey plumage and the effects of full-spectrum illumination, including the UVA spectrum, on the behavior and health of fattening turkeys.
Collapse
Affiliation(s)
- T Bartels
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Institute for Animal Welfare and Animal Husbandry, Celle, Germany
| | - J-H Lütgeharm
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Bernburg, Germany
| | - M Wähner
- Anhalt University of Applied Sciences, Department of Agriculture, Ecotrophology and Landscape Development, Bernburg, Germany
| | - J Berk
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, Institute for Animal Welfare and Animal Husbandry, Celle, Germany
| |
Collapse
|
19
|
Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ, Cebulla CM. The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res 2017; 61:72-97. [PMID: 28668352 PMCID: PMC5653414 DOI: 10.1016/j.preteyeres.2017.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
The domestic chicken, Gallus gallus, serves as an excellent model for the study of a wide range of ocular diseases and conditions. The purpose of this manuscript is to outline some anatomic, physiologic, and genetic features of this organism as a robust animal model for vision research, particularly for modeling human retinal disease. Advantages include a sequenced genome, a large eye, relative ease of handling and maintenance, and ready availability. Relevant similarities and differences to humans are highlighted for ocular structures as well as for general physiologic processes. Current research applications for various ocular diseases and conditions, including ocular imaging with spectral domain optical coherence tomography, are discussed. Several genetic and non-genetic ocular disease models are outlined, including for pathologic myopia, keratoconus, glaucoma, retinal detachment, retinal degeneration, ocular albinism, and ocular tumors. Finally, the use of stem cell technology to study the repair of damaged tissues in the chick eye is discussed. Overall, the chick model provides opportunities for high-throughput translational studies to more effectively prevent or treat blinding ocular diseases.
Collapse
Affiliation(s)
- C Ellis Wisely
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Javed A Sayed
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Heather Tamez
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Chris Zelinka
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Mohamed H Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, 333 West 10th Avenue, Columbus, OH 43210, USA.
| | - Colleen M Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Science, The Ohio State University Wexner Medical Center, 915 Olentangy River Rd, Columbus, OH 43212, USA.
| |
Collapse
|
20
|
Ronald KL, Sesterhenn TM, Fernandez-Juricic E, Lucas JR. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:935-943. [PMID: 28819686 DOI: 10.1007/s00359-017-1203-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.
Collapse
Affiliation(s)
- Kelly L Ronald
- Purdue University, 915 West State Street, West Lafayette, IN, USA. .,Indiana University, 1001 East 3rd Street, Bloomington, IN, USA.
| | - Timothy M Sesterhenn
- Purdue University, 915 West State Street, West Lafayette, IN, USA.,Morningside College, 1501 Morningside Avenue, Sioux City, IA, USA
| | | | - Jeffrey R Lucas
- Purdue University, 915 West State Street, West Lafayette, IN, USA
| |
Collapse
|
21
|
Gootwine E, Ofri R, Banin E, Obolensky A, Averbukh E, Ezra-Elia R, Ross M, Honig H, Rosov A, Yamin E, Ye GJ, Knop DR, Robinson PM, Chulay JD, Shearman MS. Safety and Efficacy Evaluation of rAAV2tYF-PR1.7-hCNGA3 Vector Delivered by Subretinal Injection in CNGA3 Mutant Achromatopsia Sheep. HUM GENE THER CL DEV 2017; 28:96-107. [PMID: 28478700 DOI: 10.1089/humc.2017.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector expressing the human CNGA3 gene designated AGTC-402 (rAAV2tYF-PR1.7-hCNGA3) for the treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. The results are herein reported of a study evaluating safety and efficacy of AGTC-402 in CNGA3-deficient sheep. Thirteen day-blind sheep divided into three groups of four or five animals each received a subretinal injection of an AAV vector expressing a CNGA3 gene in a volume of 500 μL in the right eye. Two groups (n = 9) received either a lower or higher dose of the AGTC-402 vector, and one efficacy control group (n = 4) received a vector similar in design to one previously shown to rescue cone photoreceptor responses in the day-blind sheep model (rAAV5-PR2.1-hCNGA3). The left eye of each animal received a subretinal injection of 500 μL of vehicle (n = 4) or was untreated (n = 9). Subretinal