1
|
Yang C, Rong R, Li Y, Cheng M, Luo Y. Decrease in LINC00963 attenuates the progression of pulmonary arterial hypertension via microRNA-328-3p/profilin 1 axis. J Clin Lab Anal 2022; 36:e24383. [PMID: 35349725 PMCID: PMC9102517 DOI: 10.1002/jcla.24383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 12/23/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by vascular hyperplasia and remodeling. Long noncoding RNA LINC00963 can regulate cell proliferation and metastasis in nonsmall cell lung cancer. However, the function of LINC00963 on PAH progression is rarely reported. Methods Quantitative real‐time PCR was used to determine the expression levels of LINC00963, microRNA (miRNA)‐328‐3p, and profilin 1 (PFN1), as well as vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF‐2), and hypoxia‐inducible factor (HIF)‐α. The protein level of PFN1 was measured by western blotting. The viability and migration of hypoxia‐induced pulmonary arterial smooth muscle cells (PASMCs) were assessed by 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐2‐h‐tetrazolium bromide, and transwell assays, respectively. The target relationships between miR‐328‐3p and LINC00963/PFN1 were confirmed by dual‐luciferase reporter assay. A PAH mouse model was conducted to explore the effects of hypoxia on cardiopulmonary functions. Results In hypoxia‐induced PASMCs and PAH mouse model, high expression levels of LINC00963 and PFN1, and low expression of miR‐328‐3p, were determined. The viability, migration of hypoxia‐induced PASMCs, the expression of VEGF, FGF‐2, and HIF‐α were significantly repressed by transfection of si‐LINC00963 or miR‐328‐3p mimics. The inhibitory effects of LINC00963 silencing on cell viability, migration, and the levels of VEGF, FGF‐2, and HIF‐α were partly eliminated by miR‐328‐3p inhibitor or increasing the expression of PFN1. Hypoxia treatment increased the levels of RVSP, mPAP, and RV/(LV+S), as well as the thickness of pulmonary artery wall. Conclusions Silencing of LINC00963 ameliorates PAH via modulating miR‐328‐3p/PFN1.
Collapse
Affiliation(s)
- Chengpeng Yang
- Cardiothoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Rong Rong
- Department of Physics Diagnosis, First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Yuze Li
- Department of Nephrology, First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Mingxun Cheng
- Vascular Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Yanzhuo Luo
- Ministry of Continuing Education, First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| |
Collapse
|
2
|
Nijiati Y, Yang T, Aimaiti M, Maimaitiyiming D, Aikemu A. Irbesartan ameliorates chronic mountain sickness in a rat model via the cholesterol metabolism: An iTRAQ -based proteomics analysis. Biomed Pharmacother 2021; 141:111802. [PMID: 34147903 DOI: 10.1016/j.biopha.2021.111802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To study the effects of irbesartan on pulmonary artery lesions in a rat model with chronic mountain sickness (CMS) and identify the biomarkers involved. METHODS In this study, we used a rat model of CMS to evaluate the therapeutic effect of irbesartan by measuring pulmonary artery pressure and evaluating the histopathology of the pulmonary artery. We also used proteomics technology to identify differentially expressed proteins (DEPs) in the serum and performed bioinformatics analysis. Results were then verified by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry (IHC). RESULTS Irbesartan treatment induced a significant decrease (P < 0.05) in the pulmonary artery pressure of CMS rats. Histopathological and electron microscope further confirmed that high altitude hypoxia induced changes in the structure of the pulmonary artery tissue and caused ultrastructural lesions. Proteomics analysis identified 40 DEPs; bioinformatics analysis further revealed that the cholesterol metabolism pathway plays a crucial role in the occurrence of CMS. ELISA and IHC verified that several DEPs (Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1) represent critical biological markers in pulmonary artery disease caused by CMS. CONCLUSIONS Irbesartan significantly improved pulmonary artery damage in a rat model of CMS possibly by impacting on the cholesterol metabolism pathway and by reducing damage to vascular endothelial cells. Irbesartan also inhibited the expression levels of IGF-1, Profilin1 and Col1a1 to relieve pulmonary artery pressure and improve lung function by inhibiting vascular remodeling. Several proteins were identified as potential biomarkers of CMS, including Apo-A1, Apo-C1, Apo-E, IGF-1, Profilin1, and Col1a1.
