1
|
Fehrman RL, Chern KJ, Stoltz KP, Lipinski DM. The vectors went in two-by-two: Transduction efficiency and tolerability of dual and triple rAAV vector delivery following intravitreal injection for genome-editing applications. Exp Eye Res 2024; 251:110223. [PMID: 39710097 DOI: 10.1016/j.exer.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Genome or prime editing has become a promising tool for the treatment of hereditary disorders affecting the inner retina, such as dominant optic neuropathies. In vivo delivery of gene editors, such as Cas9, is typically achieved using recombinant adeno-associated virus (rAAV) vectors, which have a broad range of cellular tropisms and are well tolerated following intravitreal administration. Owing to the large size of gene editing constructs and the limited carrying capacity of rAAV (<5.1kb) it is unfortunately usually necessary to split therapeutic transgene cassettes across multiple co-administered vector genomes. While the efficiency with which multiple vector genomes recombine following cellular entry has been studied extensively, another potentially limiting factor is the likelihood of target cells (e.g. retinal ganglion cells) receiving two or more vectors containing genomes that correspond to the full-length expression cassette when recombined. In this study we examine the efficiency with which two or more vector genomes transduce various retinal cell types following intravitreal administration. rAAV2/2[MAX] vectors expressing individual fluorescent reporters (GFP, BFP or mCherry) were co-injected intravitreally singly or in combination (dual or triple), allowing the extent of co-transduction to be assessed through multimodal in vivo imaging, electroretinography, flow cytometry and post-mortem histology. We find that intravitreal co-administration of vectors containing multiple genomes is well tolerated - with no observed alterations in retinal thickness or ERG amplitudes - but that co-transduction efficiency decreases significantly with increasing genome number. As such co-transduction of multiple vectors may be a major bottleneck limiting gene editing of inherited disorders affecting the inner retina.
Collapse
Affiliation(s)
- Rachel L Fehrman
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA
| | - Kristina J Chern
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA
| | - Kyle P Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, WI, 53226, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, WI, 53226, USA; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, WI, 53226, USA.
| |
Collapse
|
2
|
Kreis J, Carroll J. Applications of Adaptive Optics Imaging for Studying Conditions Affecting the Fovea. Annu Rev Vis Sci 2024; 10:239-262. [PMID: 38635871 DOI: 10.1146/annurev-vision-102122-100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The fovea is a highly specialized region of the central retina, defined by an absence of inner retinal layers and the accompanying vasculature, an increased density of cone photoreceptors, a near absence of rod photoreceptors, and unique private-line photoreceptor to midget ganglion cell circuitry. These anatomical specializations support high-acuity vision in humans. While direct study of foveal shape and size is routinely performed using optical coherence tomography, examination of the other anatomical specializations of the fovea has only recently become possible using an array of adaptive optics (AO)-based imaging tools. These devices correct for the eye's monochromatic aberrations and permit cellular-resolution imaging of the living retina. In this article, we review the application of AO-based imaging techniques to conditions affecting the fovea, with an emphasis on how imaging has advanced our understanding of pathophysiology.
Collapse
Affiliation(s)
- Joseph Kreis
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| | - Joseph Carroll
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; ,
| |
Collapse
|
3
|
Gaffney M, Connor TB, Cooper RF. Intensity-based optoretinography reveals sub-clinical deficits in cone function in retinitis pigmentosa. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1373549. [PMID: 38984134 PMCID: PMC11182324 DOI: 10.3389/fopht.2024.1373549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Introduction Clinical tools have been widely used in the diagnosis, description, and monitoring the progression of retinitis pigmentosa (RP); however, many of these methods have inherently low sensitivity and specificity, and significant photoreceptor disruption can occur before RP progression has clinically manifest. Adaptive optics scanning light ophthalmoscopy (AOSLO) has shown promise as a powerful tool for assessing photoreceptor disruption both structurally and functionally due to its increased resolution. Methods Here we assess photoreceptor structure and function at the cellular level through AOSLO by acquiring intensity based optoretinography (iORG) in 15 individuals with no reported retinal pathology and 7 individuals with a prior clinical diagnosis of RP. Photoreceptor structure was quantified by calculating cone nearest neighbor distance (NND) across different retinal eccentricities from the AOSLO images. Cone outer segment length was measured across different retinal eccentricities using optical coherence tomography (OCT) derived longitudinal reflectivity profiles (LRPs). Finally, iORG measures of photoreceptor function were compared to retinal sensitivity as measured using the macular integrity assessment (MAIA) microperimeter. Results Broadly, participants with RP exhibited increasing cone nearest neighbor distances and decreasing cone outer segment length as a function of retinal eccentricity, consistent with prior reports for both controls and individuals with RP. Nearly all individuals with RP had reduced iORG amplitudes for all retinal eccentricities when compared to the control cohort, and the reduction was greater in eccentricities further from the fovea. Comparing iORG amplitudes to MAIA retinal sensitivity, we found that the iORG was more sensitive to early changes in photoreceptor function whereas MAIA was more sensitive to later stages of disease. Discussion This highlights the utility of iORG as a method to detect sub-clinical deficits in cone function in all stages of disease progression and supports the future use of iORG for identifying cells that are candidates for cellular based therapies.
Collapse
Affiliation(s)
- Mina Gaffney
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Thomas B. Connor
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert F. Cooper
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Warr E, Grieshop J, Cooper RF, Carroll J. The effect of sampling window size on topographical maps of foveal cone density. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1348950. [PMID: 38984138 PMCID: PMC11182112 DOI: 10.3389/fopht.2024.1348950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/13/2024] [Indexed: 07/11/2024]
Abstract
Purpose To characterize the effect of sampling window size on maps of foveal cone density derived from adaptive optics scanning light ophthalmoscope (AOSLO) images of the cone mosaic. Methods Forty-four AOSLO-derived montages of the foveal cone mosaic (300 x 300µm) were used for this study (from 44 individuals with normal vision). Cone photoreceptor coordinates were semi-automatically identified by one experienced grader. From these coordinates, cone density matrices across each foveal montage were derived using 10 different sampling window sizes containing 5, 10, 15, 20, 40, 60, 80, 100, 150, or 200 cones. For all 440 density matrices, we extracted the location and value of peak cone density (PCD), the cone density centroid (CDC) location, and cone density at the CDC. Results Across all window sizes, PCD values were larger than those extracted at the CDC location, though the difference between these density values decreased as the sampling window size increased (p<0.0001). Overall, both PCD (r=-0.8099, p=0.0045) and density at the CDC (r=-0.7596, p=0.0108) decreased with increasing sampling window size. This reduction was more pronounced for PCD, with a 27.8% lower PCD value on average when using the 200-cone versus the 5-cone window (compared to only a 3.5% reduction for density at the CDC between these same window sizes). While the PCD and CDC locations did not occur at the same location within a given montage, there was no significant relationship between this PCD-CDC offset and sampling window size (p=0.8919). The CDC location was less variable across sampling windows, with an average per-participant 95% confidence ellipse area across the 10 window sizes of 47.56µm² (compared to 844.10µm² for the PCD location, p<0.0001). Conclusion CDC metrics appear more stable across varying sampling window sizes than PCD metrics. Understanding how density values change according to the method used to sample the cone mosaic may facilitate comparing cone density data across different studies.
Collapse
Affiliation(s)
- Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenna Grieshop
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert F Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Woertz EN, Ayala GD, Wynne N, Tarima S, Zacharias S, Brilliant MH, Dunn TM, Costakos D, Summers CG, Strul S, Drack AV, Carroll J. Quantitative Foveal Structural Metrics as Predictors of Visual Acuity in Human Albinism. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38441889 PMCID: PMC10916884 DOI: 10.1167/iovs.65.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose To assess the degree to which quantitative foveal structural measurements account for variation in best-corrected visual acuity (BCVA) in human albinism. Methods BCVA was measured and spectral domain optical coherence tomography (SD-OCT) images were acquired for 74 individuals with albinism. Categorical foveal hypoplasia grades were assessed using the Leicester Grading System for Foveal Hypoplasia. Foveal anatomical specialization (foveal versus parafoveal value) was quantified for inner retinal layer (IRL) thickness, outer segment (OS) length, and outer nuclear layer (ONL) thickness. These metrics, participant sex, and age were used to build a multiple linear regression of BCVA. This combined linear model's predictive properties were compared to those of categorical foveal hypoplasia grading. Results The cohort included three participants with type 1a foveal hypoplasia, 23 participants with type 1b, 33 with type 2, ten with type 3, and five with type 4. BCVA ranged from 0.08 to 1.00 logMAR (mean ± SD: 0.53 ± 0.21). IRL ratio, OS ratio, and ONL ratio were measured in all participants and decreased with increasing severity of foveal hypoplasia. The best-fit combined linear model included all three quantitative metrics and participant age expressed as a binary variable (divided into 0-18 years and 19 years or older; adjusted R2 = 0.500). This model predicted BCVA more accurately than a categorical foveal hypoplasia model (adjusted R2 = 0.352). Conclusions A quantitative model of foveal specialization accounts for more variance in BCVA in albinism than categorical foveal hypoplasia grading. Other factors, such as optical aberrations and eye movements, may account for the remaining unexplained variance.
Collapse
Affiliation(s)
- Erica N. Woertz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gelique D. Ayala
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Serena Zacharias
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Murray H. Brilliant
- Center for Precision Medicine Research, Marshfield Clinic, Marshfield, Wisconsin, United States
| | - Taylor M. Dunn
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - C. Gail Summers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Sasha Strul
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
6
|
Curcio CA, Kar D, Owsley C, Sloan KR, Ach T. Age-Related Macular Degeneration, a Mathematically Tractable Disease. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38466281 PMCID: PMC10916886 DOI: 10.1167/iovs.65.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024] Open
Abstract
A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.
Collapse
Affiliation(s)
- Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Deepayan Kar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Cynthia Owsley
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Heitkotter H, Allphin MT, Untaroiu A, Min H, Warr E, Wynne N, Cooper RF, Carroll J. Peak Cone Density Predicted from Outer Segment Length Measured on Optical Coherence Tomography. Curr Eye Res 2024; 49:314-324. [PMID: 38146597 PMCID: PMC10922793 DOI: 10.1080/02713683.2023.2289853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE To compare peak cone density predicted from outer segment length measured on optical coherence tomography with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. METHODS Data from 42 healthy participants with direct peak cone density measures and optical coherence tomography line scans available were used in this study. Longitudinal reflectivity profiles were analyzed using two methods of identifying the boundaries of the ellipsoid and interdigitation zones to estimate maximum outer segment length: peak-to-peak and the slope method. These maximum outer segment length values were then used to predict peak cone density using a previously described geometrical model. A comparison between predicted and direct peak cone density measures was then performed. RESULTS The mean bias between observers for estimating maximum outer segment length across methods was less than 2 µm. Cone density predicted from the peak-to-peak method against direct cone density measures showed a mean bias of 6,812 cones/mm2 with 50% of participants displaying a 10% difference or less between predicted and direct cone density values. Cone density derived from the slope method showed a mean bias of -17,929 cones/mm2 relative to direct cone density measures, with only 41% of participants demonstrating less than a 10% difference between direct and predicted cone density values. CONCLUSION Predicted foveal cone density derived from peak-to-peak outer segment length measurements using commercial optical coherence tomography show modest agreement with direct measures of peak cone density from adaptive optics scanning light ophthalmoscopy. The methods used here are imperfect predictors of cone density, however, further exploration of this relationship could reveal a clinically relevant marker of cone structure.
