1
|
Bantulà M, Arismendi E, Tubita V, Roca-Ferrer J, Mullol J, de Hollanda A, Sastre J, Valero A, Baos S, Cremades-Jimeno L, Cárdaba B, Picado C. Effect of Obesity on the Expression of Genes Associated with Severe Asthma-A Pilot Study. J Clin Med 2023; 12:4398. [PMID: 37445432 DOI: 10.3390/jcm12134398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a complex condition resulting from the interaction of genes and environment. Obesity is a risk factor to develop asthma and contributes to poor response to asthma therapy and severity. The aim of the study was to evaluate the effect of obesity on the expression levels of genes previously associated with severe asthma. Three groups of subjects were studied: non-obese asthmatics (NOA), obese asthma patients (OA), and non-asthmatic obese subjects (O). Previously reported overexpressed (IL-10, MSR1, PHLDA1, SERPINB2, and CD86) and underexpressed genes (CHI3L1, CPA3, IL-8, and PI3) in severe asthma were analyzed by RT-qPCR in peripheral blood mononuclear cells (PBMCs). In the overexpressed genes, obesity significantly decreased the expression of MSR1 and PHLDA1 and had no effects on CD86, IL-10, and SERPINB2. In underexpressed genes, obesity did not affect PI3, CHI3L1, and IL-8 and significantly reduced CPA3 expression. The results of this study show that obesity should be included among the known factors that can contribute toward modifying the expression of genes associated with asthma and, in particular, severe asthma.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Valeria Tubita
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Ana de Hollanda
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Service, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Antonio Valero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Allergy Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - César Picado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology Department, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Sheng W, Ji G, Zhang L. Role of macrophage scavenger receptor MSR1 in the progression of non-alcoholic steatohepatitis. Front Immunol 2022; 13:1050984. [PMID: 36591228 PMCID: PMC9797536 DOI: 10.3389/fimmu.2022.1050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), and the dysregulation of lipid metabolism and oxidative stress are the typical features. Subsequent dyslipidemia and oxygen radical production may render the formation of modified lipids. Macrophage scavenger receptor 1 (MSR1) is responsible for the uptake of modified lipoprotein and is one of the key molecules in atherosclerosis. However, the unrestricted uptake of modified lipoproteins by MSR1 and the formation of cholesterol-rich foamy macrophages also can be observed in NASH patients and mouse models. In this review, we highlight the dysregulation of lipid metabolism and oxidative stress in NASH, the alteration of MSR1 expression in physiological and pathological conditions, the formation of modified lipoproteins, and the role of MSR1 on macrophage foaming and NASH development and progression.
Collapse
|
3
|
Mucha O, Podkalicka P, Kaziród K, Samborowska E, Dulak J, Łoboda A. Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skelet Muscle 2021; 11:21. [PMID: 34479633 PMCID: PMC8414747 DOI: 10.1186/s13395-021-00276-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an incurable disease, caused by the mutations in the DMD gene, encoding dystrophin, an actin-binding cytoskeletal protein. Lack of functional dystrophin results in muscle weakness, degeneration, and as an outcome cardiac and respiratory failure. As there is still no cure for affected individuals, the pharmacological compounds with the potential to treat or at least attenuate the symptoms of the disease are under constant evaluation. The pleiotropic agents, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, known as statins, have been suggested to exert beneficial effects in the mouse model of DMD. On the other hand, they were also reported to induce skeletal-muscle myopathy. Therefore, we decided to verify the hypothesis that simvastatin may be considered a potential therapeutic agent in DMD. Methods Several methods including functional assessment of muscle function via grip strength measurement, treadmill test, and single-muscle force estimation, enzymatic assays, histological analysis of muscle damage, gene expression evaluation, and immunofluorescence staining were conducted to study simvastatin-related alterations in the mdx mouse model of DMD. Results In our study, simvastatin treatment of mdx mice did not result in improved running performance, grip strength, or specific force of the single muscle. Creatine kinase and lactate dehydrogenase activity, markers of muscle injury, were also unaffected by simvastatin delivery in mdx mice. Furthermore, no significant changes in inflammation, fibrosis, and angiogenesis were noted. Despite the decreased percentage of centrally nucleated myofibers in gastrocnemius muscle after simvastatin delivery, no changes were noticed in other regeneration-related parameters. Of note, even an increased rate of necrosis was found in simvastatin-treated mdx mice. Conclusion In conclusion, our study revealed that simvastatin does not ameliorate DMD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00276-3.
Collapse
Affiliation(s)
- Olga Mucha
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Paulina Podkalicka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarzyna Kaziród
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Emilia Samborowska
- Mass Spectrometry Lab, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
5
|
Stevens DM, Adiseshaiah P, Dasa SSK, Potter TM, Skoczen SL, Snapp KS, Cedrone E, Patel N, Busman-Sahay K, Rosen EP, Sykes C, Cottrell M, Dobrovolskaia MA, Estes JD, Kashuba ADM, Stern ST. Application of a Scavenger Receptor A1-Targeted Polymeric Prodrug Platform for Lymphatic Drug Delivery in HIV. Mol Pharm 2020; 17:3794-3812. [PMID: 32841040 PMCID: PMC7861197 DOI: 10.1021/acs.molpharmaceut.0c00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a macromolecular prodrug platform based on poly(l-lysine succinylated) (PLS) that targets scavenger receptor A1 (SR-A1), a receptor expressed by myeloid and endothelial cells. We demonstrate the selective uptake of PLS by murine macrophage, RAW 264.7 cells, which was eliminated upon cotreatment with the SR-A inhibitor polyinosinic acid (poly I). Further, we observed no uptake of PLS in an SR-A1-deficient RAW 264.7 cell line, even after 24 h incubation. In mice, PLS distributed to lymphatic organs following i.v. injection, as observed by ex vivo fluorescent imaging, and accumulated in lymph nodes following both i.v. and i.d. administrations, based on immunohistochemical analysis with high-resolution microscopy. As a proof-of-concept, the HIV antiviral emtricitabine (FTC) was conjugated to the polymer's succinyl groups via ester bonds, with a drug loading of 14.2% (wt/wt). The prodrug (PLS-FTC) demonstrated controlled release properties in vitro with a release half-life of 15 h in human plasma and 29 h in esterase-inhibited plasma, indicating that drug release occurs through both enzymatic and nonenzymatic mechanisms. Upon incubation of PLS-FTC with human peripheral blood mononuclear cells (PBMCs), the released drug was converted to the active metabolite FTC triphosphate. In a pharmacokinetic study in rats, the prodrug achieved ∼7-19-fold higher concentrations in lymphatic tissues compared to those in FTC control, supporting lymphatic-targeted drug delivery. We believe that the SR-A1-targeted macromolecular PLS prodrug platform has extraordinary potential for the treatment of infectious diseases.