injections were generally well tolerated and not associated with systemic toxicity. Most animals had mild to moderate conjunctival hyperemia, chemosis, and subconjunctival hemorrhage immediately after surgery that generally resolved by postoperative day 7. Two animals treated with the higher dose of AGTC-402 and three of the efficacy control group animals had microscopic findings of outer retinal atrophy with or without inflammatory cells in the retina and choroid that were procedural and/or test-article related. All vector-treated eyes showed improved cone-mediated electroretinography responses with no change in rod-mediated electroretinography responses. Behavioral maze testing under photopic conditions showed significantly improved navigation times and reduced numbers of obstacle collisions in all vector-treated eyes compared to their contralateral control eyes or pre-dose results in the treated eyes. These results support the use of AGTC-402 in clinical studies in patients with achromatopsia caused by CNGA3 mutations, with careful evaluation for possible inflammatory and/or toxic effects.
Collapse
Affiliation(s)
- Elisha Gootwine
- 1 Agricultural Research Organization, The Volcani Center , Rishon LeZion, Israel
| | - Ron Ofri
- 2 Koret School of Veterinary Medicine, Hebrew University of Jerusalem , Rehovot, Israel
| | - Eyal Banin
- 3 Department of Ophthalmology, Hadassah-Hebrew University Medical Center , Jerusalem, Israel
| | - Alexey Obolensky
- 3 Department of Ophthalmology, Hadassah-Hebrew University Medical Center , Jerusalem, Israel
| | - Edward Averbukh
- 3 Department of Ophthalmology, Hadassah-Hebrew University Medical Center , Jerusalem, Israel
| | - Raaya Ezra-Elia
- 2 Koret School of Veterinary Medicine, Hebrew University of Jerusalem , Rehovot, Israel
| | - Maya Ross
- 2 Koret School of Veterinary Medicine, Hebrew University of Jerusalem , Rehovot, Israel
| | - Hen Honig
- 1 Agricultural Research Organization, The Volcani Center , Rishon LeZion, Israel
| | - Alexander Rosov
- 1 Agricultural Research Organization, The Volcani Center , Rishon LeZion, Israel
| | - Esther Yamin
- 3 Department of Ophthalmology, Hadassah-Hebrew University Medical Center , Jerusalem, Israel
| | - Guo-Jie Ye
- 4 Applied Genetic Technologies Corporation (AGTC) , Alachua, Florida
| | - David R Knop
- 4 Applied Genetic Technologies Corporation (AGTC) , Alachua, Florida
| | | | - Jeffrey D Chulay
- 4 Applied Genetic Technologies Corporation (AGTC) , Alachua, Florida
| | - Mark S Shearman
- 4 Applied Genetic Technologies Corporation (AGTC) , Alachua, Florida
| |
Collapse
|
22
|
Warrington RE, Hart NS, Potter IC, Collin SP, Hemmi JM. Retinal temporal resolution and contrast sensitivity in the parasitic lamprey Mordacia mordax and its non-parasitic derivative Mordacia praecox. J Exp Biol 2017; 220:1245-1255. [PMID: 28108670 DOI: 10.1242/jeb.150383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Lampreys and hagfishes are the sole extant representatives of the early agnathan (jawless) vertebrates. We compared retinal function of fully metamorphosed, immature Mordacia mordax (which are about to commence parasitic feeding) with those of sexually mature individuals of its non-parasitic derivative Mpraecox We focused on elucidating the retinal adaptations to dim-light environments in these nocturnally active lampreys, using electroretinography to determine the temporal resolution (flicker fusion frequency, FFF) and temporal contrast sensitivity of enucleated eyecups at different temperatures and light intensities. FFF was significantly affected by temperature and light intensity. Critical flicker fusion frequency (cFFF, the highest FFF recorded) of M. praecox and M. mordax increased from 15.1 and 21.8 Hz at 9°C to 31.1 and 36.9 Hz at 24°C, respectively. Contrast sensitivity of both species increased by an order of magnitude between 9 and 24°C, but remained comparatively constant across all light intensities. Although FFF values for Mordacia spp. are relatively low, retinal responses showed a particularly high contrast sensitivity of 625 in M. praecox and 710 in M. mordax at 24°C. This suggests selective pressures favour low temporal resolution and high contrast sensitivity in both species, thereby enhancing the capture of photons and increasing sensitivity in their light-limited environments. FFF indicated all retinal photoreceptors exhibit the same temporal response. Although the slow response kinetics (i.e. low FFF) and saturation of the response at bright light intensities characterise the photoreceptors of both species as rod-like, it is unusual for such a photoreceptor to be functional under scotopic and photopic conditions.