Collapse
Affiliation(s)
- Heather Heitkotter
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
| | - Mitchell T. Allphin
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Ana Untaroiu
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Heun Min
- School of Medicine, Medical College of Wisconsin, Milwaukee, USA
| | - Emma Warr
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
| | - Niamh Wynne
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert F. Cooper
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, USA
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, USA
- Joint Department of Biomedical Engineering Marquette University and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
8
|
Anderson DM, Brager DC, Kearsley AJ. Spatially-dependent model for rods and cones in the retina. J Theor Biol 2024; 579:111687. [PMID: 38103677 DOI: 10.1016/j.jtbi.2023.111687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
We develop a mathematical model for photoreceptors in the retina. We focus on rod and cone outer segment dynamics and interactions with a nutrient source associated with the retinal pigment epithelium cells. Rod and cone densities (number per unit area of retinal surface) are known to have significant spatial dependence in the retina with cones located primarily near the fovea and the rods located primarily away from the fovea. Our model accounts for this spatial dependence of the rod and cone photoreceptor density as well as for the possibility of nutrient diffusion. We present equilibrium and dynamic solutions, discuss their relation to existing models, and estimate model parameters through comparisons with available experimental measurements of both spatial and temporal photoreceptor characteristics. Our model compares well with existing data on spatially-dependent regrowth of photoreceptor outer segments in the macular region of Rhesus Monkeys. Our predictions are also consistent with existing data on the spatial dependence of photoreceptor outer segment length near the fovea in healthy human subjects. We focus primarily on the healthy eye but our model could be the basis for future efforts designed to explore various retinal pathologies, eye-related injuries, and treatments of these conditions.
Collapse
Affiliation(s)
- Daniel M Anderson
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA; Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.
| | - Danielle C Brager
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| | - Anthony J Kearsley
- Applied & Computational Mathematics Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, 20899, MD, USA.
| |
Collapse
|
9
|
Proudlock FA, McLean RJ, Sheth V, Ather S, Gottlob I. Phenotypic Features Determining Visual Acuity in Albinism and the Role of Amblyogenic Factors. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 38319667 PMCID: PMC10854414 DOI: 10.1167/iovs.65.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Albinism is a spectrum disorder causing foveal hypoplasia, nystagmus, and hypopigmentation of the iris and fundus along with other visual deficits, which can all impact vision. Albinism is also associated with amblyogenic factors which could affect monocular visual acuity. The foveal appearance in albinism can range from mild foveal hypoplasia to that which is indistinguishable from the peripheral retina. The appearance can be quickly and easily graded using the Leicester Grading System in the clinic. However, interquartile ranges of 0.3 logMAR for the grades associated with albinism limit the accuracy of the grading system in predicting vision. Here, we discuss the potential role of nystagmus presenting evidence that it may not be a major source of variability in the prediction of visual acuity. We also show that interocular differences in visual acuity are low in albinism despite high levels of amblyogenic factors indicating that active suppression of vision in one eye in albinism is uncommon.
Collapse
Affiliation(s)
- Frank A Proudlock
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Rebecca J McLean
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Viral Sheth
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Health Sciences School, University of Sheffield, Sheffield, Yorkshire, United Kingdom
| | - Sarim Ather
- Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxfordshire, United Kingdom
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Department of Neurology, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, United States
| |
Collapse
|
10
|
Britten-Jones AC, Thai L, Flanagan JPM, Bedggood PA, Edwards TL, Metha AB, Ayton LN. Adaptive optics imaging in inherited retinal diseases: A scoping review of the clinical literature. Surv Ophthalmol 2024; 69:51-66. [PMID: 37778667 DOI: 10.1016/j.survophthal.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Adaptive optics (AO) imaging enables direct, objective assessments of retinal cells. Applications of AO show great promise in advancing our understanding of the etiology of inherited retinal disease (IRDs) and discovering new imaging biomarkers. This scoping review systematically identifies and summarizes clinical studies evaluating AO imaging in IRDs. Ovid MEDLINE and EMBASE were searched on February 6, 2023. Studies describing AO imaging in monogenic IRDs were included. Study screening and data extraction were performed by 2 reviewers independently. This review presents (1) a broad overview of the dominant areas of research; (2) a summary of IRD characteristics revealed by AO imaging; and (3) a discussion of methodological considerations relating to AO imaging in IRDs. From 140 studies with AO outcomes, including 2 following subretinal gene therapy treatments, 75% included fewer than 10 participants with AO imaging data. Of 100 studies that included participants' genetic diagnoses, the most common IRD genes with AO outcomes are CNGA3, CNGB3, CHM, USH2A, and ABCA4. Confocal reflectance AO scanning laser ophthalmoscopy was the most reported imaging modality, followed by flood-illuminated AO and split-detector AO. The most common outcome was cone density, reported quantitatively in 56% of studies. Future research areas include guidelines to reduce variability in the reporting of AO methodology and a focus on functional AO techniques to guide the development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexis Ceecee Britten-Jones
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| | - Lawrence Thai
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jeremy P M Flanagan
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Phillip A Bedggood
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Thomas L Edwards
- Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Andrew B Metha
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Lauren N Ayton
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Domdei N, Ameln J, Gutnikov A, Witten JL, Holz FG, Wahl S, Harmening WM. Cone Density Is Correlated to Outer Segment Length and Retinal Thickness in the Human Foveola. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 38064229 PMCID: PMC10709802 DOI: 10.1167/iovs.64.15.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Assessment of the relationship between in vivo foveolar cone density, cone outer segment length (OSL), and foveal retinal thickness (RT). Methods Foveolar cone density maps covering the central ±300 µm of the retina were derived from adaptive optics scanning laser ophthalmoscopy images. The corresponding maps of foveal cone OSL and RT were derived from high-resolution optical coherence tomography volume scans. Alignment of the two-dimensional maps containing OSL and RT with the cone density map was achieved by placing the location of maximum OSL on the cone density centroid (CDC). Results Across 10 participants (27 ± 9 years; 6 female), cone density at the CDC was found to be between 147,038 and 215,681 cones/mm². The maximum OSL and minimum RT were found to lie between 31 and 40, and 193 and 226 µm, respectively. A significant correlation was observed between cone density at the CDC and maximum OSL (P = 0.001), as well as the minimal RT (P < 0.05). Across all participants, the best fit for the relationship between normalized cone density and normalized OSL within the central 300 µm was given by a quadratic function. Conclusions Using optical coherence tomography-derived measurements of OSL enables to estimate CDC cone density and two-dimensional foveal cone density maps for example in patient eyes unsuitable for adaptive optics imaging. Furthermore, the observation of a fixed relationship between the normalized OSL and cone density points to a conserved mechanism shaping the foveal pit.
Collapse
Affiliation(s)
- Niklas Domdei
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Julius Ameln
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | | | - Jenny L Witten
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, Aalen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | |
Collapse
|
12
|
Kuht HJ, Thomas MG, McLean RJ, Sheth V, Proudlock FA, Gottlob I. Abnormal foveal morphology in carriers of oculocutaneous albinism. Br J Ophthalmol 2023; 107:1202-1208. [PMID: 35379600 PMCID: PMC10359511 DOI: 10.1136/bjophthalmol-2020-318192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIMS To investigate the foveal morphology in carriers of oculocutaneous albinism (OCA) using spectral domain optical coherence tomography (SD-OCT). A cross-sectional, observational study. METHODS Handheld SD-OCT (Envisu C2300) was used to acquire horizontal scans through the centre of the fovea in biological parents of patients with OCA (n=28; mean age±SD=40.43±8.07 years) and age-matched and ethnicity-matched controls (n=28; mean age±SD=38.04±10.27 years). Sequence analysis was performed for variants in known genes associated with OCA. Best-corrected visual acuity (BCVA), presence of foveal hypoplasia and grade, foveal, parafoveal and perifoveal thickness measurements of total retinal layers (TRL), inner retinal layers (IRL) and outer retinal layers (ORL) thickness were measured. RESULTS Foveal hypoplasia was identified in 32.14% of OCA carriers; grade 1 in all cases. OCA carriers demonstrated significant thicker TRL thickness (median difference: 13.46 µm, p=0.009) and IRL thickness (mean difference: 8.98 µm, p<0.001) at the central fovea compared with controls. BCVA of carriers was between -0.16 and 0.18 logMAR (mean: 0.0 logMAR). No significant differences in BCVA was noted between OCA carriers or controls (p=0.83). In the OCA carriers, we identified previously reported pathogenic variants in TYR, OCA2 and SLC45A2, novel OCA2 variants (n=3) and heterozygosity of the pathogenic TYR haplotype. CONCLUSION We have, for the first time, identified foveal abnormalities in OCA carriers. This provides clinical value, particularly in cases where limited phenotype data are available. Our findings raise the possibility that previously reported mild cases of foveal hypoplasia or isolated foveal hypoplasia could correspond to OCA carrier status.
Collapse
Affiliation(s)
- Helen J Kuht
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Mervyn G Thomas
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Rebecca J McLean
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Viral Sheth
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Frank A Proudlock
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Irene Gottlob
- Ulverscroft Eye Unit, Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- Cooper Medical School of Rowan University, Cooper Neurological Institute, Camden, New Jersey, USA
| |
Collapse
|
13
|
Ghassemi F, Salari F, Hatami V, Bazvand F, Shamouli H, Mohebbi M, Sabour S. Quantitative Analysis of Inner, Middle, and Outer Retinal Thickness by Optical Coherence Tomography in Children and Adolescents. J Curr Ophthalmol 2023; 35:182-189. [PMID: 38250483 PMCID: PMC10795818 DOI: 10.4103/joco.joco_141_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 01/23/2024] Open
Abstract
Purpose To describe the variance of inner, middle, and outer retinal layer thicknesses (IRT, MRT, and ORT) at the macular area in children and adolescents with normal eyes in different age groups. Methods This cross-sectional study enrolled subjects aged 5-18 years with normal eyes. The macula was scanned by optical coherence tomography (6 mm × 6 mm AngioScan-Optovue). Four age groups were defined (≤7, 7-10, 11-14, and ≥14 years). The influences of age and gender were analyzed. Results One hundred and thirty-nine eyes of 69 subjects with a mean age of 10.92 ± 3.51 years were registered. The mean whole macular thickness (MT) was 297.32 ± 11.05 in males and 303.197 ± 13.32 in females (P = 0.01, t-test). The MT in each aging group was 301.47 ± 2.5, 295.53 ± 1.71, 300.81 ± 2.12, and 298.6 ± 1.87, subsequently (P = 0.17, analysis of variance test). Significant differences were found between the sexes at the perifoveal area and mainly in IRT. No correlation between eyes was noted. We observed that the RT fluctuates during growth and that gender has some influence on the evolution of RT. IRT and MRT changed reciprocally in all macular areas, whereas ORT expanded in all age groups of children and adolescents. Conclusions No subsegmental retinal thickness difference between eyes was observed in pediatric groups in this study, while gender had some influence on perifoveal IRT. Despite the fact that this study is not a longitudinal study, we can get some insight into the developmental changes in retinal thickness and its clinical applications in children and adolescents.