Collapse
Affiliation(s)
- David M Stevens
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Pavan Adiseshaiah
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Siva S K Dasa
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Tim M Potter
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Sarah L Skoczen
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kelsie S Snapp
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Nimit Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Elias P Rosen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Craig Sykes
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mackenzie Cottrell
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephan T Stern
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
6
|
miR-23a-3p is a Key Regulator of IL-17C-Induced Tumor Angiogenesis in Colorectal Cancer. Cells 2020; 9:cells9061363. [PMID: 32492770 PMCID: PMC7348989 DOI: 10.3390/cells9061363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key players in tumor angiogenesis. Interleukin-17C (IL-17C) was identified to promote colorectal cancer (CRC) progression. Therefore, we aimed to investigate the effect of IL-17C on tumor angiogenesis, the involvement of miR-23a-3p in IL-17C signaling, and the direct target gene of miR-23a-3p in CRC. In vitro and ex vivo angiogenesis, a mouse xenograft experiment, and immunostaining were performed to test the effect of IL-17C on tumor angiogenesis. ELISA, quantitative real time PCR, and gene silencing were used to uncover the underlying mechanism. IL-17C induced angiogenesis of intestinal endothelial cells, subsequently enhancing cell invasion and migration of DLD-1 cells. IL-17C-stimulated DLD-1 cells produced vascular endothelial growth factor (VEGF) to enhance angiogenesis. Moreover, IL-17C markedly accelerated xenograft tumor growth, which was manifested by substantially reduced tumor growth when treated with the VEGF receptor 2 inhibitor Ki8751. Accordingly, Ki8751 suppressed the expression of IL-17C-stimulated PECAM and VE-cadherin in xenografts. Furthermore, IL-17C activated STAT3 to increase the expression of miR-23a-3p that suppressed semaphorin 6D (SEMA6D) expression, thereby permitting VEGF production. Taken together, our study demonstrates that IL-17C promotes tumor angiogenesis through VEGF production via a STAT3/miR-23a-3p/SEMA6D axis, suggesting its potential as a novel target for anti-CRC therapy.
Collapse
|
7
|
Krymskaya VP, Courtwright AM, Fleck V, Dorgan D, Kotloff R, McCormack FX, Kreider M. A phase II clinical trial of the Safety Of Simvastatin (SOS) in patients with pulmonary lymphangioleiomyomatosis and with tuberous sclerosis complex. Respir Med 2020; 163:105898. [PMID: 32125970 DOI: 10.1016/j.rmed.2020.105898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023]
Abstract
INRODUCTION The mechanistic target of rapamycin inhibitors (mTORi) sirolimus and everolimus stabilize lung function in patients with pulmonary lymphangioleiomyomatosis (LAM) but do not induce remission. Pre-clinical studies suggest that simvastatin in combination with sirolimus induces LAM cell death. The objective of this study was to assess the safety of simvastatin with either sirolimus or everolimus in LAM patients. METHODS This was a phase II single arm trial evaluating the safety of escalating daily simvastatin (20-40 mg) in LAM patients already treated with sirolimus or everolimus. Adverse events and changes in lipid panel profile, pulmonary function tests, and VEGF-D were assessed. RESULTS Ten LAM patients on a stable dose of mTORi for >3 months were treated with 20 mg simvastatin for two months followed by 40 mg for two months. The most common adverse events were peripheral edema (30%), cough (30%), and diarrhea (30%). No patients withdrew or had a reduction in simvastatin dose because of adverse events. Two patients required sirolumus dose reduction for supratherapeutic trough levels following simvastatin initiation. Total cholesterol and low density lipoproteins declined over the study period (-46.0 mg/dL±20.8, p = 0.008; -41.9 mg/dL±22.0, p = 0.01, respectively). There was also a decline in FEV1 (-82.0 mL±86.4, p = 0.02) but no significant change in FVC, DLCO, or VEGF-D. CONCLUSIONS The combination of simvastatin with mTORi in LAM patients is safe and well-tolerated from an adverse events perspective. The addition of simvastatin, however, was associated with decline in FEV1 and the efficacy of this combination should be explored in larger trials.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew M Courtwright
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Victoria Fleck
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Dorgan
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA
| | - Robert Kotloff
- Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Maryl Kreider
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Effect of Hypoxia on Gene Expression in Cell Populations Involved in Wound Healing. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2626374. [PMID: 31534956 PMCID: PMC6724439 DOI: 10.1155/2019/2626374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 01/27/2023]
Abstract
Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level.
Collapse
|
9
|
Atorvastatin and Conditioned Media from Atorvastatin-Treated Human Hematopoietic Stem/Progenitor-Derived Cells Show Proangiogenic Activity In Vitro but Not In Vivo. Mediators Inflamm 2019; 2019:1868170. [PMID: 31396016 PMCID: PMC6664685 DOI: 10.1155/2019/1868170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/22/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023] Open
Abstract
Myeloid angiogenic cells (MAC) derive from hematopoietic stem/progenitor cells (HSPCs) that are mobilized from the bone marrow. They home to sites of neovascularization and contribute to angiogenesis by production of paracrine factors. The number and function of proangiogenic cells are impaired in patients with diabetes or cardiovascular diseases. Both conditions can be accompanied by decreased levels of heme oxygenase-1 (HMOX1), cytoprotective, heme-degrading enzyme. Our study is aimed at investigating whether precursors of myeloid angiogenic cells (PACs) treated with known pharmaceuticals would produce media with better proangiogenic activity in vitro and if such media can be used to stimulate blood vessel growth in vivo. We used G-CSF-mobilized CD34+ HSPCs, FACS-sorted from healthy donor peripheral blood mononuclear cells (PBMCs). Sorted cells were predominantly CD133+. CD34+ cells after six days in culture were stimulated with atorvastatin (AT), acetylsalicylic acid (ASA), sulforaphane (SR), resveratrol (RV), or metformin (Met) for 48 h. Conditioned media from such cells were then used to stimulate human aortic endothelial cells (HAoECs) to enhance tube-like structure formation in a Matrigel assay. The only stimulant that enhanced PAC paracrine angiogenic activity was atorvastatin, which also had ability to stabilize endothelial tubes in vitro. On the other hand, the only one that induced heme oxygenase-1 expression was sulforaphane, a known activator of a HMOX1 inducer—NRF2. None of the stimulants changed significantly the levels of 30 cytokines and growth factors tested with the multiplex test. Then, we used atorvastatin-stimulated cells or conditioned media from them in the Matrigel plug in vivo angiogenic assay. Neither AT alone in control media nor conditioned media nor AT-stimulated cells affected numbers of endothelial cells in the plug or plug's vascularization. Concluding, high concentrations of atorvastatin stabilize tubes and enhance the paracrine angiogenic activity of human PAC cells in vitro. However, the effect was not observed in vivo. Therefore, the use of conditioned media from atorvastatin-treated PAC is not a promising therapeutic strategy to enhance angiogenesis.