Collapse
Affiliation(s)
- Yiliyaer Nijiati
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Tao Yang
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mutalifu Aimaiti
- Central Laboratory of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Dilinuer Maimaitiyiming
- Heart Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Ainiwaer Aikemu
- Department of Drug Analysis, College of Pharmacy, Xinjiang Medical University, Urumqi 830017, Xinjiang, China; Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
3
|
Abstract
Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh
| | - Partha Roy
- Bioengineering, University of Pittsburgh.,Pathology, University of Pittsburgh, 306 Center for Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
4
|
Aaronson PI. Actin polymerization contributes to ROS- and Rho-dependent Ca 2+ sensitization in pulmonary arteries from chronic hypoxic rats. Am J Physiol Heart Circ Physiol 2018; 315:H314-H317. [DOI: 10.1152/ajpheart.00135.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Philip I. Aaronson
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
Wilson JL, Warburton R, Taylor L, Toksoz D, Hill N, Polgar P. Unraveling endothelin-1 induced hypercontractility of human pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One 2018; 13:e0195780. [PMID: 29649319 PMCID: PMC5897024 DOI: 10.1371/journal.pone.0195780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/29/2018] [Indexed: 01/05/2023] Open
Abstract
Contraction of human pulmonary artery smooth muscle cells (HPASMC) isolated from pulmonary arterial hypertensive (PAH) and normal (non-PAH) subject lungs was determined and measured with real-time electrical impedance. Treatment of HPASMC with vasoactive peptides, endothelin-1 (ET-1) and bradykinin (BK) but not angiotensin II, induced a temporal decrease in the electrical impedance profile mirroring constrictive morphological change of the cells which typically was more robust in PAH as opposed to non-PAH cells. Inhibition with LIMKi3 and a cofilin targeted motif mimicking cell permeable peptide (MMCPP) had no effect on ET-1 induced HPASMC contraction indicating a negligible role for these actin regulatory proteins. On the other hand, a MMCPP blocking the activity of caldesmon reduced ET-1 promoted contraction pointing to a regulatory role of this protein and its activation pathway in HPASMC contraction. Inhibition of this MEK/ERK/p90RSK pathway, which is an upstream regulator of caldesmon phosphorylation, reduced ET-1 induced cell contraction. While the regulation of ET-1 induced cell contraction was found to be similar in PAH and non-PAH cells, a key difference was the response to pharmacological inhibitors and to siRNA knockdown of Rho kinases (ROCK1/ROCK2). The PAH cells required much higher concentrations of inhibitors to abrogate ET-1 induced contractions and their contraction was not affected by siRNA against either ROCK1 or ROCK2. Lastly, blocking of L-type and T-type Ca2+ channels had no effect on ET-1 or BK induced contraction. However, inhibiting the activity of the sarcoplasmic reticulum Ca2+ ATPase blunted ET-1 and BK induced HPASMC contraction in both PAH and non-PAH derived HPASMC. In summary, our findings here together with previous communications illustrate similarities and differences in the regulation PAH and non-PAH smooth muscle cell contraction relating to calcium translocation, RhoA/ROCK signaling and the activity of caldesmon. These findings may provide useful tools in achieving the regulation of the vascular hypercontractility taking place in PAH.