Collapse
Affiliation(s)
- Fariba Ghassemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Retina and Vitreous Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Salari
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Hatami
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bazvand
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Retina and Vitreous Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Shamouli
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Mohebbi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Siamak Sabour
- Department of Clinical Epidemiology, School of Health and Safety, Safety Promotion and Injury Prevention Research Center, Tehran, Iran
- Department of Clinical Epidemiology, School of Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Chern KJ, Nettesheim ER, Reid CA, Li NW, Marcoe GJ, Lipinski DM. Prostaglandin-based rAAV-mediated glaucoma gene therapy in Brown Norway rats. Commun Biol 2022; 5:1169. [PMID: 36329259 PMCID: PMC9633612 DOI: 10.1038/s42003-022-04134-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin analogs are first-line treatments for open angle glaucoma and while effective at lowering intraocular pressure, they are undermined by patient non-compliance, causing atrophy of the optic nerve and severe visual impairment. Herein, we evaluate the safety and efficacy of a recombinant adeno-associated viral vector-mediated gene therapy aimed at permanently lowering intraocular pressure through de novo biosynthesis of prostaglandin F2α within the anterior chamber. This study demonstrated a dose dependent reduction in intraocular pressure in normotensive Brown Norway rats maintained over 12-months. Crucially, therapy could be temporarily halted through off-type riboswitch activation, reverting intraocular pressure to normal. Longitudinal multimodal imaging, electrophysiology, and post-mortem histology revealed the therapy was well tolerated at low and medium doses, with no major adverse effects to anterior chamber health, offering a promising alternative to current treatment strategies leading to clinically relevant reductions in intraocular pressure without the need for adherence to a daily treatment regimen.
Collapse
Affiliation(s)
- Kristina J Chern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily R Nettesheim
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher A Reid
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan W Li
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gavin J Marcoe
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Wynne N, Cava JA, Gaffney M, Heitkotter H, Scheidt A, Reiniger JL, Grieshop J, Yang K, Harmening WM, Cooper RF, Carroll J. Intergrader agreement of foveal cone topography measured using adaptive optics scanning light ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4445-4454. [PMID: 36032569 PMCID: PMC9408252 DOI: 10.1364/boe.460821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 05/02/2023]
Abstract
The foveal cone mosaic can be directly visualized using adaptive optics scanning light ophthalmoscopy (AOSLO). Previous studies in individuals with normal vision report wide variability in the topography of the foveal cone mosaic, especially the value of peak cone density (PCD). While these studies often involve a human grader, there have been no studies examining intergrader reproducibility of foveal cone mosaic metrics. Here we re-analyzed published AOSLO foveal cone images from 44 individuals to assess the relationship between the cone density centroid (CDC) location and the location of PCD. Across 5 graders with variable experience, we found a measurement error of 11.7% in PCD estimates and higher intergrader reproducibility of CDC location compared to PCD location (p < 0.0001). These estimates of measurement error can be used in future studies of the foveal cone mosaic, and our results support use of the CDC location as a more reproducible anchor for cross-modality analyses.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Jenna A. Cava
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Mina Gaffney
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Heather Heitkotter
- Department of Cell Biology, Neurobiology and Anatomy, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Abigail Scheidt
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Jenny L. Reiniger
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127 Bonn, Germany
| | - Jenna Grieshop
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Kai Yang
- Division of Biostatistics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Wolf M. Harmening
- Department of Ophthalmology, University of Bonn, Ernst-Abbe-Str. 2, 53127 Bonn, Germany
| | - Robert F. Cooper
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, 1250 W Wisconsin Ave, Milwaukee, WI 53233, USA
- Department of Cell Biology, Neurobiology and Anatomy, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Mercey O, Kostic C, Bertiaux E, Giroud A, Sadian Y, Gaboriau DCA, Morrison CG, Chang N, Arsenijevic Y, Guichard P, Hamel V. The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol 2022; 20:e3001649. [PMID: 35709082 PMCID: PMC9202906 DOI: 10.1371/journal.pbio.3001649] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa. Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. Ultrastructure expansion microscopy on mouse retina reveals the presence of a novel structure inside the photoreceptor connecting cilium, the inner scaffold, that protects the outer segment against degeneration.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eloïse Bertiaux
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Alexia Giroud
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yashar Sadian
- CryoGenic Facility, University of Geneva, Geneva, Switzerland
| | - David C. A. Gaboriau
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Ning Chang
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (PG); (VH)
| |
Collapse
|
17
|
Kuht HJ, Maconachie GDE, Han J, Kessel L, van Genderen MM, McLean RJ, Hisaund M, Tu Z, Hertle RW, Gronskov K, Bai D, Wei A, Li W, Jiao Y, Smirnov V, Choi JH, Tobin MD, Sheth V, Purohit R, Dawar B, Girach A, Strul S, May L, Chen FK, Heath Jeffery RC, Aamir A, Sano R, Jin J, Brooks BP, Kohl S, Arveiler B, Montoliu L, Engle EC, Proudlock FA, Nishad G, Pani P, Varma G, Gottlob I, Thomas MG. Genotypic and Phenotypic Spectrum of Foveal Hypoplasia: A Multicenter Study. Ophthalmology 2022; 129:708-718. [PMID: 35157951 PMCID: PMC9341240 DOI: 10.1016/j.ophtha.2022.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To characterize the genotypic and phenotypic spectrum of foveal hypoplasia (FH). DESIGN Multicenter, observational study. PARTICIPANTS A total of 907 patients with a confirmed molecular diagnosis of albinism, PAX6, SLC38A8, FRMD7, AHR, or achromatopsia from 12 centers in 9 countries (n = 523) or extracted from publicly available datasets from previously reported literature (n = 384). METHODS Individuals with a confirmed molecular diagnosis and availability of foveal OCT scans were identified from 12 centers or from the literature between January 2011 and March 2021. A genetic diagnosis was confirmed by sequence analysis. Grading of FH was derived from OCT scans. MAIN OUTCOME MEASURES Grade of FH, presence or absence of photoreceptor specialization (PRS+ vs. PRS-), molecular diagnosis, and visual acuity (VA). RESULTS The most common genetic etiology for typical FH in our cohort was albinism (67.5%), followed by PAX6 (21.8%), SLC38A8 (6.8%), and FRMD7 (3.5%) variants. AHR variants were rare (0.4%). Atypical FH was seen in 67.4% of achromatopsia cases. Atypical FH in achromatopsia had significantly worse VA than typical FH (P < 0.0001). There was a significant difference in the spectrum of FH grades based on the molecular diagnosis (chi-square = 60.4, P < 0.0001). All SLC38A8 cases were PRS- (P = 0.003), whereas all FRMD7 cases were PRS+ (P < 0.0001). Analysis of albinism subtypes revealed a significant difference in the grade of FH (chi-square = 31.4, P < 0.0001) and VA (P = 0.0003) between oculocutaneous albinism (OCA) compared with ocular albinism (OA) and Hermansky-Pudlak syndrome (HPS). Ocular albinism and HPS demonstrated higher grades of FH and worse VA than OCA. There was a significant difference (P < 0.0001) in VA between FRMD7 variants compared with other diagnoses associated with FH. CONCLUSIONS We characterized the phenotypic and genotypic spectrum of FH. Atypical FH is associated with a worse prognosis than all other forms of FH. In typical FH, our data suggest that arrested retinal development occurs earlier in SLC38A8, OA, HPS, and AHR variants and later in FRMD7 variants. The defined time period of foveal developmental arrest for OCA and PAX6 variants seems to demonstrate more variability. Our findings provide mechanistic insight into disorders associated with FH and have significant prognostic and diagnostic value.
Collapse
Affiliation(s)
- Helen J Kuht
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Gail D E Maconachie
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom; Foveal Development Investigators Group
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; Foveal Development Investigators Group
| | - Line Kessel
- Department of Ophthalmology, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Foveal Development Investigators Group
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands; Bartiméus Diagnostic Centre for Complex Visual Disorders, Zeist, The Netherlands; Foveal Development Investigators Group
| | - Rebecca J McLean
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Michael Hisaund
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Zhanhan Tu
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Richard W Hertle
- Department of Ophthalmology, The Rebecca D. Considine Research Institute and The Children's Vision Center, Akron Children's Hospital, Akron, Ohio; Department of Surgery, The Northeastern Ohio Medical University, Rootstown, Ohio; Foveal Development Investigators Group
| | - Karen Gronskov
- Department of Clinical Genetics, Rigshospitalet-Kennedy Center, Glostrup, Denmark; Foveal Development Investigators Group
| | - Dayong Bai
- Department of Ophthalmology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; Rare Disease Center, National Center for Children's Health; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, Beijing, China; Foveal Development Investigators Group
| | - Yonghong Jiao
- Beijing Tongren Eye Centre, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China; Foveal Development Investigators Group
| | - Vasily Smirnov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France; Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France; Foveal Development Investigators Group
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea; Foveal Development Investigators Group
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group
| | - Viral Sheth
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield, United Kingdom
| | - Ravi Purohit
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Basu Dawar
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Ayesha Girach
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Sasha Strul
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota; Foveal Development Investigators Group
| | - Laura May
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota; Foveal Development Investigators Group
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Crawley, Australia; Foveal Development Investigators Group
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Crawley, Australia; Foveal Development Investigators Group
| | - Abdullah Aamir
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Ronaldo Sano
- Retina and Vitreous Sector of Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil; Foveal Development Investigators Group
| | - Jing Jin
- Sidney Kimmel Medical College of Thomas Jefferson University, Nemours Children's Health, Philadelphia, Pennsylvania; Nemours Children's Health, Wilmington, Delaware
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland; Foveal Development Investigators Group
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany; Foveal Development Investigators Group
| | - Benoit Arveiler
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France; Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France; Foveal Development Investigators Group
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and CIBERER-ISCIII, Madrid, Spain; Foveal Development Investigators Group
| | - Elizabeth C Engle
- Departments of Neurology and Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Howard Hughes Medical Institute, Chevy Chase, Maryland; Foveal Development Investigators Group
| | - Frank A Proudlock
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Garima Nishad
- International Institute of Information Technology, Hyderabad, India
| | - Prateek Pani
- International Institute of Information Technology, Hyderabad, India
| | - Girish Varma
- International Institute of Information Technology, Hyderabad, India; Foveal Development Investigators Group
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group; Cooper Neurological Institute, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom; Foveal Development Investigators Group.
| |
Collapse
|
18
|
Thomas MG, Papageorgiou E, Kuht HJ, Gottlob I. Normal and abnormal foveal development. Br J Ophthalmol 2022; 106:593-599. [PMID: 33148537 DOI: 10.1136/bjophthalmol-2020-316348] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 01/06/2023]
Abstract
Normal foveal development begins in utero at midgestation with centrifugal displacement of inner retinal layers (IRLs) from the location of the incipient fovea. The outer retinal changes such as increase in cone cell bodies, cone elongation and packing mainly occur after birth and continue until 13 years of age. The maturity of the fovea can be assessed invivo using optical coherence tomography, which in normal development would show a well-developed foveal pit, extrusion of IRLs, thickened outer nuclear layer and long outer segments. Developmental abnormalities of various degrees can result in foveal hypoplasia (FH). This is a characteristic feature for example in albinism, aniridia, prematurity, foveal hypoplasia with optic nerve decussation defects with or without anterior segment dysgenesis without albinism (FHONDA) and optic nerve hypoplasia. In achromatopsia, there is disruption of the outer retinal layers with atypical FH. Similarly, in retinal dystrophies, there is abnormal lamination of the IRLs sometimes with persistent IRLs. Morphology of FH provides clues to diagnoses, and grading correlates to visual acuity. The outer segment thickness is a surrogate marker for cone density and in foveal hypoplasia this correlates strongly with visual acuity. In preverbal children grading FH can help predict future visual acuity.