Collapse
Affiliation(s)
- Rachael E Warrington
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia .,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Ian C Potter
- Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Shaun P Collin
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jan M Hemmi
- School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia.,UWA Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
23
|
Olsson P, Wilby D, Kelber A. Spatial summation improves bird color vision in low light intensities. Vision Res 2017; 130:1-8. [DOI: 10.1016/j.visres.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/20/2016] [Accepted: 10/30/2016] [Indexed: 11/29/2022]
|
24
|
Boström JE, Haller NK, Dimitrova M, Ödeen A, Kelber A. The flicker fusion frequency of budgerigars (Melopsittacus undulatus) revisited. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 203:15-22. [PMID: 27837238 PMCID: PMC5263199 DOI: 10.1007/s00359-016-1130-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/01/2016] [Indexed: 12/03/2022]
Abstract
While color vision and spatial resolution have been studied in many bird species, less is known about the temporal aspects of bird vision. High temporal resolution has been described in three species of passerines but it is unknown whether this is specific to passerines, to small actively flying birds, to insectivores or to birds living in bright habitats. Temporal resolution of vision is commonly tested by determining the flicker fusion frequency (FFF), at which the eye can no longer distinguish a flickering light from a constant light of equal intensity at different luminances. Using a food reward, we trained the birds to discriminate a constant light from a flickering light, at four different luminances between 750 and 7500 cd/m2. The highest FFF found in one bird at 3500 cd/m2 was 93 Hz. Three birds had higher FFF (82 Hz) at 7500 cd/m2 than at 3500 cd/m2. Six human subjects had lower FFF than the birds at 1500 but similar FFF at 750 cd/m2. These results indicate that high temporal resolution is not a common trait for all small and active birds living in bright light habitats. Whether it is typical for passerines or for insectivorous birds remains to be tested.
Collapse
Affiliation(s)
- Jannika E Boström
- Department of Ecology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Nicola K Haller
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - Marina Dimitrova
- Department of Ecology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Anders Ödeen
- Department of Ecology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Almut Kelber
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden.