Collapse
|
10
|
Draker N, Torry DS, Torry RJ. Placenta growth factor and sFlt-1 as biomarkers in ischemic heart disease and heart failure: a review. Biomark Med 2019; 13:785-799. [DOI: 10.2217/bmm-2018-0492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coronary heart disease (CHD) and heart failure (HF) produce significant morbidity/mortality but identifying new biomarkers could help in the management of each. In this article, we summarize the molecular regulation and biomarker potential of PIGF and sFlt-1 in CHD and HF. PlGF is elevated during ischemia and some studies have shown PlGF, sFlt-1 or PlGF:sFlt-1 ratio, when used in combination with standard biomarkers, strengthens predictions of outcomes. sFlt-1 and PlGF are elevated in HF with sFlt-1 as a stronger predictor of outcomes. Although promising, we discuss additional study criteria needed to confirm the clinical usefulness of PlGF or sFlt-1 in the detection and management of CHD or HF.
Collapse
Affiliation(s)
- Nicole Draker
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology, & Cell Biology, Department of OB/GYN, Southern Illinois University, School of Medicine, Springfield, IL 62702, USA
| | - Ronald J Torry
- Department of Pharmaceutical & Administrative Sciences, Ellis Pharmacogenomics Lab, College of Pharmacy & Health Sciences, Drake University, Des Moines, IA 50311, USA
| |
Collapse
|
11
|
Ahmed M, Baumgartner R, Aldi S, Dusart P, Hedin U, Gustafsson B, Caidahl K. Human serum albumin-based probes for molecular targeting of macrophage scavenger receptors. Int J Nanomedicine 2019; 14:3723-3741. [PMID: 31190821 PMCID: PMC6535103 DOI: 10.2147/ijn.s197990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/01/2019] [Indexed: 02/05/2023] Open
Abstract
Background: Inflammation and accumulation of macrophages are key features of unstable atherosclerotic plaques. The ability of macrophages to take up molecular probes can be exploited in new clinical imaging methods for the detection of unstable atherosclerotic lesions. We investigated whether modifications of human serum albumin (HSA) could be used to target macrophages efficiently in vitro. Materials and methods: Maleylated and aconitylated HSA were compared with unmodified HSA. Fluorescent or radiolabeled (89Zr) modified HSA was used in in vitro experiments to study cellular uptake by differentiated THP-1 cells and primary human macrophages. The time course of uptake was evaluated by flow cytometry, confocal microscopy, real-time microscopy and radioactivity measurements. The involvement of scavenger receptors (SR-A1, SR-B2, LOX-1) was assessed by knockdown experiments using RNA interference, by blocking experiments and by assays of competition by modified low-density lipoprotein. Results: Modified HSA was readily taken up by different macrophages. Uptake was mediated nonexclusively via the scavenger receptor SR-A1 (encoded by the MSR1 gene). Knockdown of CD36 and ORL1 had no influence on the uptake. Modified HSA was preferentially taken up by human macrophages compared with other vascular cell types such as endothelial cells and smooth muscle cells. Conclusions: Modified 89Zr-labeled HSA probes were recognized by different subsets of polarized macrophages, and maleylated HSA may be a promising radiotracer for radionuclide imaging of macrophage-rich inflammatory vascular diseases.
Collapse
Affiliation(s)
- Mona Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 17176, Stockholm, Sweden
| | - Roland Baumgartner
- Department of Medicine Solna, Karolinska Institutet, SE 17176, Stockholm, Sweden
| | - Silvia Aldi
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 17177, Stockholm, Sweden
| | - Philip Dusart
- Department of Cellular and Clinical Proteomics, Science for Life Laboratory, Kungliga Tekniska Högskolan (KTH), SE 17165, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 17176, Stockholm, Sweden
| | - Björn Gustafsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 17176, Stockholm, Sweden
| | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 17176, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE 41345, Gothenburg, Sweden
| |
Collapse
|
12
|
The Different Facades of Retinal and Choroidal Endothelial Cells in Response to Hypoxia. Int J Mol Sci 2018; 19:ijms19123846. [PMID: 30513885 PMCID: PMC6321100 DOI: 10.3390/ijms19123846] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Ocular angiogenic diseases, such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, are associated with severe loss of vision. These pathologies originate from different vascular beds, retinal and choroidal microvasculatures, respectively. The activation of endothelial cells (EC) plays pivotal roles in angiogenesis, often triggered by oxygen deficiency. Hypoxia-inducible factors in ECs mediate the transcription of multiple angiogenic genes, including the canonical vascular endothelial growth factors. ECs show notable heterogeneity in function, structure, and disease, therefore the understanding of retinal/choroidal ECs (REC; CEC) biochemical and molecular responses to hypoxia may offer key insights into tissue-specific vascular targeting treatments. The aim of this review is to discuss the differences spanning between REC and CEC, with focus on their response to hypoxia, which could provide innovative and sustainable strategies for site specific targeting of ocular neovascularization.
Collapse
|
13
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Atorvastatin enhances endothelial adherens junctions through promoting VE-PTP gene transcription and reducing VE-cadherin-Y731 phosphorylation. Vascul Pharmacol 2018; 117:7-14. [PMID: 29894844 DOI: 10.1016/j.vph.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022]
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is essential for endothelial cells (ECs) adherens junction and vascular homeostasis; however, the regulatory mechanism of VE-PTP transcription is unknown, and a drug able to promote VE-PTP expression in ECs has not yet been reported in the literature. In this study, we used human ECs as a model to explore small molecule compounds able to promote VE-PTP expression, and found that atorvastatin, a HMG-CoA reductase inhibitor widely used in the clinic to treat hypercholesterolemia-related cardiovascular diseases, strongly promoted VE-PTP transcription in ECs through activating the VE-PTP promoter and upregulating the expression of the transcription factor, specificity protein 1 (SP1). Additionally, atorvastatin markedly reduced VE-cadherin-Y731 phosphorylation induced by cigarette smoke extract and significantly enhanced stability of endothelial adherens junctions. Together, our findings reveal that atorvastatin up-regulates VE-PTP expression, increases VE-cadherin protein levels, and decreases VE-cadherin-Y731 phosphorylation to strengthen EC adherens junctions and maintain vascular cell monolayer integrity, offering a new mechanism of atorvastatin against CSE-induced disruption of vascular integrity and relevant cardio-cerebrovascular disease.
Collapse
|
15
|
Altube MJ, Selzer SM, de Farias MA, Portugal RV, Morilla MJ, Romero EL. Surviving nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine (Lond) 2016; 11:2103-17. [DOI: 10.2217/nnm-2016-0165] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To increase the subcellular delivery of dexamethasone phosphate (DP) and stability to nebulization stress, pH-sensitive nanoliposomes (LpH) exhibiting archaeolipids, acting as ligands for scavenger receptors (pH-sensitive archaeosomes [ApH]), were prepared. Materials & methods: The anti-inflammatory effect of 0.18 mg DP/mg total lipid, 100–150 nm DP-containing ApH (dioleylphosphatidylethanolamine: Halorubrum tebenquichense total polar archaeolipids:cholesteryl hemisuccinate 4.2:2.8:3 w:w) was tested on different cell lines. Size and HPTS retention of ApH and conventional LpH (dioleylphosphatidylethanolamine:cholesteryl hemisuccinate 7:3 w:w) before and after nebulization were determined. Results & conclusion: DP-ApH suppressed IL-6 and TNF-α on phagocytic cells. Nebulized after 6-month storage, LpH increased size and completely lost its HPTS while ApH3 conserved size and polydispersity, fully retaining its original HPTS content.