Collapse
Affiliation(s)
- Mervyn G Thomas
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Larissa, Greece
| | - Helen J Kuht
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Bringmann A, Barth T, Ziemssen F. Morphology of foveal hypoplasia: Hyporeflective zones in the Henle fiber layer of eyes with high-grade foveal hypoplasia. PLoS One 2022; 17:e0266968. [PMID: 35417487 PMCID: PMC9007365 DOI: 10.1371/journal.pone.0266968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Background Foveal hypoplasia is characterized by the persistance of inner retinal layers at the macular center. We evaluated using spectral-domain optical coherence tomography (SD-OCT) morphological parameters of the macular center of eyes with foveal hypoplasia and describe the presence of hyporeflective zones in the Henle fiber layer (HFL) of eyes with high-grade foveal hypoplasia. Methods Eyes with foveal hypoplasia were classified into two groups: high-grade foveal hypoplasia with thick inner retinal layers at the macular center (thickness above 100 μm; 16 eyes of 9 subjects) and low-grade foveal hypoplasia with thinner inner retinal layers at the macular center (thickness below 100 μm; 25 eyes of 13 subjects). As comparison, SD-OCT images of normal control eyes (n = 75) were investigated. Results Eyes with foveal hypoplasia displayed shorter central photoreceptor outer segments (POS), a thinner central myoid zone, and a thicker central HFL compared to control eyes. Eyes with high-grade foveal hypoplasia also displayed a thinner central outer nuclear layer (ONL) compared to eyes with low-grade foveal hypoplasia and control eyes. There was a negative correlation between the thicknesses of the central ONL and HFL in eyes with foveal hypoplasia; however, the total thickness of both ONL and HFL was similar in all eye populations investigated. Visual acuity of subjects with foveal hypoplasia was negatively correlated to the thickness of the central inner retinal layers and positively correlated to the length of central POS. In contrast to central POS, the length of paracentral POS (0.5 and 1.0 mm nasal from the macular center) was not different between the three eye populations investigated. The paracentral ONL was thickest in eyes with high-grade foveal hypoplasia and thinnest in control eyes. Hyporeflective zones in the HFL were observed on SD-OCT images of eyes with high-grade foveal hypoplasia, but not of eyes with low-grade foveal hypoplasia and control eyes. OCT angiography images recorded at the level of the HFL of eyes with high-grade foveal hypoplasia showed concentric rings of different reflectivity around the macular center; such rings were not observed on images of eyes with low-grade foveal hypoplasia and control eyes. Conclusions It is suggested that the hyporeflective zones in the HFL of eyes with high-grade foveal hypoplasia represent cystoid spaces which are surrounded by Henle fiber bundles. Cystoid spaces are likely formed because there are fewer Henle fibers and a thinner central ONL despite an unchanged thickness of both ONL and HFL. Cystoid spaces may cause the concentric rings of different reflectivity around the macular center in the HFL of eyes with high-grade foveal hypoplasia.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Thomas Barth
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Focke Ziemssen
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Ameln J, Reiniger JL, Hess K, Holz FG, Harmening WM. Supernormal foveal photoreceptor density in Alport syndrome: A case report. Eur J Ophthalmol 2022:11206721221093197. [PMID: 35410511 DOI: 10.1177/11206721221093197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate foveal photoreceptor configuration in Alport syndrome, a rare inherited disease characterized by Collagen IV dysfunction. METHODS Adaptive optics scanning laser ophthalmoscope (AOSLO) in vivo imaging of the foveal center and quantitative analysis of cone photoreceptor topography in a 17-year-old male patient with Alport syndrome presenting absence of a foveal avascular zone (FAZ) and foveal hypoplasia in both eyes. RESULTS Cone density analysis based on AOSLO images revealed an unusual linear cone topography profile displaying supernormal densities within the fovea (z-scores up to + 3.57 and + 2.97 in right and left eyes, respectively). CONCLUSION Foveal hypoplasia has previously been associated with normal or reduced cone density. Our observation is the first case of disease-related supernormal cone density within the foveola, shedding light upon the role of Collagen IV in foveal maturation.
Collapse
Affiliation(s)
- Julius Ameln
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Jenny L Reiniger
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Kristina Hess
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany.,Division of Epidemiology and Clinical Research, 35034National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Frank G Holz
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| | - Wolf M Harmening
- Department of Ophthalmology, 39062University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Messner A, Aranha Dos Santos V, Stegmann H, Puchner S, Schmidl D, Leitgeb R, Schmetterer L, Werkmeister RM. Quantification of intrinsic optical signals in the outer human retina using optical coherence tomography. Ann N Y Acad Sci 2021; 1510:145-157. [PMID: 34893981 PMCID: PMC9299665 DOI: 10.1111/nyas.14721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 01/10/2023]
Abstract
Intrinsic optical signals constitute a noninvasive biomarker promising the objective assessment of retinal photoreceptor function. We employed a commercial optical coherence tomography (OCT) system and an OCT signal model for evaluation of optical path length (OPL) changes in the temporal outer retina of five healthy subjects during light adaptation. Data were acquired at 30 time points, in ambient light and during long duration stimulation with white light, and analyzed, employing a signal model based on the sum of seven Gaussian curves corresponding to all relevant anatomical structures of the outer retina. During light stimulation, mean OPL between rod outer segment tips (ROST) and the retinal pigment epithelium (RPE) decreased by 21.4 ± 3.5%. Further, OPL between the external‐limiting membrane (ELM) and the RPE decreased by 5.2 ± 0.9% versus baseline, while OPL between ELM and ROST showed an initial decrease by 2.1 ± 1.6% versus baseline and, thereafter, increased by 2.8 ± 2.1% versus baseline. Thus, the presented approach allowed for assess to dynamic changes in the outer retina in response to light. The change in the subretinal space occurring in the context of light adaptation could be measured using a standard OCT platform and a dedicated signal model.
Collapse
Affiliation(s)
- Alina Messner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Stegmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| | - Stefan Puchner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Leopold Schmetterer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Singapore Eye Research Institute, The Academia, Singapore.,SERI-NTU Advanced Ocular Engineering (STANCE) Program, Nanyang Technological University, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - René M Werkmeister
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Ocular and Dermal Effects of Thiomers, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Vohnsen B. Geometrical scaling of the developing eye and photoreceptors and a possible relation to emmetropization and myopia. Vision Res 2021; 189:46-53. [PMID: 34619411 DOI: 10.1016/j.visres.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
In this study the role of vergence in relation to age-dependent scaling of eye and photoreceptor parameters is studied. The underlying hypothesis is that the size and packing of outer segments is matched to the pupil size outdoors in photopic conditions. Vergence is analysed in relation to the angular spectrum of waves being incident using age-dependent data from the literature for the actual geometry and density of photoreceptor cones and rods. This approach is used to derive simple relations for the angular confinement of light along outer segments. Only with a small photopic pupil can leakage and crosstalk for both central and peripheral photoreceptors be entirely ruled out due to the finite length of the outer segments. A limiting 3 mm pupil size is found for children in the school age. Larger pupils will increase the likelihood of leakage and crosstalk that may therefore impact on emmetropization. This study has introduced a new paradigm in myopia research by considering vergence across the 3-D retina as being matched to the angular spectrum of waves being incident from the eye pupil. Emmetropization suggests a delicate balance between photoreceptor outer segment length and density in relation to pupil size. Only when balanced will leakage and crosstalk between adjacent outer segments be effectively suppressed thereby ensuring the highest possible light capture efficiency by visual pigments in the outer segments whether an image is formed on the retina or not.
Collapse
Affiliation(s)
- Brian Vohnsen
- Advanced Optical Imaging Group, School of Physics, University College Dublin, Ireland.
| |
Collapse
|
23
|
Lee KE, Heitkotter H, Carroll J. Challenges Associated With Ellipsoid Zone Intensity Measurements Using Optical Coherence Tomography. Transl Vis Sci Technol 2021; 10:27. [PMID: 34665233 PMCID: PMC8543396 DOI: 10.1167/tvst.10.12.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Translational Relevance Qualitative evaluation of the ellipsoid zone band on optical coherence tomography is a valuable clinical tool for assessing photoreceptor structure, though more quantitative metrics are emerging. Awareness of the challenges involved in interpreting quantitative metrics is important for their clinical translation.
Collapse
Affiliation(s)
- Karen E. Lee
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather Heitkotter
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Domdei N, Reiniger JL, Holz FG, Harmening WM. The Relationship Between Visual Sensitivity and Eccentricity, Cone Density and Outer Segment Length in the Human Foveola. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 34289495 PMCID: PMC8300048 DOI: 10.1167/iovs.62.9.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The cellular topography of the human foveola, the central 1° diameter of the fovea, is strikingly non-uniform, with a steep increase of cone photoreceptor density and outer segment (OS) length toward its center. Here, we assessed to what extent the specific cellular organization of the foveola of an individual is reflected in visual sensitivity and if sensitivity peaks at the preferred retinal locus of fixation (PRL). Methods Increment sensitivity to small-spot, cone-targeted visual stimuli (1 × 1 arcmin, 543-nm light) was recorded psychophysically in four human participants at 17 locations concentric within a 0.2° diameter on and around the PRL with adaptive optics scanning laser ophthalmoscopy-based microstimulation. Sensitivity test spots were aligned with cell-resolved maps of cone density and cone OS length. Results Peak sensitivity was at neither the PRL nor the topographical center of the cone mosaic. Within the central 0.1° diameter, a plateau-like sensitivity profile was observed. Cone density and maximal OS length differed significantly across participants, correlating with their peak sensitivity. Based on these results, biophysical simulation allowed to develop a model of visual sensitivity in the foveola, with distance from the PRL (eccentricity), cone density, and OS length as parameters. Conclusions Small-spot sensitivity thresholds in healthy retinas will help to establish the range of normal foveolar function in cell-targeted vision testing. Because of the high reproducibility in replicate testing, threshold variability not explained by our model is assumed to be caused by individual cone and bipolar cell weighting at the specific target locations.
Collapse
Affiliation(s)
- Niklas Domdei
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Jenny L Reiniger
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank G Holz
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolf M Harmening
- Department of Ophthalmology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
25
|
Salmon AE, Chen RCH, Atry F, Gaffney M, Merriman DK, Gil DA, Skala MC, Collery R, Allen KP, Buckland E, Pashaie R, Carroll J. Optical Coherence Tomography Angiography in the Thirteen-Lined Ground Squirrel. Transl Vis Sci Technol 2021; 10:5. [PMID: 34232271 PMCID: PMC8267221 DOI: 10.1167/tvst.10.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the performance of two spectral-domain optical coherence tomography-angiography systems in a natural model of hypoperfusion: the hibernating thirteen-lined ground squirrel (13-LGS). Methods Using a high-speed (130 kHz) OCT-A system (HS-OCT-A) and a commercial OCT (36 kHz; Bioptigen Envisu; BE-OCT-A), we imaged the 13-LGS retina throughout its hibernation cycle. Custom software was used to extract the superior, middle, and deep capillary plexus (SCP, MCP, and DCP, respectively). The retinal vasculature was also imaged with adaptive optics scanning light ophthalmoscopy (AOSLO) during torpor to visualize individual blood cells. Finally, correlative histology with immunolabeled or DiI-stained vasculature was performed. Results During euthermia, vessel density was similar between devices for the SCP and MCP (P = 0.88, 0.72, respectively), with a small difference in the DCP (−1.63 ± 1.54%, P = 0.036). Apparent capillary dropout was observed during torpor, but recovered after forced arousal, and this effect was exaggerated in high-speed OCT-A imaging. Based on cell flux measurements with AOSLO, increasing OCT-A scan duration by ∼1000× would avoid the apparent capillary dropout artifact. High correspondence between OCT-A (during euthermia) and histology enabled lateral scale calibration. Conclusions While the HS-OCT-A system provides a more efficient workflow, the shorter interscan interval may render it more susceptible to the apparent capillary dropout artifact. Disambiguation between capillary dropout and transient ischemia can have important implications in the management of retinal disease and warrants additional diagnostics. Translational Relevance The 13-LGS provides a natural model of hypoperfusion that may prove valuable in modeling the utility of OCT-A in human pathologies associated with altered blood flow.