| |
Collapse
|
25
|
EVALUATION OF POTENTIAL RISK FACTORS ASSOCIATED WITH CATARACT IN CAPTIVE MACARONI (EUDYPTES CHRYSOLOPHUS) AND ROCKHOPPER PENGUINS (EUDYPTES CHRYSOCOME). J Zoo Wildl Med 2016; 47:806-819. [PMID: 27691963 DOI: 10.1638/2015-0252.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complete ophthalmic examinations were performed on 160 Macaroni penguins ( Eudyptes chrysolophus ) and 90 Rockhopper penguins ( Eudyptes chrysocome ) at eight North American zoological institutions. Cataract prevalence in the Macaroni population was 46.5% (n = 74) of penguins and 42.3% (135/319) of eyes. Cataract prevalence in the Rockhopper population was 45.5% (n = 40) of penguins and 40.6% (73/180) of eyes. The mean age of Macaroni penguins without ocular disease was 7.4 ± 5.8 yr, while that of Rockhoppers was 9.8 ± 6.4 yr. Risk factors for cataract were examined through husbandry surveys completed by each institution and by evaluation of light intensity and ultraviolet (UV) light measurements acquired in each penguin exhibit. Risk factors associated with cataract in Macaroni penguins included age, dietary smelt, hand-feeding, and fluorescent exhibit lighting. Risk factors associated with cataract in Rockhopper penguins included age, dietary capelin, increasing population density, and increasing length of minimum photoperiod. Factors associated with decreased odds of cataract in Macaroni penguins included saltwater pool, monitoring of water quality for salinity, pH, and alkalinity; use of water additives; presence of pool filtration and sterilization systems; use of metal halide lightbulbs; increasing light intensity; and UV spectrum lighting. Factors associated with decreased odds of cataract in Rockhoppers included dietary herring and krill, increasing exhibit land area, pool temperature monitoring, increasing maximum photoperiod, and increasing minimum UV light.
Collapse
|
26
|
Wang MS, Zhang RW, Su LY, Li Y, Peng MS, Liu HQ, Zeng L, Irwin DM, Du JL, Yao YG, Wu DD, Zhang YP. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res 2016; 26:556-73. [PMID: 27033669 PMCID: PMC4856766 DOI: 10.1038/cr.2016.44] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/18/2016] [Accepted: 02/22/2016] [Indexed: 01/05/2023] Open
Abstract
As noted by Darwin, chickens have the greatest phenotypic diversity of all birds, but an interesting evolutionary difference between domestic chickens and their wild ancestor, the Red Junglefowl, is their comparatively weaker vision. Existing theories suggest that diminished visual prowess among domestic chickens reflect changes driven by the relaxation of functional constraints on vision, but the evidence identifying the underlying genetic mechanisms responsible for this change has not been definitively characterized. Here, a genome-wide analysis of the domestic chicken and Red Junglefowl genomes showed significant enrichment for positively selected genes involved in the development of vision. There were significant differences between domestic chickens and their wild ancestors regarding the level of mRNA expression for these genes in the retina. Numerous additional genes involved in the development of vision also showed significant differences in mRNA expression between domestic chickens and their wild ancestors, particularly for genes associated with phototransduction and photoreceptor development, such as RHO (rhodopsin), GUCA1A, PDE6B and NR2E3. Finally, we characterized the potential role of the VIT gene in vision, which experienced positive selection and downregulated expression in the retina of the village chicken. Overall, our results suggest that positive selection, rather than relaxation of purifying selection, contributed to the evolution of vision in domestic chickens. The progenitors of domestic chickens harboring weaker vision may have showed a reduced fear response and vigilance, making them easier to be unconsciously selected and/or domesticated.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Jiu-Lin Du
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals
- Kunming College of Life Science, Unisversity of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
27
|
Boström JE, Dimitrova M, Canton C, Håstad O, Qvarnström A, Ödeen A. Ultra-Rapid Vision in Birds. PLoS One 2016; 11:e0151099. [PMID: 26990087 PMCID: PMC4798572 DOI: 10.1371/journal.pone.0151099] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022] Open
Abstract
Flying animals need to accurately detect, identify and track fast-moving objects and these behavioral requirements are likely to strongly select for abilities to resolve visual detail in time. However, evidence of highly elevated temporal acuity relative to non-flying animals has so far been confined to insects while it has been missing in birds. With behavioral experiments on three wild passerine species, blue tits, collared and pied flycatchers, we demonstrate temporal acuities of vision far exceeding predictions based on the sizes and metabolic rates of these birds. This implies a history of strong natural selection on temporal resolution. These birds can resolve alternating light-dark cycles at up to 145 Hz (average: 129, 127 and 137, respectively), which is ca. 50 Hz over the highest frequency shown in any other vertebrate. We argue that rapid vision should confer a selective advantage in many bird species that are ecologically similar to the three species examined in our study. Thus, rapid vision may be a more typical avian trait than the famously sharp vision found in birds of prey.