Collapse
Affiliation(s)
- Maria Julia Altube
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Solange Mailen Selzer
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083–970, Campinas, São Paulo, Brazil
| | - Maria Jose Morilla
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research Program, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Roque Saenz Peña 352, Bernal B1876BXD, Argentina
| |
Collapse
|
16
|
Xiang L, Varshney R, Rashdan NA, Shaw JH, Lloyd PG. Placenta growth factor and vascular endothelial growth factor a have differential, cell-type specific patterns of expression in vascular cells. Microcirculation 2015; 21:368-79. [PMID: 24410720 DOI: 10.1111/micc.12113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
Abstract
OBJECTIVE PLGF, a VEGF-A related protein, mediates collateral enlargement via monocytes but plays little role in capillary proliferation. In contrast, VEGF-A mediates both collateral enlargement and capillary proliferation. PLGF has been less thoroughly studied than VEGF-A, and questions remain regarding its regulation and function. Therefore, our goal was to characterize the expression of PLGF by vascular cells. We hypothesized that vascular SMC would express more PLGF than EC, since VEGF-A is primarily expressed by non-EC. METHODS We compared PLGF and VEGF-A across eight EC and SMC lines, then knocked down PLGF and evaluated cell function. We also assessed the effect of hypoxia on PLGF expression and promoter activity. RESULTS PLGF was most highly expressed in EC, whereas VEGF-A was most highly expressed in SMC. PLGF knockdown did not affect EC number, migration, or tube formation, but reduced monocyte migration toward EC. Monocyte migration was rescued by exogenous PLGF. Hypoxia increased PLGF protein without activating PLGF gene transcription. CONCLUSIONS PLGF and VEGF-A have distinct patterns of expression in vascular cells. EC derived PLGF may function primarily in communication between EC and circulating cells. Hypoxia increases EC PLGF expression posttranscriptionally.
Collapse
Affiliation(s)
- Lingjin Xiang
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | | | | | | |
Collapse
|
17
|
Ben J, Zhu X, Zhang H, Chen Q. Class A1 scavenger receptors in cardiovascular diseases. Br J Pharmacol 2015; 172:5523-30. [PMID: 25651870 DOI: 10.1111/bph.13105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 01/03/2023] Open
Abstract
Class A1 scavenger receptors (SR-A1) are membrane glycoproteins that can form homotrimers. This receptor was originally defined by its ability to mediate the accumulation of lipids in macrophages. Subsequent studies reveal that SR-A1 plays critical roles in innate immunity, cell apoptosis and proliferation. This review highlights recent advances in understanding the structure, receptor pathway and regulation of SR-A1. Although its role in atherosclerosis is disputable, recent discoveries suggest that SR-A1 function in anti-inflammatory responses by promoting an M2 macrophage phenotype in cardiovascular diseases. Therefore, SR-A1 may be a potential target for therapeutic intervention of cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Ben
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Xudong Zhu
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Hanwen Zhang
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
18
|
Li X, Liu X, Xu Y, He Y, Liu J, Xie M. Expression profile of apoptotic and proliferative proteins in hypoxic HUVEC treated with statins. Int J Oncol 2014; 46:677-84. [PMID: 25434456 DOI: 10.3892/ijo.2014.2780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/06/2014] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial hyperproliferation is involved in the pathophysiological process of angiogenesis, which is indispensable for tumor growth and spread in hypoxic adaptation. There is increasing evidence indicating that statins have potential anti-angiogenesis benefits. However, the intracellular signaling mechanism underlying the effect of statins in vascular endothelial cells is undefined. The present study was conducted to investigate the effect of fluvastatin on cell proliferation and apoptosis in normoxic and hypoxic human umbilical vein endothelial cells (HUVEC). Flow cytometric analyses revealed that statins reversed hypoxia-induced cell proliferation by slowing down G1 to S transition and inducing cell apoptosis. To get further insights into the downstream effects of statins, we measured the expression of various apoptosis-associated proteins in hypoxic HUVEC using human apoptosis antibody array. The results suggested that cell apoptosis was accompanied by upregulation of caspase-3, p27, IGFBP-6 and a decrease of bcl-2, survivin levels. Subsequent studies confirmed the results of array and demonstrated that fluvastatin activated mitochondrial apoptosis through enhancing bax/bcl-2 ratio, releasing cytochrome c, in turn activating caspase-9 and caspase-3, and eventually cleaving PARP. Further experiments showed that inhibition of cell proliferation by fluvastatin was associated with elevated IGFBP-6, p27, p53 levels and reduced survivin, cyclin B1, cyclin D1 and VEGF expression. Taken together, fluvastatin suppressed cell proliferation and induced apoptosis of HUVEC in hypoxia via multiple signaling pathways, providing a theoretical basis for statins in the therapy of cancer.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yongjian Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Yuanzhou He
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Jin Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
19
|
Atochina-Vasserman EN, Goncharov DA, Volgina AV, Milavec M, James ML, Krymskaya VP. Statins in lymphangioleiomyomatosis. Simvastatin and atorvastatin induce differential effects on tuberous sclerosis complex 2-null cell growth and signaling. Am J Respir Cell Mol Biol 2013; 49:704-9. [PMID: 23947572 DOI: 10.1165/rcmb.2013-0203rc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations of the tumor suppressor genes tuberous sclerosis complex (TSC)1 and TSC2 cause pulmonary lymphangioleiomyomatosis (LAM) and tuberous sclerosis (TS). Current rapamycin-based therapies for TS and LAM have a predominantly cytostatic effect, and disease progression resumes with therapy cessation. Evidence of RhoA GTPase activation in LAM-derived and human TSC2-null cells suggests that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor statins can be used as potential adjuvant agents. The goal of this study was to determine which statin (simvastatin or atorvastatin) is more effective in suppressing TSC2-null cell growth and signaling. Simvastatin, but not atorvastatin, showed a concentration-dependent (0.5-10 μM) inhibitory effect on mouse TSC2-null and human LAM-derived cell growth. Treatment with 10 μM simvastatin induced dramatic disruption of TSC2-null cell monolayer and cell rounding; in contrast, few changes were observed in cells treated with the same concentration of atorvastatin. Combined treatment of rapamycin with simvastatin but not with atorvastatin showed a synergistic growth-inhibitory effect on TSC2-null cells. Simvastatin, but not atorvastatin, inhibited the activity of prosurvival serine-threonine kinase Akt and induced marked up-regulation of cleaved caspase-3, a marker of cell apoptosis. Simvastatin, but not atorvastatin, also induced concentration-dependent inhibition of p42/p44 Erk and mTORC1. Thus, our data show growth-inhibitory and proapoptotic effects of simvastatin on TSC2-null cells compared with atorvastatin. These findings have translational significance for combinatorial therapeutic strategies of simvastatin to inhibit TSC2-null cell survival in TS and LAM.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- 1 Airway Biology Initiative, Pulmonary, Allergy & Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