Collapse
Affiliation(s)
- Alexander E Salmon
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Translational Imaging Innovations, Hickory, NC, USA
| | - Rex Chin-Hao Chen
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Farid Atry
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mina Gaffney
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Daniel A Gil
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Melissa C Skala
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ross Collery
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth P Allen
- Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Ramin Pashaie
- Computer & Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Biomedical Engineering, Marquette University, Milwaukee WI, USA
| |
Collapse
|
26
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
27
|
Litts KM, Woertz EN, Wynne N, Brooks BP, Chacon A, Connor TB, Costakos D, Dumitrescu A, Drack AV, Fishman GA, Hauswirth WW, Kay CN, Lam BL, Michaelides M, Pennesi ME, Stepien KE, Strul S, Summers CG, Carroll J. Examining Whether AOSLO-Based Foveal Cone Metrics in Achromatopsia and Albinism Are Representative of Foveal Cone Structure. Transl Vis Sci Technol 2021; 10:22. [PMID: 34111268 PMCID: PMC8132001 DOI: 10.1167/tvst.10.6.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in patients with achromatopsia (ACHM) and albinism is not always successful. Here, we tested whether optical coherence tomography (OCT) measures of foveal structure differed between patients for whom AOSLO images were either quantifiable or unquantifiable. Methods The study included 166 subjects (84 with ACHM; 82 with albinism) with previously acquired OCT scans, AOSLO images, and best-corrected visual acuity (BCVA, if available). Foveal OCT scans were assessed for outer retinal structure, outer nuclear layer thickness, and hypoplasia. AOSLO images were graded as quantifiable if a peak cone density could be measured and/or usable if the location of peak density could be identified and the parafoveal mosaic was quantifiable. Results Forty-nine percent of subjects with ACHM and 57% of subjects with albinism had quantifiable AOSLO images. Older age and better BCVA were found in subjects with quantifiable AOSLO images for both ACHM (P = 0.0214 and P = 0.0276, respectively) and albinism (P = 0.0073 and P < 0.0004, respectively). There was a significant trend between ellipsoid zone appearance and ability to quantify AOSLO (P = 0.0028). In albinism, OCT metrics of cone structure did not differ between groups. Conclusions Previously reported AOSLO-based cone density measures in ACHM may not necessarily reflect the degree of remnant cone structure in these patients. Translational Relevance Until AOSLO is successful in all patients with ACHM and albinism, the possibility of the reported data from a particular cohort not being representative of the entire population remains an important issue to consider when interpreting results from AOSLO studies.
Collapse
Affiliation(s)
- Katie M Litts
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Niamh Wynne
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Alicia Chacon
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas B Connor
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deborah Costakos
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alina Dumitrescu
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Gerald A Fishman
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kimberly E Stepien
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sasha Strul
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - C Gail Summers
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Cava JA, Allphin MT, Mastey RR, Gaffney M, Linderman RE, Cooper RF, Carroll J. Assessing Interocular Symmetry of the Foveal Cone Mosaic. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33331861 PMCID: PMC7746960 DOI: 10.1167/iovs.61.14.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose To test the hypothesis that foveal cone topography is symmetrical between contralateral eyes. Methods We used adaptive optics scanning light ophthalmoscopy to acquire images of the foveal cone mosaic in each eye of 58 subjects with normal vision (35 female, 23 male). Cones were semiautomatically identified over a 300 × 300-µm foveal area. From these cone coordinates, maps of cone density were derived, and we extracted estimates of peak cone density from each map. Mosaic regularity was assessed using Voronoi cell area regularity (VCAR). Average roundness and average area of the 70%, 75%, 80%, 85%, and 90% of peak density isodensity contours were evaluated. Results The average peak cone density for right eyes was 180,286 cones/mm2 (n = 49) and for left eyes was 182,397 cones/mm2 (n = 45), with a mean absolute difference of 6363 cones/mm2 (n = 43). Peak density, cone spacing, VCAR, and average area within the isodensity contours of fellow eyes were not significantly different (P = 0.60, P = 0.83, P = 0.30, and P = 0.39, respectively). However, the average roundness of the isodensity contours was 2% more circular in the right eyes than in the left eyes (P = 0.02). Conclusions There is interocular symmetry of peak foveal cone density, mosaic regularity, and area encompassing the most densely packed cells in subjects with normal vision. The origin and significance of the observed interocular difference in average roundness of the isodensity contours are unclear.
Collapse
Affiliation(s)
- Jenna A Cava
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mitchell T Allphin
- School of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Rebecca R Mastey
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mina Gaffney
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Rachel E Linderman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F Cooper
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
29
|
Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis 2021; 21:19. [PMID: 34007988 PMCID: PMC8142699 DOI: 10.1167/jov.21.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/15/2021] [Indexed: 11/27/2022] Open
Abstract
Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.
Collapse
Affiliation(s)
- Ethan J Duwell
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Joseph Carroll
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
30
|
Linderman RE, Georgiou M, Woertz EN, Cava JA, Litts KM, Tarima S, Rajendram R, Provis JM, Michaelides M, Carroll J. Preservation of the Foveal Avascular Zone in Achromatopsia Despite the Absence of a Fully Formed Pit. Invest Ophthalmol Vis Sci 2021; 61:52. [PMID: 32866266 PMCID: PMC7463179 DOI: 10.1167/iovs.61.10.52] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose To examine the foveal avascular zone (FAZ) in patients with congenital achromatopsia (ACHM). Methods Forty-two patients with genetically confirmed ACHM were imaged either with Optovue's AngioVue system or Zeiss's Plex Elite 9000, and the presence or absence of a FAZ was determined. For images where a FAZ was present and could be confidently segmented, FAZ area, circularity index, and roundness were measured and compared with previously published normative values. Structural optical coherence tomography images were acquired to assess the degree of foveal hypoplasia (number and thickness of inner retinal layers present at the fovea). Results A FAZ was present in 31 of 42 patients imaged (74%), although no determination could be made for 11 patients due to poor image quality (26%). The mean ± SD FAZ area for the ACHM retina was 0.281 ± 0.112 mm2, which was not significantly different from the previously published normative values (P = 0.94). However, their FAZs had decreased circularity (P < 0.0001) and decreased roundness (P < 0.0001) compared to the normative cohort. In the patients with ACHM examined here, the FAZ area decreased as the number and thickness of the retained inner retinal layers increased. Conclusions Our data demonstrate that despite the presence of foveal hypoplasia, patients with ACHM can have a FAZ. This is distinct from other conditions associated with foveal hypoplasia, which generally show an absence of the FAZ. In ACHM, FAZ formation does not appear to be sufficient for complete pit formation, contrary to some models of foveal development.
Collapse
Affiliation(s)
- Rachel E Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michalis Georgiou
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Erica N Woertz
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jenna A Cava
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Katie M Litts
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Ranjan Rajendram
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
31
|
Woertz EN, Wilk MA, Duwell EJ, Mathis JR, Carroll J, DeYoe EA. The relationship between retinal cone density and cortical magnification in human albinism. J Vis 2020; 20:10. [PMID: 32543650 PMCID: PMC7416892 DOI: 10.1167/jov.20.6.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The human fovea lies at the center of the retina and supports high-acuity vision. In normal visual system development, the highest acuity is correlated with both a high density of cone photoreceptors in the fovea and a magnified retinotopic representation of the fovea in the visual cortex. Both cone density and the cortical area dedicated to each degree of visual space—the latter describing cortical magnification (CM)—steadily decrease with increasing eccentricity from the fovea. In albinism, peak cone density at the fovea and visual acuity are decreased, but seem to be within normal limits in the periphery, thus providing a model to explore the correlation between retinal structure, cortical structure, and behavior. Here, we used adaptive optics scanning light ophthalmoscopy to assess retinal cone density and functional magnetic resonance imaging to measure CM in the primary visual cortex of normal controls and individuals with albinism. We find that retinotopic organization is more varied among individuals with albinism than previously appreciated. Additionally, CM outside the fovea is similar to that in controls, but also more variable. CM in albinism and controls exceeds that which might be predicted based on cone density alone, but is more accurately predicted by retinal ganglion cell density. This finding suggests that decreased foveal cone density in albinism may be partially counteracted by nonuniform connectivity between cones and their downstream signaling partners. Together, these results emphasize that central as well as retinal factors must be included to provide a complete picture of aberrant structure and function in albinism.
Collapse
|
32
|
Reumueller A, Wassermann L, Salas M, Schranz M, Told R, Kostolna K, Drexler W, Pircher M, Schmidt-Erfurth U, Pollreisz A. Three-dimensional assessment of para- and perifoveal photoreceptor densities and the impact of meridians and age in healthy eyes with adaptive-optics optical coherence tomography (AO-OCT). OPTICS EXPRESS 2020; 28:36723-36739. [PMID: 33379760 DOI: 10.1364/oe.409076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
An adaptive optics optical coherence tomography (AO-OCT) system is used to assess sixty healthy eyes of thirty subjects (age 22 to 75) to evaluate how the outer retinal layers, foveal eccentricity and age effect the mean cone density. The cone mosaics of different retinal planes (the cone inner segment outer segment junction (IS/OS), the cone outer segment combined with the IS/OS (ISOS+), the cone outer segment tips (COST), and the full en-face plane (FEF)) at four main meridians (superior, nasal, inferior, temporal) and para- and perifoveal eccentricities (ecc 2.5° and 6.5°) were analyzed quantitatively. The mean overall cone density was 19,892/mm2 at ecc 2.5° and 13,323/mm2 at ecc 6.5°. A significant impact on cone density was found for eccentricity (up to 6,700/mm2 between ecc 2.5° and 6.5°), meridian (up to 3,700/mm2 between nasal and superior meridian) and layer (up to 1,400/mm2 between FEF and IS/OS). Age showed only a weak negative effect. These factors as well as inter-individual variability have to be taken into account when comparing cone density measurements between healthy and pathologically changed eyes, as their combined effect on density can easily exceed several thousand cones per mm2 even in parafoveal regions.
Collapse
|
33
|
Kuht HJ, Han J, Maconachie GDE, Park SE, Lee ST, McLean R, Sheth V, Hisaund M, Dawar B, Sylvius N, Mahmood U, Proudlock FA, Gottlob I, Lim HT, Thomas MG. SLC38A8 mutations result in arrested retinal development with loss of cone photoreceptor specialization. Hum Mol Genet 2020; 29:2989-3002. [PMID: 32744312 PMCID: PMC7645707 DOI: 10.1093/hmg/ddaa166] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023] Open
Abstract
Foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis is an autosomal recessive disorder arising from SLC38A8 mutations. SLC38A8 is a putative glutamine transporter with strong expression within the photoreceptor layer in the retina. Previous studies have been limited due to lack of quantitative data on retinal development and nystagmus characteristics. In this multi-centre study, a custom-targeted next generation sequencing (NGS) gene panel was used to identify SLC38A8 mutations from a cohort of 511 nystagmus patients. We report 16 novel SLC38A8 mutations. The sixth transmembrane domain is most frequently disrupted by missense SLC38A8 mutations. Ninety percent of our cases were initially misdiagnosed as PAX6-related phenotype or ocular albinism prior to NGS. We characterized the retinal development in vivo in patients with SLC38A8 mutations using high-resolution optical coherence tomography. All patients had severe grades of arrested retinal development with lack of a foveal pit and no cone photoreceptor outer segment lengthening. Loss of foveal specialization features such as outer segment lengthening implies reduced foveal cone density, which contributes to reduced visual acuity. Unlike other disorders (such as albinism or PAX6 mutations) which exhibit a spectrum of foveal hypoplasia, SLC38A8 mutations have arrest of retinal development at an earlier stage resulting in a more under-developed retina and severe phenotype.