Collapse
Affiliation(s)
- Jamie L. Wilson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| | - Rod Warburton
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Linda Taylor
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Deniz Toksoz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Nicholas Hill
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Peter Polgar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Weise-Cross L, Sands MA, Sheak JR, Broughton BRS, Snow JB, Gonzalez Bosc LV, Jernigan NL, Walker BR, Resta TC. Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia. Am J Physiol Heart Circ Physiol 2018; 314:H1011-H1021. [PMID: 29373038 DOI: 10.1152/ajpheart.00664.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic hypoxia (CH) augments basal and endothelin-1 (ET-1)-induced pulmonary vasoconstrictor reactivity through reactive oxygen species (ROS) generation and RhoA/Rho kinase (ROCK)-dependent myofilament Ca2+ sensitization. Because ROCK promotes actin polymerization and the actin cytoskeleton regulates smooth muscle tension, we hypothesized that actin polymerization is required for enhanced basal and ET-1-dependent vasoconstriction after CH. To test this hypothesis, both end points were monitored in pressurized, endothelium-disrupted pulmonary arteries (fourth-fifth order) from control and CH (4 wk at 0.5 atm) rats. The actin polymerization inhibitors cytochalasin and latrunculin attenuated both basal and ET-1-induced vasoconstriction only in CH vessels. To test whether CH directly alters the arterial actin profile, we measured filamentous actin (F-actin)-to-globular actin (G-actin) ratios by fluorescent labeling of F-actin and G-actin in fixed pulmonary arteries and actin sedimentation assays using homogenized pulmonary artery lysates. We observed no difference in actin polymerization between groups under baseline conditions, but ET-1 enhanced actin polymerization in pulmonary arteries from CH rats. This response was blunted by the ROS scavenger tiron, the ROCK inhibitor fasudil, and the mDia (RhoA effector) inhibitor small-molecule inhibitor of formin homology domain 2. Immunoblot analysis revealed an effect of CH to increase both phosphorylated (inactive) and total levels of the actin disassembly factor cofilin but not phosphorylated cofilin-to-total cofilin ratios. We conclude that actin polymerization contributes to increased basal pulmonary arterial constriction and ET-1-induced vasoconstrictor reactivity after CH in a ROS- and ROCK-dependent manner. Our results further suggest that enhanced ET-1-mediated actin polymerization after CH is dependent on mDia but independent of changes in the phosphorylated cofilin-to-total cofilin ratio. NEW & NOTEWORTHY This research is the first to demonstrate a role for actin polymerization in chronic hypoxia-induced basal pulmonary arterial constriction and enhanced agonist-induced vasoconstrictor activity. These results suggest that a reactive oxygen species-Rho kinase-actin polymerization signaling pathway mediates this response and may provide a mechanistic basis for the vasoconstrictor component of pulmonary hypertension.
Collapse
Affiliation(s)
- Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Michelle A Sands
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Brad R S Broughton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Jessica B Snow
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center , Albuquerque, New Mexico
| |
Collapse
|
7
|
Yang S, Chen Y, Liu C, Zhao X, Zhuang Q, Sun J, Wei P, Zhao H, Chen X, Shen C. Association Study of Common Variants in PFN1 With Hypertension in a Han Chinese Population: A Case-Control Study and A Follow-up Study. Am J Hypertens 2017; 30:1024-1031. [PMID: 28541412 DOI: 10.1093/ajh/hpx089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Animal researches reported that the dysfunction of profilin1 (PFN1) was involved in the physiological arterial stiffness and vascular remodeling linking to the etiology of hypertension (HT). This study mainly aims at evaluating the association of PFN1 and HT in a Han Chinese population. METHODS A case-control study consisted of 2,012 HT cases and 2,210 controls was conducted and 2,116 participants from the healthy controls were further followed up for average 5.01 years. Logistic and Cox regression models were applied to evaluate the association of 4 tag single nucleotide polymorphisms (SNPs) of PFN1 and ENO3 with HT. RESULTS There was no significant association of the 4 SNPs between HT cases and controls even after adjustment for confounding factors (P > 0.05). Haplotype analysis did not identify any significant haplotype with HT. There were no statistical difference of systolic blood pressure (BP) and diastolic BP among different genotypes in antihypertensive-treated group and untreated group. In follow-up population, there was no significant association of candidate SNPs with HT even after adjustment for covariates (all P > 0.05). Of note, the plasma profilin1 level of HT cases was significantly higher than that of control subjects (P = 0.011). The profilin1 levels of controls significantly decreased with variation of rs238243 at PFN1 (P = 0.041), and the profilin1 levels of HT cases increased with variation of rs238238 at ENO3 (P = 0.004). CONCLUSIONS Our results suggest that HT cases displayed an elevated plasma profilin1. Variants of rs238243 and rs238238 might regulate profilin1 expression by epigenetic modification and indirectly affects the susceptible threshold of HT.