20
|
Ma C, Wang Y, Shen T, Zhang C, Ma J, Zhang L, Liu F, Zhu D. Placenta growth factor mediates angiogenesis in hypoxic pulmonary hypertension. Prostaglandins Leukot Essent Fatty Acids 2013; 89:159-68. [PMID: 24001991 DOI: 10.1016/j.plefa.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/10/2013] [Accepted: 08/10/2013] [Indexed: 12/21/2022]
Abstract
Our previous studies have proved that hypoxia enhances the 15-lipoxygenase (15-LO) expression and increases endogenous 15-hydroxyeicosatetraenoic acid (15-HETE) production to promote pulmonary vascular remodeling and angiogenesis, while the mechanisms of how hypoxia regulates 15-LO expression in endothelium is still unknown. As placenta growth factor (PlGF) promotes pathological angiogenesis by acting on the growth, migration and survival of endothelial cells, there may be some connections between PlGF and 15-LO in hypoxia induced endothelial cells proliferation. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and bromodeoxyuridine incorporation to determine the role of PlGF in pulmonary remodeling induced by hypoxia. Our results showed that hypoxia up-regulated PlGF expression, which was mediated by 15-LO/15-HETE pathway. Furthermore, we found that PlGF had a positive feedback regulation with 15-LO expression and 15-HETE generation. The interaction in hypoxia between 15-HETE and PlGF created a PlGF-15-LO-15-HETE loop, leading to endothelial dysfunction. Thus, these findings suggest a new therapeutic agent in combination with the blockade of PlGF as well as 15-LO in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Cui Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing 163319, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mottaghi S, Larijani B, Sharifi AM. Atorvastatin: an efficient step forward in mesenchymal stem cell therapy of diabetic retinopathy. Cytotherapy 2012; 15:263-6. [PMID: 23253439 DOI: 10.1016/j.jcyt.2012.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/27/2012] [Accepted: 11/02/2012] [Indexed: 01/01/2023]
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and a significant source of morbidity, is the most common ocular complication of prolonged diabetes mellitus. Most therapeutic approaches address DR by preventing or destroying neovasculature; however, this fails to eliminate pathogenic causes. Mesenchymal stem cells (MSCs) are a promising candidate for cell therapy because they have unique regenerative potential and provide an option to manage retinal injuries. Transplantation of MSCs in rats with diabetes induced by streptozocin administration was shown to ameliorate DR. However, the poor viability and homing of MSCs after transplantation may reduce the efficacy of cell therapy. Intravitreal transplantation of MSCs was shown to augment vascular endothelial growth factor (VEGF). More recent studies have found a central role for VEGF in vascular lesion formation in DR and proposed blockage of VEGF as an effective approach to manage DR. Atorvastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme A reductase inhibitor, has been proven to decrease VEGF production of MSCs under hypoxic conditions. It has also been demonstrated that atorvastatin increases the viability of MSCs through the adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase signaling pathway. There is also evidence that nitric oxide improves homing of MSCs by increasing chemokine-related receptor CXCR4 expression. It could be hypothesized that co-administration of MSCs with atorvastatin may be a significant step forward in development of an efficient MSC therapy of DR through preventing excess VEGF production by MSCs under hypoxic conditions as well as increasing the viability and homing of transplanted MSCs.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
22
|
Adverse fetal and neonatal outcomes associated with a life-long high fat diet: role of altered development of the placental vasculature. PLoS One 2012; 7:e33370. [PMID: 22442686 PMCID: PMC3307735 DOI: 10.1371/journal.pone.0033370] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 02/13/2012] [Indexed: 01/22/2023] Open
Abstract
Maternal obesity results in a number of obstetrical and fetal complications with both immediate and long-term consequences. The increased prevalence of obesity has resulted in increasing numbers of women of reproductive age in this high-risk group. Since many of these obese women have been subjected to hypercaloric diets from early childhood we have developed a rodent model of life-long maternal obesity to more clearly understand the mechanisms that contribute to adverse pregnancy outcomes in obese women. Female Sprague Dawley rats were fed a control diet (CON--16% of calories from fat) or high fat diet (HF--45% of calories from fat) from 3 to 19 weeks of age. Prior to pregnancy HF-fed dams exhibited significant increases in body fat, serum leptin and triglycerides. A subset of dams was sacrificed at gestational day 15 to evaluate fetal and placental development. The remaining animals were allowed to deliver normally. HF-fed dams exhibited a more than 3-fold increase in fetal death and decreased neonatal survival. These outcomes were associated with altered vascular development in the placenta, as well as increased hypoxia in the labyrinth. We propose that the altered placental vasculature may result in reduced oxygenation of the fetal tissues contributing to premature demise and poor neonatal survival.
Collapse
|
23
|
Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012; 217:492-502. [PMID: 22437077 DOI: 10.1016/j.imbio.2012.02.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Accumulating evidence indicates that atherosclerosis is a chronic inflammatory disease. The key innate immune cells that are involved in the pathogenesis of atherosclerosis are circulating monocytes and plaque macrophages. Complex interplay between immune and metabolic processes results in pathological activity of these cells. The best understood pathological process mediated by macrophages is their inability to process modified lipoproteins properly resulting in the formation of foamy cells, which are a dangerous component of atherosclerotic plaques. Key molecules involved in the recognition and processing of modified lipoproteins are scavenger receptors (SR). This is a large family of surface expressed structurally heterogeneous receptors with a broad spectrum of endogenous and exogenous ligands. The common functional feature of SR is internalisation of extracellular components and targeting them for lysosomal degradation. However, these relatively simple functions can have complex consequences, since they are linked to diverse specific signalling pathways and to other membrane transport pathways. Moreover, scavenger receptors can co-operate with other types of receptors increasing the variability of the macrophage response to multiple extracellular ligands. At least some SRs respond to modified lipoproteins by amplification of inflammation and accumulation of macrophages in the plaque, while some SRs may support tolerogenic reactions. Outcome of different SR activities will be the decision of monocytes and macrophage to guard homeostatic balance, support atherosclerosis progression and plaque instability by inflammatory reactions, or support rapid fibrotic processes in the plaque that stabilise it. Despite the accumulating knowledge about the molecular mechanisms of scavenger receptor action, their role in the progression of atherosclerosis remains controversial. The activities of scavenger receptors that can contribute to each of these processes are a subject of current review.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2--is one more important than the other? Vascul Pharmacol 2012; 56:245-51. [PMID: 22366374 DOI: 10.1016/j.vph.2012.02.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 01/16/2023]