Collapse
Affiliation(s)
- Helen J Kuht
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Gail D E Maconachie
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
- Academic Unit of Ophthalmology and Orthoptics, University of Sheffield, Sheffield S10 2RX, UK
| | - Sung Eun Park
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Rebecca McLean
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Viral Sheth
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Michael Hisaund
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Basu Dawar
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Nicolas Sylvius
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Usman Mahmood
- Department of Ophthalmology, Hull and East Yorkshire Hospitals NHS Trust, Hull HU3 2JZ, UK
| | - Frank A Proudlock
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, Department of Neuroscience, Psychology and Behaviour, University of Leicester – RKCSB, PO Box 65, Leicester LE2 7LX, UK
| |
Collapse
|
34
|
Litts KM, Georgiou M, Langlo CS, Patterson EJ, Mastey RR, Kalitzeos A, Linderman RE, Lam BL, Fishman GA, Pennesi ME, Kay CN, Hauswirth WW, Michaelides M, Carroll J. Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia. Curr Eye Res 2020; 45:1257-1264. [PMID: 32108519 PMCID: PMC7487033 DOI: 10.1080/02713683.2020.1737138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Purpose: To determine the interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Methods: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8-44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of inter-cell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. Results: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = .677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = .410, paired t-test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = .562, paired t-test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. Conclusions: These results demonstrate the interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control.
Collapse
Affiliation(s)
- Katie M. Litts
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michalis Georgiou
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Christopher S. Langlo
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Emily J. Patterson
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rebecca R. Mastey
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Angelos Kalitzeos
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rachel E. Linderman
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States of America
| | - Gerald A. Fishman
- Pangere Center for Inherited Retinal Diseases, The Chicago Lighthouse, Chicago, Illinois, United States
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | | | | | - Michel Michaelides
- Moorfields Eye Hospital, London, United Kingdom
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
35
|
Woertz EN, Omoba BS, Dunn TM, Chiu SJ, Farsiu S, Strul S, Summers CG, Drack AV, Carroll J. Assessing Ganglion Cell Layer Topography in Human Albinism Using Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32196097 PMCID: PMC7405956 DOI: 10.1167/iovs.61.3.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To test whether ganglion cell layer (GCL) and inner plexiform layer (IPL) topography is altered in albinism. Methods Optical coherence tomography scans were analyzed in 30 participants with albinism and 25 control participants. Horizontal and vertical line scans were acquired at the fovea, then strip registered and averaged. The Duke Optical Coherence Tomography Retinal Analysis Program was used to automatically segment the combined GCL and IPL and total retinal thickness, followed by program-assisted manual segmentation of the boundary between the GCL and IPL. Layer thickness and area under the curve (AUC) were calculated within 2.5 mm of the fovea. Nasal-temporal and superior-inferior asymmetry were calculated as an AUC ratio in each quadrant. Results GCL and IPL topography varied between participants. The summed AUC in all quadrants was similar between groups for both the GCL (P = 0.84) and IPL (P = 0.08). Both groups showed nasal-temporal asymmetry in the GCL, but only participants with albinism had nasal-temporal asymmetry in the IPL. Nasal-temporal asymmetry was greater in albinism for both the GCL (P < 0.0001) and the IPL (P = 0.0006). The GCL usually comprised a greater percentage of the combined GCL and IPL in controls than in albinism. Conclusions The GCL and IPL have greater structural variability than previously reported. GCL and IPL topography are significantly altered in albinism, which suggests differences in the spatial distribution of retinal ganglion cells. This finding provides insight into foveal development and structure-function relationships in foveal hypoplasia.
Collapse
|
36
|
Inter- and Intra-individual Variations in Foveal Outer Nuclear Layer Thickness and Their Associations with Clinical Characteristics in a Healthy Chinese Population. J Ophthalmol 2020; 2020:7967393. [PMID: 32566269 PMCID: PMC7267860 DOI: 10.1155/2020/7967393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate foveal outer nuclear layer (ONL) thickness and the difference thereof between bilateral eyes and their possible associations with clinical characteristics in a healthy Chinese population. Materials and Methods Normal subjects were enrolled. Generalized linear models were used to assess the associations of foveal ONL thickness with sex, age, and spherical equivalents (SEs) and the associations of the difference in foveal ONL thickness between bilateral eyes with sex, age, and difference in SEs between bilateral eyes. Results Totally, 304 subjects were included. The average foveal ONL thickness was 103.19 ± 14.25 (range 70-151) μm in the right eye and 103.90 ± 14.63 (range 69-155) μm in the left eye. The mean difference in foveal ONL thickness between right and left eyes was -0.71 ± 4.36 (range -13 to +12) μm. Men had slightly greater foveal ONL thickness values in both right and left eyes compared with women (both P < 0.05); however, some women had a thicker foveal ONL than that of men (85/198 vs. 46/106 in the right eye; 79/198 vs. 52/106in the left eye). Age and SEs were not associated with foveal ONL thickness in either eye (all P > 0.05). Sex, age, and difference in SEs between bilateral eyes were not associated with the difference in foveal ONL thickness between bilateral eyes (all P > 0.05). Conclusions Foveal ONL thickness showed wide variation in a normal Chinese population but little difference between bilateral eyes. Both these parameters could not be adjusted by sex, age, SEs, or the SEs difference between bilateral eyes. Thus, in those diseases involving only one eye, the difference or ratio of foveal ONL thickness between the affected eye and normal fellow eye may reflect the actual degree of the disease, rather than the foveal ONL thickness in the affected eye alone.
Collapse
|
37
|
Menghini M, Jolly JK, Nanda A, Wood L, Cehajic-Kapetanovic J, MacLaren RE. Early Cone Photoreceptor Outer Segment Length Shortening in RPGR X-Linked Retinitis Pigmentosa. Ophthalmologica 2020; 244:281-290. [PMID: 32209785 DOI: 10.1159/000507484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Introduction of retinal gene therapy requires established outcome measures along with thorough understanding of the pathophysiology. Evidence of early, thinned outer segments in RPGR X-linked retinitis pigmentosa could help understand how the level of cone photoreceptor involvement translates to visual potential. OBJECTIVE Analysis of foveal photoreceptor outer segment length in a young cohort of RPGR patients to help clarify the reason for absent maximal visual acuity seen. METHODS Case-control study of RPGR patients. Quantitative measurement of photoreceptor outer segment by OCT. RESULTS Eighteen male RPGR patients and 30 normal subjects were included. Outer segment thickness differed significantly between the RPGR and normal eyes (p < 0.0005). Mean outer segment values were 35.6 ± 2.3 µm and 35.4 ± 2.6 µm for RPGR right and left eyes, respectively. In normal eyes, the mean outer segment thickness was 61.4 ± 0.7 µm for right eyes and 62.4 ± 0.7 µm for left eyes. CONCLUSIONS Patients with RPGR X-linked retinitis pigmentosa show thinning of the foveal photoreceptor outer segment thickness early in the disease course, which could be an explanation for the lower maximum visual acuity seen. These findings must be taken into consideration when assessing efficacy outcome measures in retinal gene therapy trials.
Collapse
Affiliation(s)
- Moreno Menghini
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK,
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK,
| | - Jasleen K Jolly
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anika Nanda
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura Wood
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
38
|
Mastey RR, Georgiou M, Langlo CS, Kalitzeos A, Patterson EJ, Kane T, Singh N, Vincent A, Moore AT, Tsang SH, Lin JH, Young MP, Hartnett ME, Héon E, Kohl S, Michaelides M, Carroll J. Characterization of Retinal Structure in ATF6-Associated Achromatopsia. Invest Ophthalmol Vis Sci 2019; 60:2631-2640. [PMID: 31237654 PMCID: PMC6594318 DOI: 10.1167/iovs.19-27047] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose Mutations in six genes have been associated with achromatopsia (ACHM): CNGA3, CNGB3, PDE6H, PDE6C, GNAT2, and ATF6. ATF6 is the most recent gene to be identified, though thorough phenotyping of this genetic subtype is lacking. Here, we sought to test the hypothesis that ATF6-associated ACHM is a structurally distinct form of congenital ACHM. Methods Seven genetically confirmed subjects from five nonconsanguineous families were recruited. Foveal hypoplasia and the integrity of the ellipsoid zone (EZ) band (a.k.a., IS/OS) were graded from optical coherence tomography (OCT) images. Images of the photoreceptor mosaic were acquired using confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). Parafoveal cone and rod density values were calculated and compared to published normative data as well as data from two subjects harboring CNGA3 or CNGB3 mutations who were recruited for comparative purposes. Additionally, nonconfocal dark-field AOSLO images of the retinal pigment epithelium were obtained, with quantitative analysis performed in one subject with ATF6-ACHM. Results Foveal hypoplasia was observed in all subjects with ATF6 mutations. Absence of the EZ band within the foveal region (grade 3) or appearance of a hyporeflective zone (grade 4) was seen in all subjects with ATF6 using OCT. There was no evidence of remnant foveal cone structure using confocal AOSLO, although sporadic cone-like structures were seen in nonconfocal split-detection AOSLO. There was a lack of cone structure in the parafovea, in direct contrast to previous reports. Conclusions Our data demonstrate a near absence of cone structure in subjects harboring ATF6 mutations. This implicates ATF6 as having a major role in cone development and suggests that at least a subset of subjects with ATF6-ACHM have markedly fewer cellular targets for cone-directed gene therapies than do subjects with CNGA3- or CNGB3-ACHM.
Collapse
Affiliation(s)
- Rebecca R Mastey
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Christopher S Langlo
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Angelos Kalitzeos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Emily J Patterson
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Thomas Kane
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Navjit Singh
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, Canada
| | - Anthony T Moore
- Department of Ophthalmology, University of California-San Francisco Medical School, San Francisco, California, United States
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology and Cell Biology, Columbia Stem Cell Initiative, New York, New York, United States
| | - Jonathan H Lin
- Department of Ophthalmology, University of California-San Diego, La Jolla, California, United States.,Department of Pathology, University of California-San Diego, La Jolla, California, United States
| | - Marielle P Young
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | | | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, The University of Toronto, Toronto, Canada
| | - Susanne Kohl
- Centre for Ophthalmology Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
39
|
Linderman RE, Cava JA, Salmon AE, Chui TY, Marmorstein AD, Lujan BJ, Rosen RB, Carroll J. Visual Acuity and Foveal Structure in Eyes with Fragmented Foveal Avascular Zones. Ophthalmol Retina 2019; 4:535-544. [PMID: 31956075 DOI: 10.1016/j.oret.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the frequency and impact of abnormal foveal avascular zone (FAZ) topography (i.e., a fragmented FAZ) on visual acuity and foveal anatomic features. DESIGN Prospective, cross-sectional study from March 2018 through July 2019. PARTICIPANTS Two-hundred fifty participants were screened from a normative OCT angiography database. Of those, 12 participants were found to have at least 1 eye with a fragmented FAZ. Eight returned for follow-up imaging, along with an additional 3 participants with ocular disease (amblyopia, autosomal recessive bestrophinopathy, premature birth) having a similar FAZ phenotype. METHODS Follow-up OCT imaging and monocular best-corrected visual acuity (BCVA) were performed for these 11 participants. Twenty-four participants with a clearly defined FAZ were recruited for comparison. A normative database was created measuring parafoveal intercapillary area (PICA) to determine if an FAZ was fragmented. MAIN OUTCOME MEASURES Monocular BCVA, foveal pit depth, foveal pit area, PICA, outer nuclear layer thickness, foveal inner retinal area, and peak cone density. RESULTS The frequency of a fragmented FAZ was 4.8% of individuals (12 of 250) or 3.6% of eyes (18 of 500 eyes). A significant difference was found between the control eyes and eyes with fragmented FAZs for foveal pit depth, pit area, and total PICA (P < 0.001, P = 0.002, and P < 0.001, respectively). The presence of a fragmented FAZ did not affect visual acuity. CONCLUSIONS The presence of a fragmented FAZ seems not to be a rare phenotype in individuals with normal vision. The presence of altered FAZ topography in patients with retinal or systemic disease could negatively impact the accuracy and sensitivity of biomarkers dependent on FAZ identification.