Collapse
Affiliation(s)
- Song Yang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Yanchun Chen
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Chunlan Liu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xianghai Zhao
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Qian Zhuang
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Junxiang Sun
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Pengfei Wei
- Department of Cardiology, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Hailong Zhao
- Central Laboratory, Affiliated Yixing People's Hospital of Jiangsu University, People's Hospital of Yixing City, Yixing, China
| | - Xiaotian Chen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Kauskot A, Poirault-Chassac S, Adam F, Muczynski V, Aymé G, Casari C, Bordet JC, Soukaseum C, Rothschild C, Proulle V, Pietrzyk-Nivau A, Berrou E, Christophe OD, Rosa JP, Lenting PJ, Bryckaert M, Denis CV, Baruch D. LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B. JCI Insight 2016; 1:e88643. [PMID: 27734030 DOI: 10.1172/jci.insight.88643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
von Willebrand disease type 2B (VWD-type 2B) is characterized by gain-of-function mutations of von Willebrand factor (vWF) that enhance its binding to platelet glycoprotein Ibα and alter the protein's multimeric structure. Patients with VWD-type 2B display variable extents of bleeding associated with macrothrombocytopenia and sometimes with thrombopathy. Here, we addressed the molecular mechanism underlying the severe macrothrombocytopenia both in a knockin murine model for VWD-type 2B by introducing the p.V1316M mutation in the murine Vwf gene and in a patient bearing this mutation. We provide evidence of a profound defect in megakaryocyte (MK) function since: (a) the extent of proplatelet formation was drastically decreased in 2B MKs, with thick proplatelet extensions and large swellings; and (b) 2B MKs presented actin disorganization that was controlled by upregulation of the RhoA/LIM kinase (LIMK)/cofilin pathway. In vitro and in vivo inhibition of the LIMK/cofilin signaling pathway rescued actin turnover and restored normal proplatelet formation, platelet count, and platelet size. These data indicate, to our knowledge for the first time, that the severe macrothrombocytopenia in VWD-type 2B p.V1316M is due to an MK dysfunction that originates from a constitutive activation of the RhoA/LIMK/cofilin pathway and actin disorganization. This suggests a potentially new function of vWF during platelet formation that involves regulation of actin dynamics.
Collapse
Affiliation(s)
- Alexandre Kauskot
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Frédéric Adam
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Hôpital Edouard Herriot, Lyon, France.,Laboratoire de Recherche sur l'Hémophilie, UCBL1, Faculté de Médecine Lyon-Est, Lyon, France
| | - Christelle Soukaseum
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | | | - Valérie Proulle
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Department of Biological Hematology, CHU Bicêtre, Hôpitaux Universitaires Paris Sud, AP-HP, Paris, France
| | | | - Eliane Berrou
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Philippe Rosa
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Marijke Bryckaert
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Dominique Baruch
- INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
9
|
Alen J, Bourin A, Boland S, Geraets J, Schroeders P, Defert O. Tetrahydro-pyrimido-indoles as selective LIMK inhibitors: synthesis, selectivity profiling and structure–activity studies. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00473j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extensive structure–activity studies on three different modification sites resulted in a series of LIM kinase inhibitors, containing a novel tricyclic hinge-binding motif based on the pyrrolopyrimidine scaffold.
Collapse
Affiliation(s)
- J. Alen
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| | - A. Bourin
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| | - S. Boland
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| | - J. Geraets
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| | - P. Schroeders
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| | - O. Defert
- Amakem Therapeutics
- Agoralaan Abis
- 3590 Diepenbeek
- Belgium
| |
Collapse
|
10
|
Design, synthesis and biological characterization of selective LIMK inhibitors. Bioorg Med Chem Lett 2015; 25:4005-10. [DOI: 10.1016/j.bmcl.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 01/19/2023]
|
11
|
Song SH, Park K, Kim SW, Paick JS, Cho MC. Involvement of Rho-Kinase/LIM Kinase/Cofilin Signaling Pathway in Corporal Fibrosis after Cavernous Nerve Injury in Male Rats. J Sex Med 2015; 12:1522-32. [PMID: 25923835 DOI: 10.1111/jsm.12903] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The molecular mechanism of corporal fibrosis leading to erectile dysfunction (ED) following cavernous nerve (CN) injury is poorly understood. AIM To determine whether the LIMK2/cofilin pathway, the downstream effectors of ROCK1, was involved in ED and corporal fibrosis following bilateral CN injury in male rats. METHODS Forty-eight 10-week-old male Sprague-Dawley rats were equally divided into three groups: sham surgery (S); bilateral CN crush injury (I); and bilateral CN resection (R). Within each groups, two subgroups were analyzed at 1 and 4 weeks postoperatively. MAIN OUTCOME MEASURES Electrostimulation was performed to assess erectile function by the ratio of maximal intracavernous pressure to mean arterial pressure (ICP/MAP) and areas under the ICP curve to MAP (AUC/MAP). Penile tissue was processed for Masson's trichrome staining, Western blot (ROCK1, total LIMK2, phospho-LIMK2, total cofilin, phospho-cofilin), immunohistochemistry (alpha-SM actin [α-SMA]), and double immunofluorescent staining (ROCK1, phospho-LIMK2, vimentin). RESULTS At each time point, both I and R groups showed a significantly lower percent of ICP/MAP and AUC, and decreased SM cell/collagen ratio and expression of α-SMA than S group. Densitometry revealed a significantly higher expression of ROCK1 in I and R groups compared with S group at all time points. The LIMK2 phosphorylation in I and R groups significantly increased at 1 week, but not at 4 weeks. The cofilin phosphorylation in R group significantly increased to that in S group starting at 1 week, while that in I group was increased significantly at 4 weeks. The double immunofluorescent staining noted that coexpression of vimentin with ROCK1 or phospho-LIMK2 in I and R groups was significantly increased mainly in the subtunical area at 1 week but not at 4 weeks. CONCLUSIONS The ROCK1/LIMK2/cofilin pathway may be involved in ED related to corporal fibrosis, and it appears to be functional particularly in the early period after CN injury.