Abstract
Hypoxia is a state where oxygen availability/delivery is below the level necessary to maintain physiological oxygen tension for a particular tissue. It is well-established that when tissue demand exceeds its oxygen supply, a cascade of intracellular events is activated, with the elevation of the expression of hypoxia-inducible factors (HIFs). As a consequence, the extensive transcriptional response regulating angiogenesis, glucose metabolism, cell growth, metastasis and others processes is induced. The discovery of differences between HIF isoforms has provided new insights into HIFs biology. Importantly, the opposite effects can be exerted by HIF-1 and HIF-2 on the regulation of angiogenic response. Although both isoforms may upregulate the expression of pro-angiogenic vascular endothelial growth factor (VEGF), HIF-1 diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor whereas HIF-2 augmented expression of IL-8 in an Nrf2-independent way but via upregulation of SP-1 activity. Moreover, the opposite regulation of c-Myc transcription factor by both HIF isoforms may influence IL-8 regulation. Complexity of effects exerted by both HIF isoforms resulting from the cooperation with other transcription factors should be subjected to intensive investigation especially in the context of pro-and anti-angiogenic therapies.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | |
Collapse
|
25
|
Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biol Cell 2011; 103:467-81. [PMID: 21732911 DOI: 10.1042/bc20100146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Blood vessel formation is important for many physiological and pathological processes and is therefore a critical target for drug development. Inhibiting angiogenesis to starve a tumour or promoting 'normalization' of tumour vasculature in order to facilitate delivery of anticancer drugs are both areas of active research. Recapitulation of vessel formation by human cells in vitro allows the investigation of cell-cell and cell-matrix interactions in a controlled environment and is therefore a crucial step in developing HCS (high content screening) and HTS (high throughput screening) assays to search for modulators of blood vessel formation. HUVECs (human umbilical-vein endothelial cells) exemplify primary cells used in angiogenesis assays. However, primary cells have significant limitations that include phenotypic decay and/or senescence by six to eight passages in culture, making stable integration of fluorescent markers and large-scale expansion for HTS problematic. To overcome these limitations for HTS, we developed a novel angiogenic model system that employs stable fluorescent endothelial cell lines based on immortalized HMECs (human microvascular endothelial cell). We then evaluated HMEC cultures, both alone and co-cultured with an EMC (epicardial mesothelial cell) line that contributes vascular smooth muscle cells, to determine the suitability for HTS or HCS. RESULTS The endothelial and epicardial lines were engineered to express a panel of nuclear- and cytoplasm-localized fluorescent proteins to be mixed and matched to suit particular experimental goals. HMECs retained their angiogenic potential and stably expressed fluorescent proteins for at least 13 passages after transduction. Within 8 h after plating on Matrigel, the cells migrated and coalesced into networks of vessel-like structures. If co-cultured with EMCs, the branches formed cylindrical-shaped structures of HMECs surrounded by EMC derivatives reminiscent of vessels. Network formation measurements revealed responsiveness to media composition and control compounds. CONCLUSIONS HMEC-based lines retain most of the angiogenic features of primary endothelial cells and yet possess long-term stability and ease of culture, making them intriguing candidates for large-scale primary HCS and HTS (of ~10000-1000000 molecules). Furthermore, inclusion of EMCs demonstrates the feasibility of using epicardial-derived cells, which normally contribute to smooth muscle, to model large vessel formation. In summary, the immortalized fluorescent HMEC and EMC lines and straightforward culture conditions will enable assay development for HCS of angiogenesis.
Collapse
|
26
|
El-Chemaly S, Taveira-DaSilva A, Stylianou MP, Moss J. Statins in lymphangioleiomyomatosis: a word of caution. Eur Respir J 2009; 34:513-4. [PMID: 19648526 DOI: 10.1183/09031936.00012709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Sharma I, Dhawan V, Mahajan N, Saha SC, Dhaliwal LK. In vitro effects of atorvastatin on lipopolysaccharide-induced gene expression in endometriotic stromal cells. Fertil Steril 2009; 94:1639-46.e1. [PMID: 19944411 DOI: 10.1016/j.fertnstert.2009.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/19/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the in vitro effects of atorvastatin on lipopolysaccharide (LPS)-induced gene expression in endometrial-endometriotic stromal cells. DESIGN In vitro experimental study using flow cytometry, ELISA, semiquantitative reverse transcriptase polymerase chain reaction, and Western blot. SETTING Postgraduate Institute of Medical Education and Research. PATIENT(S) Twenty-five women undergoing laparoscopy (n = 10) and laparotomy (n = 15). INTERVENTION(S) Endometriotic cyst wall (group I) and endometrial biopsy (group II) collection. MAIN OUTCOME MEASURE(S) The endometrial-endometriotic stromal cells were isolated from ectopic (group I) and eutopic (group II) endometrium by established methods, cultured, and stimulated with LPS (1 μg/mL), followed by atorvastatin treatment in a time- and dose-dependent manner to investigate the effects of LPS on proliferation (Ki-67) and expression of cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), receptor for advanced glycation end products (RAGE), extracellular newly identified RAGE binding protein (EN-RAGE), peroxisome proliferator activated receptor-γ (PPAR-γ), and liver X receptor-α (LXR-α) genes in endometrial-endometriotic stromal cells and on levels of insulin-like growth factor binding protein-1 (IGFBP-1) and 17β-E(2) in endometrial-endometriotic stromal cell culture supernatant. RESULT(S) Significant inhibition of Ki-67 and LPS-induced expression of inflammatory and angiogenic genes (COX-2, VEGF, RAGE, and EN-RAGE) was observed in atorvastatin-treated endometrial-endometriotic stromal cells. In contrast, a significant dose- and time-dependent increase in expression of anti-inflammatory genes (PPAR-γ and LXR-α) and levels of IGFBP-1 was observed after atorvastatin treatment in both the groups. However, atorvastatin treatment had no effect on 17β-E(2) levels in endometrial/endometriotic stromal cell culture supernatant. CONCLUSION(S) The data of the present study provide new insights for the implication of atorvastatin treatment for endometriosis in humans.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
28
|
Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M. Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS One 2009; 4:e7856. [PMID: 19924294 PMCID: PMC2774277 DOI: 10.1371/journal.pone.0007856] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/17/2009] [Indexed: 11/18/2022] Open
Abstract
Background Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. Methology/Principal Findings We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21–66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. Conclusions/Significance Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis.