Collapse
Affiliation(s)
- Rachel E Linderman
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jenna A Cava
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander E Salmon
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Toco Y Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Brandon J Lujan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
40
|
Mastey RR, Gaffney M, Litts KM, Langlo CS, Patterson EJ, Strampe MR, Kalitzeos A, Michaelides M, Carroll J. Assessing the Interocular Symmetry of Foveal Outer Nuclear Layer Thickness in Achromatopsia. Transl Vis Sci Technol 2019; 8:21. [PMID: 31602346 PMCID: PMC6779097 DOI: 10.1167/tvst.8.5.21] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 02/02/2023] Open
Abstract
Purpose We examine the interocular symmetry of foveal outer nuclear layer (ONL) thickness measurements in subjects with achromatopsia (ACHM). Methods Images from 76 subjects with CNGA3- or CNGB3-associated ACHM and 42 control subjects were included in the study. Line or volume scans through the fovea of each eye were acquired using optical coherence tomography (OCT). Image quality was assessed for each image included in the analysis using a previously-described maximum tissue contrast index (mTCI) metric. Three foveal ONL thickness measurements were made by a single observer and interocular symmetry was assessed using the average of the three measurements for each eye. Results Mean (± standard deviation) foveal ONL thickness for subjects with ACHM was 79.7 ± 18.3 μm (right eye) and 79.2 ± 18.7 μm (left eye) compared to 112.9 ± 15.2 (right eye) and 112.1 ± 13.9 μm (left eye) for controls. Foveal ONL thickness did not differ between eyes for ACHM (P = 0.636) or control subjects (P = 0.434). No significant relationship between mTCI and observer repeatability was observed for either control (P = 0.140) or ACHM (P = 0.351) images. Conclusions While foveal ONL thickness is reduced in ACHM compared to controls, the high interocular symmetry indicates that contralateral ONL measurements could be used as a negative control in early-phase monocular treatment trials. Translational Relevance Foveal ONL thickness can be measured using OCT images over a wide range of image quality. The interocular symmetry of foveal ONL thickness in ACHM and control populations supports the use of the non-study eye as a control for clinical trial purposes.
Collapse
Affiliation(s)
- Rebecca R Mastey
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mina Gaffney
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katie M Litts
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher S Langlo
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily J Patterson
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret R Strampe
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Angelos Kalitzeos
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.,Moorfields Eye Hospital, London, EC1V 2PD, UK
| | - Michel Michaelides
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.,Moorfields Eye Hospital, London, EC1V 2PD, UK
| | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
41
|
Daniel MC, Dubis AM, MacPhee B, Ibanez P, Adams G, Brookes J, Papadopoulos M, Khaw PT, Theodorou M, Dahlmann-Noor AH. Optical Coherence Tomography Findings After Childhood Lensectomy. Invest Ophthalmol Vis Sci 2019; 60:4388-4396. [PMID: 31634396 PMCID: PMC6798320 DOI: 10.1167/iovs.19-26806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the impact of childhood lensectomy on posterior segment development. Methods Cross-sectional observational study at children's eye clinics at a tertiary referral center in London, UK. We included 45 children age 4 to 16 years with healthy eyes and 38 who had undergone lensectomy. We acquired posterior segment optical coherence tomography scans of both eyes. We used parametric and nonparametric tests in SPSS24 for the comparison of parameters between groups and within individuals; a P value less than 0.05 was considered significant. The main outcome measures were foveal pit depth and subfoveal choroidal thickness (CT). Secondary outcomes were inner and outer ring CT and photoreceptor layer parameters, macular and peripapillary retinal nerve fiber layer thickness. Results Foveal pit depth and subfoveal CT are significantly reduced in eyes that have undergone lensectomy compared with nonoperated eyes. Inner ring CT and outer ring CT are reduced. Foveal inner retinal layer thickness is increased. Mean inner retinal and outer nuclear layer thickness are not affected. Conclusions Childhood lensectomy is associated with a reduction in developmental foveal pit deepening and lack of developmental thickening of the posterior choroid. Mechanical and optical disruption of foveal and subfoveal choroidal development may affect structural foveal development after childhood lensectomy.
Collapse
Affiliation(s)
- Moritz C Daniel
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom.,Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adam M Dubis
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom
| | - Becky MacPhee
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom
| | - Patricia Ibanez
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom
| | - Gillian Adams
- Paediatric Service, Moorfields Eye Hospital, London, United Kingdom
| | - John Brookes
- Glaucoma Service, Moorfields Eye Hospital, London, United Kingdom
| | | | - Peng T Khaw
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom.,Glaucoma Service, Moorfields Eye Hospital, London, United Kingdom
| | - Maria Theodorou
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom.,Paediatric Service, Moorfields Eye Hospital, London, United Kingdom
| | - Annegret H Dahlmann-Noor
- National Institute of Health Research Moorfields Biomedical Research Centre, London, United Kingdom.,Paediatric Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
42
|
Foote KG, De la Huerta I, Gustafson K, Baldwin A, Zayit-Soudry S, Rinella N, Porco TC, Roorda A, Duncan JL. Cone Spacing Correlates With Retinal Thickness and Microperimetry in Patients With Inherited Retinal Degenerations. Invest Ophthalmol Vis Sci 2019; 60:1234-1243. [PMID: 30924848 PMCID: PMC6440525 DOI: 10.1167/iovs.18-25688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine whether high-resolution retinal imaging measures of macular structure correlate with visual function over 36 months in retinal degeneration (RD) patients and normal subjects. Methods Twenty-six eyes of 16 RD patients and 16 eyes of 8 normal subjects were studied at baseline; 15 eyes (14 RD) and 11 eyes (6 normal) were studied 36 months later. Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) was used to identify regions of interest (ROIs) with unambiguous cones at baseline to measure cone spacing. AOSLO images were aligned with spectral-domain optical coherence tomography (SD-OCT) and fundus-guided microperimetry results to correlate structure and function at the ROIs. SD-OCT images were segmented to measure inner segment (IS) and outer segment (OS) thickness. Correlations between cone spacing, IS and OS thickness and sensitivity were assessed using Spearman correlation coefficient ρ with bootstrap analyses clustered by person. Results Cone spacing (ρ = 0.57, P < 0.001) and macular sensitivity (ρ = 0.19, P = 0.14) were significantly correlated with eccentricity in patients. Controlling for eccentricity, cone spacing Z-scores were inversely correlated with IS (ρ = −0.29, P = 0.002) and OS thickness (ρ = −0.39, P < 0.001) in RD patients only, and with sensitivity in normal subjects (ρ = −0.22, P < 0.001) and RD patients (ρ = −0.38, P < 0.001). After 36 months, cone spacing increased (P < 0.001) and macular sensitivity decreased (P = 0.007) compared to baseline in RD patients. Conclusions Cone spacing increased and macular sensitivity declined significantly in RD patients over 36 months. High resolution images of cone structure correlated with retinal sensitivity, and may be appropriate outcome measures for clinical trials in RD.
Collapse
Affiliation(s)
- Katharina G Foote
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, United States.,Ophthalmology, University of California, San Francisco, California, United States
| | - Irina De la Huerta
- Ophthalmology, University of California, San Francisco, California, United States
| | - Kevin Gustafson
- Ophthalmology, University of California, San Francisco, California, United States
| | - Angela Baldwin
- Ophthalmology, University of California, San Francisco, California, United States
| | - Shiri Zayit-Soudry
- Ophthalmology, University of California, San Francisco, California, United States
| | - Nicholas Rinella
- Ophthalmology, University of California, San Francisco, California, United States
| | - Travis C Porco
- Ophthalmology, University of California, San Francisco, California, United States.,Francis I. Proctor Foundation, University of California, San Francisco, California, United States
| | - Austin Roorda
- School of Optometry and Vision Science Graduate Group, University of California, Berkeley, Berkeley, California, United States
| | - Jacque L Duncan
- Ophthalmology, University of California, San Francisco, California, United States
| |
Collapse
|
43
|
Patterson EJ, Kalitzeos A, Kasilian M, Gardner JC, Neitz J, Hardcastle AJ, Neitz M, Carroll J, Michaelides M. Residual Cone Structure in Patients With X-Linked Cone Opsin Mutations. Invest Ophthalmol Vis Sci 2019; 59:4238-4248. [PMID: 30128495 PMCID: PMC6103386 DOI: 10.1167/iovs.18-24699] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To assess residual cone structure in subjects with mutations in exon 2, 3, and 4 of the OPN1LW or OPN1MW opsin. Methods Thirteen males had their OPN1LW/OPN1MW opsin genes characterized. The cone mosaic was imaged using both confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO), and retinal thickness was evaluated using optical coherence tomography (OCT). Six subjects completed serial imaging over a maximum period of 18 months and cone density was measured across imaging sessions. Results Ten subjects had an OPN1LW/OPN1MW "interchange" opsin mutation designated as LIAVA or LVAVA, which both introduce exon 3 splicing defects leading to a lack of functional photopigment in cones expressing LIAVA and greatly reduced functional photopigment in cones expressing LVAVA. Despite disrupted cone reflectivity and reduced numerosity, residual inner segments could be visualized. Similar patterns were observed in individuals with an exon 2 insertion, or an exon 4 splice defect, both of which are also expected to produce cones that are devoid of functional opsin protein. OCT revealed variably reduced retinal thickness. A significant inverse relationship was found between the proportion of waveguiding cones and axial length. Conclusions Split-detection imaging revealed that the altered appearance of the cone mosaic in confocal images for subjects with exon 2, 3, and 4 mutations was generally due to disrupted waveguiding, rather than structural loss, making them possible candidates for gene therapy to restore cone function. The relative fraction of waveguiding cones was highly variable across subjects, which appears to influence emmetropization in these subjects.
Collapse
Affiliation(s)
- Emily J Patterson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Angelos Kalitzeos
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Melissa Kasilian
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Jessica C Gardner
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Alison J Hardcastle
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
44
|
Nti AA, Serrano LW, Sandhu HS, Uyhazi KE, Edelstein ID, Zhou EJ, Bowman S, Song D, Gangadhar TC, Schuchter LM, Mitnick S, Huang A, Nichols CW, Amaravadi RK, Kim BJ, Aleman TS. FREQUENT SUBCLINICAL MACULAR CHANGES IN COMBINED BRAF/MEK INHIBITION WITH HIGH-DOSE HYDROXYCHLOROQUINE AS TREATMENT FOR ADVANCED METASTATIC BRAF MUTANT MELANOMA: Preliminary Results From a Phase I/II Clinical Treatment Trial. Retina 2019; 39:502-513. [PMID: 29324592 PMCID: PMC6039280 DOI: 10.1097/iae.0000000000002027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the potential ocular toxicity of a combined BRAF inhibition (BRAFi) + MEK inhibition (MEKi) + hydroxychloroquine (HCQ) regime used to treat metastatic BRAF mutant melanoma. METHODS Patients with stage IV metastatic melanoma and BRAF V600E mutations (n = 11, 31-68 years of age) were included. Treatment was with oral dabrafenib, 150 mg bid, trametinib, 2 mg/day, and HCQ, 400 mg to 600 mg bid. An ophthalmic examination, spectral domain optical coherence tomography, near-infrared and short-wavelength fundus autofluorescence, and static perimetry were performed at baseline, 1 month, and q/6 months after treatment. RESULTS There were no clinically significant ocular events; there was no ocular inflammation. The only medication-related change was a separation of the photoreceptor outer segment tip from the apical retinal pigment epithelium that could be traced from the fovea to the perifoveal retina noted in 9/11 (82%) of the patients. There were no changes in retinal pigment epithelium melanization or lipofuscin content by near-infrared fundus autofluorescence and short-wavelength fundus autofluorescence, respectively. There were no inner retinal or outer nuclear layer changes. Visual acuities and sensitivities were unchanged. CONCLUSION BRAFi (trametinib) + MEKi (dabrafenib) + HCQ causes very frequent, subclinical separation of the photoreceptor outer segment from the apical retinal pigment epithelium without inner retinal changes or signs of inflammation. The changes suggest interference with the maintenance of the outer retinal barrier and/or phagocytic/pump functions of the retinal pigment epithelium by effective MEK inhibition.