Collapse
Affiliation(s)
- Jannika E Boström
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Marina Dimitrova
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36, Uppsala, Sweden.,Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden
| | - Cindy Canton
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Olle Håstad
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, S-750 07, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36, Uppsala, Sweden
| | - Anders Ödeen
- Department of Animal Ecology, Uppsala University, Norbyvägen 18D, S-752 36, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, S-750 07, Uppsala, Sweden
| |
Collapse
|
28
|
Ezra-Elia R, Banin E, Honig H, Rosov A, Obolensky A, Averbukh E, Hauswirth WW, Gootwine E, Ofri R. Flicker cone function in normal and day blind sheep: a large animal model for human achromatopsia caused by CNGA3 mutation. Doc Ophthalmol 2014; 129:141-50. [PMID: 25204753 DOI: 10.1007/s10633-014-9458-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/01/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Recently we reported on day blindness in sheep caused by a mutation in the CNGA3 gene, thus making affected sheep a naturally occurring large animal model for therapeutic intervention in CNGA3 achromatopsia patients. The purpose of this study was to characterize flicker cone function in normal and day blind sheep, with the aim of generating a normative data base for ongoing gene therapy studies. METHODS Electoretinographic (ERG) cone responses were evoked with full-field conditions in 10 normal, 6 heterozygous carriers and 36 day blind sheep. Following light adaptation (10 min, 30 cd/m(2)), responses were recorded at four increasing light intensities (1, 2.5, 5 and 10 cd s/m(2)). At each of these intensities, a single photopic flash response followed by 8 cone flicker responses (10-80 Hz) was recorded. Results were used to generate a normative data base for the three groups. Differences between day blind and normal control animals were tested in two age-matched groups (n = 10 per group). RESULTS The normal sheep cone ERG wave is bipartite in nature, with critical flicker fusion frequency (CFF) >80 Hz. In all four flash intensities, the single photopic flash a-wave and b-wave amplitudes were significantly lower (p < 0.005), and implicit times significantly delayed (p < 0.0001), in day blind animals. In all four flash intensities, CFF values were significantly lower (p < 0.0001) in day blind sheep. CONCLUSIONS Cone function is severely depressed in day blind sheep. Our results will provide a normative data base for ongoing gene therapy studies.
Collapse
Affiliation(s)
- Raaya Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, PO Box 12, 7610001, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Inger R, Bennie J, Davies TW, Gaston KJ. Potential biological and ecological effects of flickering artificial light. PLoS One 2014; 9:e98631. [PMID: 24874801 PMCID: PMC4038456 DOI: 10.1371/journal.pone.0098631] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/05/2014] [Indexed: 11/24/2022] Open
Abstract
Organisms have evolved under stable natural lighting regimes, employing cues from these to govern key ecological processes. However, the extent and density of artificial lighting within the environment has increased recently, causing widespread alteration of these regimes. Indeed, night-time electric lighting is known significantly to disrupt phenology, behaviour, and reproductive success, and thence community composition and ecosystem functioning. Until now, most attention has focussed on effects of the occurrence, timing, and spectral composition of artificial lighting. Little considered is that many types of lamp do not produce a constant stream of light but a series of pulses. This flickering light has been shown to have detrimental effects in humans and other species. Whether a species is likely to be affected will largely be determined by its visual temporal resolution, measured as the critical fusion frequency. That is the frequency at which a series of light pulses are perceived as a constant stream. Here we use the largest collation to date of critical fusion frequencies, across a broad range of taxa, to demonstrate that a significant proportion of species can detect such flicker in widely used lamps. Flickering artificial light thus has marked potential to produce ecological effects that have not previously been considered.