Collapse
Affiliation(s)
- Sophie Javerzat
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Mélanie Franco
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| | - John Herbert
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Natalia Platonova
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Anne-Lise Peille
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Véronique Pantesco
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - John De Vos
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Said Assou
- Institut de Recherche en Biothérapie, Hôpital Saint-Eloi, CHU de Montpellier, Montpellier, France
| | - Roy Bicknell
- Molecular Angiogenesis Group, Institute of Biomedical Research, University of Birmingham, Medical School, Birmingham, United Kingdom
| | - Andreas Bikfalvi
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
| | - Martin Hagedorn
- INSERM U920, Laboratoire des Mécanismes Moléculaires de l'Angiogenèse, Université Bordeaux 1, Talence, France
- Université Bordeaux 1, Talence, France
- * E-mail:
| |
Collapse
|
29
|
Gessi S, Fogli E, Sacchetto V, Merighi S, Varani K, Preti D, Leung E, Maclennan S, Borea PA. Adenosine modulates HIF-1{alpha}, VEGF, IL-8, and foam cell formation in a human model of hypoxic foam cells. Arterioscler Thromb Vasc Biol 2009; 30:90-7. [PMID: 19834107 DOI: 10.1161/atvbaha.109.194902] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Foam cell (FC) formation by oxidized low-density lipoprotein (oxLDL) accumulation in macrophages is crucial for development of atherosclerosis. Hypoxia has been demonstrated in atherosclerosis and hypoxia-inducible factor-1 (HIF-1) has been shown to promote intraplaque angiogenesis and FC development. As hypoxia induces HIF-1alpha stabilization and adenosine (ado) accumulation, we investigated whether this nucleoside regulates HIF-1alpha in FCs. METHODS AND RESULTS Ado, under hypoxia, stimulates HIF-1alpha accumulation by activating all adenosine receptors (ARs). HIF-1alpha modulation involved extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38 MAPK), and protein kinase B (Akt) phosphorylation in the case of A(1), A(2A), A(2B), and ERK 1/2 phosphorylation in the case of A(3) receptors. Ado, through the activation of A(3) and A(2B) receptors, stimulates vascular endothelial growth factor (VEGF) secretion in a HIF-1alpha-dependent way. Furthermore, ado, through the A(2B) subtype, induces an increase of Interleukin-8 (IL-8) secretion in a ERK 1/2, p38, and Akt kinase-dependent but not HIF-1alpha-mediated way. Finally, ado stimulates FC formation, and this effect is strongly reduced by A(3) and A(2B) blockers and by HIF-1alpha silencing. CONCLUSIONS This study provides the first evidence that A(3,) A(2B), or mixed A(3)/A(2B) antagonists may be useful to block important steps in the atherosclerotic plaque development ado-induced.
Collapse
Affiliation(s)
- Stefania Gessi
- Chair of Pharmacology, Faculty of Medicine, University of Ferrara, Department of Clinical and Experimental Medicine, Pharmacology Unit, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Torry RJ, Tomanek RJ, Zheng W, Miller SJ, Labarrere CA, Torry DS. Hypoxia increases placenta growth factor expression in human myocardium and cultured neonatal rat cardiomyocytes. J Heart Lung Transplant 2009; 28:183-90. [PMID: 19201345 DOI: 10.1016/j.healun.2008.11.917] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 10/17/2008] [Accepted: 11/19/2008] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Placenta growth factor (PlGF) plays an important role in pathologic angiogenesis and is believed to be an independent biomarker in patients with coronary artery disease. However, little is known regarding the regulation of PlGF expression in heart tissue. METHODS We determined expression changes in PlGF and its receptor, VEGFR1, in normal and abnormal biopsies from human cardiac allografts and in cardiomyocytes cultured under hypoxia or cyclical stretch conditions. RESULTS Human donor myocardium and biopsies from allografts without fibrin deposits expressed PlGF and VEGFR1 mRNA. Biopsies (n = 7) with myocardial fibrin, elevated serum cardiac troponin I titers (p < 0.03) and cellular infiltrates (p < 0.05) expressed 1.6-fold more PlGF mRNA than biopsies from allografts without fibrin (n = 11; p < 0.05). PlGF protein was localized in cardiomyocytes, extracellular matrix and some microvessels in areas with fibrin deposition. VEGFR1 mRNA expression was not different between groups. Cultured neonatal rat cardiomyocytes constitutively expressed PlGF/VEGFR1 under normoxia. PlGF expression was increased 3.88 +/- 0.62-fold after 12 hours (n = 6; p </= 0.05) and 3.64 +/- 0.41-fold after 24 hours of hypoxia (n = 6; p <or= 0.05). Shorter periods of hypoxia, conditioned media from hypoxic cells and cyclical stretch did not significantly alter PlGF or VEGFR1 expression. CONCLUSIONS Cardiomyocyte PIGF expression is upregulated by hypoxia in vitro and its expression increases significantly in allografts with myocardial damage. Collectively, these results provide important temporal and spatial evidence that endogenous PlGF may facilitate cardiac healing after myocardial hypoxia/ischemia.
Collapse
Affiliation(s)
- Ronald J Torry
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa 50311-4505, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Loboda A, Stachurska A, Florczyk U, Rudnicka D, Jazwa A, Wegrzyn J, Kozakowska M, Stalinska K, Poellinger L, Levonen AL, Yla-Herttuala S, Jozkowicz A, Dulak J. HIF-1 induction attenuates Nrf2-dependent IL-8 expression in human endothelial cells. Antioxid Redox Signal 2009; 11:1501-17. [PMID: 19254160 DOI: 10.1089/ars.2008.2211] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Through hypoxia-inducible factor 1 (HIF-1), hypoxia regulates the expression of numerous genes and is a potent inducer of angiogenesis. However, interleukin-8 (IL-8), an important angiogenic mediator, has been reported to be downregulated by HIF-1, although the mechanisms have not been elucidated. HIF-1 was induced in human endothelial cells by hypoxia and dimethyloxaloylglycine (DMOG). Interestingly, both hypoxia and DMOG attenuated IL-8 expression, and a similar effect has been obtained by adenoviral overexpression of the stable form of HIF-1alpha. Heme oxygenase-1 (HO-1) expression was also downregulated by HIF-1 induction. This suggests similar mechanisms of regulation of IL-8 and HO-1, indicating the involvement of Nrf2, a transcription factor previously linked to hypoxia-mediated inhibition of HO-1. Indeed, HIF-1-mediated downregulation of both IL-8 and HO-1 was associated with both lowered Nrf2 expression and induction of Bach1, a repressor of Nrf2 transcriptional activity. Accordingly, overexpression of Nrf2 reversed the inhibitory effect of HIF-1 on IL-8 and HO-1 expression. However, neither overexpression of HO-1 nor HO-1 inhibition affected IL-8 synthesis. The data indicate that HIF-1-dependent inhibition of IL-8 expression is caused by downregulation of Nrf2. However, expression of IL-8 is independent of HO-1. Cross-talk between HIF-1 and Nrf2 may influence the outcome of anti-angiogenic therapies aimed at targeting HIF-1. Antioxid.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Why is effective treatment of asthma so difficult? An integrated systems biology hypothesis of asthma. Immunol Cell Biol 2009; 87:601-5. [PMID: 19546879 DOI: 10.1038/icb.2009.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A hypothesis is presented that asthma is not only an airway disease, but that the disease involves the entire lung, and that the chronicity of asthma and asthma exacerbations can perhaps be explained if one considers asthma as a systemic disease. Increased lung-not only airway-vascularity may be the result of the action of angiogenesis factors, such as vascular endothelial growth factor (VEGF) and sphingosine-1-phosphate (S1P). A bone-marrow lung axis can be postulated as one element of the systemic nature of the asthma syndrome, in which the inflamed lung emits chemotactic signals, which the bone marrow responds to by releasing cells that contribute to lung angiogenesis. A molecular model of the pathobiology of asthma can be built by connecting hypoxia-inducible transcription factor-1 alpha, VEGF S1P, and bone-marrow precursor cell mobilization and acknowledging that angiogenesis is part of the inflammatory response.