Collapse
Affiliation(s)
- Akosua A. Nti
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leona W. Serrano
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harpal S. Sandhu
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katherine E. Uyhazi
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ilaina D. Edelstein
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elaine J. Zhou
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott Bowman
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Delu Song
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C. Gangadhar
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheryl Mitnick
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Huang
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles W. Nichols
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Kim
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomas S. Aleman
- Department of Ophthalmology, Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Ophthalmology Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Lee DJ, Woertz EN, Visotcky A, Wilk MA, Heitkotter H, Linderman RE, Tarima S, Summers CG, Brooks BP, Brilliant MH, Antony BJ, Lujan BJ, Carroll J. The Henle Fiber Layer in Albinism: Comparison to Normal and Relationship to Outer Nuclear Layer Thickness and Foveal Cone Density. Invest Ophthalmol Vis Sci 2018; 59:5336-5348. [PMID: 30398625 PMCID: PMC6219160 DOI: 10.1167/iovs.18-24145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
Purpose Directional optical coherence tomography (D-OCT) allows the visualization of the Henle fiber layer (HFL) in vivo. Here, we used D-OCT to characterize the HFL and outer nuclear layer (ONL) in albinism and examine the relationship between true foveal ONL and peak cone density. Methods Horizontal D-OCT B-scans were acquired, registered, and averaged for 12 subjects with oculocutaneous albinism and 26 control subjects. Averaged images were manually segmented to extract HFL and ONL thickness. Adaptive optics scanning light ophthalmoscopy was used to acquire images of the foveal cone mosaic in 10 subjects with albinism, from which peak cone density was assessed. Results Across the foveal region, the HFL topography was different between subjects with albinism and normal controls. In particular, foveal HFL thickness was thicker in albinism than in normal controls (P < 0.0001), whereas foveal ONL thickness was thinner in albinism than in normal controls (P < 0.0001). The total HFL and ONL thickness was not significantly different between albinism and controls (P = 0.3169). Foveal ONL thickness was positively correlated with peak cone density in subjects with albinism (r = 0.8061, P = 0.0072). Conclusions Foveal HFL and ONL topography are significantly altered in albinism relative to normal controls. Our data suggest that increased foveal cone packing drives the formation of Henle fibers, more so than the lateral displacement of inner retinal neurons (which is reduced in albinism). The ability to quantify foveal ONL and HFL may help further stratify grading schemes used to assess foveal hypoplasia.
Collapse
Affiliation(s)
- Daniel J. Lee
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Erica N. Woertz
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Alexis Visotcky
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa A. Wilk
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States
| | - Heather Heitkotter
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Rachel E. Linderman
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - C. Gail Summers
- Department of Ophthalmology & Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | | | - Murray H. Brilliant
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin, United States
| | | | - Brandon J. Lujan
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
46
|
Strampe MR, Huckenpahler AL, Higgins BP, Tarima S, Visotcky A, Stepien KE, Kay CN, Carroll J. Intraobserver Repeatability and Interobserver Reproducibility of Ellipsoid Zone Measurements in Retinitis Pigmentosa. Transl Vis Sci Technol 2018; 7:13. [PMID: 29881650 PMCID: PMC5989764 DOI: 10.1167/tvst.7.3.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose To examine repeatability and reproducibility of ellipsoid zone (EZ) width measurements in patients with retinitis pigmentosa (RP) using a longitudinal reflectivity profile (LRP) analysis. Methods We examined Bioptigen optical coherence tomography (OCT) scans from 48 subjects with RP or Usher syndrome. Nominal scan lengths were 6, 7, or 10 mm, and the lateral scale of each scan was calculated using axial length measurements. LRPs were generated from OCT line scans, and the peak corresponding to EZ was manually identified using ImageJ. The locations at which the EZ peak disappeared were used to calculate EZ width. Each scan was analyzed twice by each of two observers, who were masked to their previous measurements and those of the other observer. Results On average, horizontal width (HW) was significantly greater than vertical width (VW), and there was high interocular symmetry for both HW and VW. We observed excellent intraobserver repeatability with intraclass correlation coefficients (ICCs) ranging from 0.996 to 0.998 for HW and VW measurements. Interobserver reproducibility was also excellent for both HW (ICC = 0.989; 95% confidence interval [CI] = 0.983–0.995) and VW (ICC = 0.991; 95% CI = 0.985–0.996), with no significant bias observed between observers. Conclusions EZ width can be measured using LRPs with excellent repeatability and reproducibility. Our observation of greater HW than VW is consistent with previous observations in RP, though the reason for this anisotropy remains unclear. Translational Relevance We describe repeatability and reproducibility of a method for measuring EZ width in patients with RP or Usher syndrome. This approach could facilitate measurement of retinal band thickness and/or intensity.
Collapse
Affiliation(s)
- Margaret R Strampe
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alison L Huckenpahler
- Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian P Higgins
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexis Visotcky
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kimberly E Stepien
- Ophthalmology & Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Joseph Carroll
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
47
|
Sajdak BS, Bell BA, Lewis TR, Luna G, Cornwell GS, Fisher SK, Merriman DK, Carroll J. Assessment of Outer Retinal Remodeling in the Hibernating 13-Lined Ground Squirrel. Invest Ophthalmol Vis Sci 2018; 59:2538-2547. [PMID: 29847661 PMCID: PMC5967598 DOI: 10.1167/iovs.17-23120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Purpose We examined outer retinal remodeling of the euthermic and torpid cone-dominant 13-lined ground squirrel (13-LGS) retina using optical coherence tomography (OCT) imaging and histology. Methods Retinas and corneas of living 13-LGSs were imaged during euthermic and torpid physiological states using OCT. Retinal layer thickness was measured at the visual streak from registered and averaged vertical B-scans. Following OCT, some retinas were collected immediately for postmortem histologic comparison using light microscopy, immunofluorescence, or transmission electron microscopy. Results Compared to OCT images from euthermic retinae, OCT images of torpid retinae revealed significantly thicker inner and outer nuclear layers, as well as increases in the distances between outer retinal reflectivity bands 1 and 2, and bands 3 and 4. A significant decrease in the distance between bands 2 and 3 also was seen, alongside significant thinning of the choriocapillaris and choroid. OCT image quality was reduced in torpid eyes, partly due to significant thickening of the corneal stroma during this state. Conclusions The torpid retina of the hibernating 13-LGS undergoes structural changes that can be detected by OCT imaging. Comparisons between in vivo OCT and ex vivo histomorphometry may offer insight to the origin of hyperreflective OCT bands within the outer retina of the cone-dominant 13-LGS.
Collapse
Affiliation(s)
- Benjamin S. Sajdak
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brent A. Bell
- Cole Eye Institute/Ophthalmic Research, Cleveland Clinic, Cleveland, Ohio, United States
| | - Tylor R. Lewis
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Grayson S. Cornwell
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Steven K. Fisher
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States
| | - Dana K. Merriman
- Biology & Microbiology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States
| | - Joseph Carroll
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
48
|
The Distribution of the Photoreceptor Outer Segment Length in a Healthy Population. J Ophthalmol 2017; 2017:4641902. [PMID: 29410913 PMCID: PMC5749276 DOI: 10.1155/2017/4641902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the effects of age and sex on the photoreceptor outer segment (PROS) length in healthy eyes, using spectral-domain optical coherence tomography (SD-OCT). Methods A total of 97 eyes of 97 healthy participants (spherical equivalent < ±1 diopters [D]) were scanned with SD-OCT. The patients were divided into 3 groups by age: group 1 (0-20 years), group 2 (21-40 years), and group 3 (41-60 years). The PROS length was defined as the distance from the inner surface of IS/OS (inner segment/outer segment) band to the inner surface of retinal pigment epithelium (RPE). Results The mean PROS length was 52.01 ± 3.79 μm in females and 53.41 ± 3.37 μm in males (p = 0.061). The mean PROS length of the different groups was 53.70 ± 3.18 μm (0-20 years), 52.14 ± 3.64 μm (21-40 years), and 52.20 ± 3.95 μm (41-60 years) (p = 0.155; ANOVA test). Multiple linear regression analysis revealed a -0.039 μm decline in PROS length per year (p = 0.074) and a -1.408 μm decline in females (p = 0.055). Conclusion The difference in PROS length was not statistically significant neither for age nor for gender; females tended to have a lower PROS length than males, and PROS length was slightly higher in the first two decades of life.
Collapse
|
49
|
Litts KM, Cooper RF, Duncan JL, Carroll J. Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging. Invest Ophthalmol Vis Sci 2017; 58:BIO255-BIO267. [PMID: 28873135 PMCID: PMC5584616 DOI: 10.1167/iovs.17-21868] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023] Open
Abstract
Improved understanding of the mechanisms underlying inherited retinal degenerations has created the possibility of developing much needed treatments for these relentless, blinding diseases. However, standard clinical indicators of retinal health (such as visual acuity and visual field sensitivity) are insensitive measures of photoreceptor survival. In many retinal degenerations, significant photoreceptor loss must occur before measurable differences in visual function are observed. Thus, there is a recognized need for more sensitive outcome measures to assess therapeutic efficacy as numerous clinical trials are getting underway. Adaptive optics (AO) retinal imaging techniques correct for the monochromatic aberrations of the eye and can be used to provide nearly diffraction-limited images of the retina. Many groups routinely are using AO imaging tools to obtain in vivo images of the rod and cone photoreceptor mosaic, and it now is possible to monitor photoreceptor structure over time with single cell resolution. Highlighting recent work using AO scanning light ophthalmoscopy (AOSLO) across a range of patient populations, we review the development of photoreceptor-based metrics (e.g., density/geometry, reflectivity, and size) as candidate biomarkers. Going forward, there is a need for further development of automated tools and normative databases, with the latter facilitating the comparison of data sets across research groups and devices. Ongoing and future clinical trials for inherited retinal diseases will benefit from the improved resolution and sensitivity that multimodal AO retinal imaging affords to evaluate safety and efficacy of emerging therapies.
Collapse
Affiliation(s)
- Katie M. Litts
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Robert F. Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
50
|
Wilk MA, Huckenpahler AL, Collery RF, Link BA, Carroll J. The Effect of Retinal Melanin on Optical Coherence Tomography Images. Transl Vis Sci Technol 2017; 6:8. [PMID: 28392975 PMCID: PMC5381330 DOI: 10.1167/tvst.6.2.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. Methods A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. Results The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. Conclusions The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. Translational Relevance Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images.
Collapse
Affiliation(s)
- Melissa A Wilk
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Alison L Huckenpahler
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|