Collapse
Affiliation(s)
- Richard Inger
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
- * E-mail:
| | - Jonathan Bennie
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Thomas W. Davies
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom
| |
Collapse
|
30
|
Shi Q, Stell WK. Die Fledermaus: regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings. PLoS One 2013; 8:e75375. [PMID: 24098693 PMCID: PMC3787091 DOI: 10.1371/journal.pone.0075375] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Through adaptation, animals can function visually under an extremely broad range of light intensities. Light adaptation starts in the retina, through shifts in photoreceptor sensitivity and kinetics plus modulation of visual processing in retinal circuits. Although considerable research has been conducted on retinal adaptation in nocturnal species with rod-dominated retinas, such as the mouse, little is known about how cone-dominated avian retinas adapt to changes in mean light intensity. METHODOLOGY/PRINCIPAL FINDINGS We used the optokinetic response to characterize contrast sensitivity (CS) in the chick retina as a function of spatial frequency and temporal frequency at different mean light intensities. We found that: 1) daytime, cone-driven CS was tuned to spatial frequency; 2) nighttime, presumably rod-driven CS was tuned to temporal frequency and spatial frequency; 3) daytime, presumably cone-driven CS at threshold intensity was invariant with temporal and spatial frequency; and 4) daytime photopic CS was invariant with clock time. CONCLUSION/SIGNIFICANCE Light- and dark-adaptational changes in CS were investigated comprehensively for the first time in the cone-dominated retina of an avian, diurnal species. The chick retina, like the mouse retina, adapts by using a "day/night" or "cone/rod" switch in tuning preference during changes in lighting conditions. The chick optokinetic response is an attractive model for noninvasive, behavioral studies of adaptation in retinal circuitry in health and disease.
Collapse
Affiliation(s)
- Qing Shi
- Neuroscience Graduate Program, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - William K. Stell
- Department of Cell Biology and Anatomy, and Department of Surgery, and Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute; University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Fernández-Juricic E, Ojeda A, Deisher M, Burry B, Baumhardt P, Stark A, Elmore AG, Ensminger AL. Do male and female cowbirds see their world differently? Implications for sex differences in the sensory system of an avian brood parasite. PLoS One 2013; 8:e58985. [PMID: 23544049 PMCID: PMC3609808 DOI: 10.1371/journal.pone.0058985] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/08/2013] [Indexed: 01/24/2023] Open
Abstract
Background Male and female avian brood parasites are subject to different selection pressures: males compete for mates but do not provide parental care or territories and only females locate hosts to lay eggs. This sex difference may affect brain architecture in some avian brood parasites, but relatively little is known about their sensory systems and behaviors used to obtain sensory information. Our goal was to study the visual resolution and visual information gathering behavior (i.e., scanning) of brown-headed cowbirds. Methodology/Principal Findings We measured the density of single cone photoreceptors, associated with chromatic vision, and double cone photoreceptors, associated with motion detection and achromatic vision. We also measured head movement rates, as indicators of visual information gathering behavior, when exposed to an object. We found that females had significantly lower density of single and double cones than males around the fovea and in the periphery of the retina. Additionally, females had significantly higher head-movement rates than males. Conclusions Overall, we suggest that female cowbirds have lower chromatic and achromatic visual resolution than males (without sex differences in visual contrast perception). Females might compensate for the lower visual resolution by gazing alternatively with both foveae in quicker succession than males, increasing their head movement rates. However, other physiological factors may have influenced the behavioral differences observed. Our results bring up relevant questions about the sensory basis of sex differences in behavior. One possibility is that female and male cowbirds differentially allocate costly sensory resources, as a recent study found that females actually have greater auditory resolution than males.
Collapse
Affiliation(s)
- Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|