Collapse
|
33
|
Loboda A, Stachurska A, Dorosz J, Zurawski M, Wegrzyn J, Kozakowska M, Jozkowicz A, Dulak J. HIF-1 attenuates Ref-1 expression in endothelial cells: reversal by siRNA and inhibition of geranylgeranylation. Vascul Pharmacol 2009; 51:133-9. [PMID: 19524065 DOI: 10.1016/j.vph.2009.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 04/27/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Redox factor-1 (Ref-1), a multifunctional protein with DNA repairing activities, plays a cytoprotective function by post-translational redox modification of numerous transcription factors, including hypoxia inducible factor-1 (HIF-1). In the present study, activation of HIF-1 by hypoxia and dimethyloxaloylglycine (DMOG), a hypoxia mimic, diminished Ref-1 mRNA and protein expression in human microvascular endothelial cells (HMEC-1). Similarly, adenoviral delivery of the stabilized form of HIF-1alpha decreased Ref-1 mRNA and protein levels. Accordingly, HIF-1alpha siRNA abolished the hypoxia-induced inhibition of Ref-1 expression, indicating the role of HIF-1 in down-regulation of Ref-1. Also, translocation of Ref-1 from nucleus to cytoplasm after HIF-1 activation was noted. Interestingly, we observed the restoration of Ref-1 expression in hypoxia by pharmacologically relevant doses of atorvastatin. This effect was dependent on the inhibition of protein geranylgeranylation, but not farnesylation, as only the inhibitor of the former but not the latter prenylation step restored the Ref-1 expression. The regulation of Ref-1 by statins may be considered as a novel mechanism of their beneficial effects on endothelium.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation. Life Sci 2008; 83:801-9. [PMID: 18976673 DOI: 10.1016/j.lfs.2008.09.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 11/22/2022]
Abstract
AIMS Studies have shown that some of statin's pleiotropic effects were achieved by either promotion or inhibition of angiogenesis, depending on the underlying disease. This study tested the hypothesis that the angiogenic potential of simvastatin is related to the microenvironmental conditions. MAIN METHODS Human umbilical vein endothelial cells (HUVEC) were studied after exposure to hypoxia or the inflammatory factors tumor necrosis factor (TNF)-alpha, with or without co-incubation with simvastatin (1 micromol/L) and mevalonate. HUVEC angiogenesis was evaluated by tube formation, migration, and proliferation assays. Hypoxia inducible factor (HIF)-1alpha, vascular endothelial growth factor (VEGF), Akt, endothelium nitric oxide synthase (e-NOS), and oxidative stress were evaluated. KEY FINDINGS HUVEC angiogenesis increased during hypoxia (tube length 14.7+/-0.5 vs. 7.8+/-0.6 mm, p<0.05) and further enhanced by simvastatin (19.3+/-1.1 mm, p<0.05 vs. hypoxia alone), which downregulated the expression of the HIF-1 inhibitor PHD2 and upregulated HIF-1alpha, VEGF, and Akt, without changing oxidative stress or eNOS. Incubation with TNF-alpha promoted HUVEC angiogenesis (7.4+/-0.2 vs. 6.5+/-0.2 mm, p<0.05) with increased oxidative stress. However, simvastatin inhibited this promotion (2.5+/-0.3 mm, p<0.001 vs. TNF-alpha alone) by decreasing oxidative stress, VEGF, Akt, and eNOS. SIGNIFICANCE We conclude that at the same dosage, simvastatin can either promote or inhibit angiogenesis, possibly by activating upstream regulators of HIF-1alpha in hypoxia, but conversely interfering with angiogenic signaling downstream to inflammation. These opposing angiogenic effects should be considered in the therapeutic strategies with statins.
Collapse
|
35
|
Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008; 10:1767-812. [PMID: 18576916 DOI: 10.1089/ars.2008.2043] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase-1, an enzyme degrading heme to carbon monoxide, iron, and biliverdin, has been recognized as playing a crucial role in cellular defense against stressful conditions, not only related to heme release. HO-1 protects endothelial cells from apoptosis, is involved in blood-vessel relaxation regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in blood-vessel formation by means of angiogenesis and vasculogenesis. The latter functions link HO-1 not only to cardiovascular ischemia but also to many other conditions that, like development, wound healing, or cancer, are dependent on neovascularization. The aim of this comprehensive review is to address the mechanisms of HO-1 regulation and function in cardiovascular physiology and pathology and to demonstrate some possible applications of the vast knowledge generated so far. Recent data provide powerful evidence for the involvement of HO-1 in the therapeutic effect of drugs used in cardiovascular diseases. Novel studies open the possibilities of application of HO-1 for gene and cell therapy. Therefore, research in forthcoming years should help to elucidate both the real role of HO-1 in the effect of drugs and the clinical feasibility of HO-1-based cell and gene therapy, creating the effective therapeutic avenues for this refined antioxidant system.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Martínez-Sales V, Vila V, Ferrando M, Reganon E. Atorvastatin neutralizes the up-regulation of thrombospondin-1 induced by thrombin in human umbilical vein endothelial cells. ACTA ACUST UNITED AC 2008; 14:233-8. [PMID: 17922340 DOI: 10.1080/10623320701617209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Statins have been reported to affect blood vessel formation. Thrombospondin-1 (TSP-1) is a multifunctional protein that affects vasculature systems such as platelet activation, angiogenesis, and wound healing. This study was designed to investigate the effect of atorvastatin on TSP-1 synthesis in thrombin-stimulated human umbilical vein endothelial cells (HUVECs), and its regulation by mevalonate or its derivatives. The results showed that atorvastatin down-regulated TSP-1 expression in HUVECs. This effect was fully reversed by mevalonate, farnesylpyrophosphate (FPP), and gerarylgeranylpyrophosphate (GGPP). Furthermore, farnesyltransferase and geranylgeranyltransferase inhibitors decreased TSP-1expression. It was also found that thrombin increased TSP-1 expression in HUVECs. Atorvastatin (0.1, 1, and 10 muM) decreased TSP-1 in thrombin-stimulated cells (45%, 66%, and 80%). Mevalonate partially reversed this inhibitory effect of atorvastatin on TSP-1, whereas the presence of FPP and GGPP did not alter TSP-1. Rho-kinase inhibitor neutralized the up-regulation of TSP-1 induced by thrombin. In conclusion, atorvastatin inhibits TSP-1 expression in endothelial cells via the mevalonate pathway. Rho protein activation is necessary for up-regulation of TSP-1 synthesis induced by thrombin. Because FPP and GGPP are essential for the activity of Rho proteins, inhibition of these proteins may constitute the mechanism by which atorvastatin inhibits thrombin up-regulated TSP-1 expression.
Collapse
|
37
|
Dulak J, Loboda A, Jazwa A, Jozkowicz A. Comment on "A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells". THE JOURNAL OF IMMUNOLOGY 2007; 178:4707; author reply 4707-8. [PMID: 17404246 PMCID: PMC2096716 DOI: 10.4049/jimmunol.178.8.4707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|