Collapse
Affiliation(s)
- Sang Hoon Song
- Department of Urology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Kwanjin Park
- Department of Urology, Seoul National University Hospital, College of Medicine, University of Seoul, Seoul, South Korea
| | - Soo Woong Kim
- Department of Urology, Seoul National University Hospital, College of Medicine, University of Seoul, Seoul, South Korea
| | - Jae-Seung Paick
- Department of Urology, Seoul National University Hospital, College of Medicine, University of Seoul, Seoul, South Korea
| | - Min Chul Cho
- Department of Urology, College of Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
12
|
Yin Y, Zheng K, Eid N, Howard S, Jeong JH, Yi F, Guo J, Park CM, Bibian M, Wu W, Hernandez P, Park H, Wu Y, Luo JL, LoGrasso PV, Feng Y. Bis-aryl urea derivatives as potent and selective LIM kinase (Limk) inhibitors. J Med Chem 2015; 58:1846-61. [PMID: 25621531 DOI: 10.1021/jm501680m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (>400-fold), potent inhibition of cofilin phosphorylation in A7r5, PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors.
Collapse
Affiliation(s)
- Yan Yin
- Medicinal Chemistry, ‡Discovery Biology, §Crystallography/Modeling Facility, Translational Research Institute, ∥Department of Molecular Therapeutics, and ⊥Department of Cancer Biology, The Scripps Research Institute, Scripps Florida , 130 Scripps Way, No. 2A1, Jupiter, Florida 33458, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rizwani W, Fasim A, Sharma D, Reddy DJ, Bin Omar NAM, Singh SS. S137 phosphorylation of profilin 1 is an important signaling event in breast cancer progression. PLoS One 2014; 9:e103868. [PMID: 25084196 PMCID: PMC4118959 DOI: 10.1371/journal.pone.0103868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/02/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Profilins are actin-modulating proteins regulating many intracellular functions based on their multiple and diverse ligand interactions. They have been implicated to play a role in many pathological conditions such as allergies, cardiovascular diseases, muscular atrophy, diabetes, dementia and cancer. Post-translational modifications of profilin 1 can alter its properties and subsequently its function in a cell. In the present study, we identify the importance of phosphorylation of profilin 1 at serine 137 (S137) residue in breast cancer progression. METHODS/PRINCIPAL FINDINGS We found elevated profilin 1 (PFN) in human breast cancer tissues when compared to adjacent normal tissues. Overexpression of wild-type profilin 1 (PFN-WT) in breast cancer MCF7 cells made them more migratory, invasive and adherent independent in comparison to empty vector transfected cells. Mutation in serine phosphorylation site (S137) of profilin 1 (PFN-S137A) significantly abrogated these properties. Mutation affecting actin-binding ability (PFN-R74E) of profilin 1 enhanced its tumorigenic function whereas mutation affecting its poly-L-proline binding function (PFN-H133S) alleviated these mechanisms in breast cancer cells. PFN-WT was found to activate matrix metalloproteinases by zymography, MMP2 and MMP9 in presence of PDBu (phorbol 12, 13 dibutyrate, PI3K agonist) to enhance migration and invasion in MCF7 cells while PFN-S137A did not. Phosphorylation increased migration and invasion in other mutants of profilin 1. Nuclear profilin levels also increased in the presence of PDBu. CONCLUSIONS Previous studies show that profilin could be executing a dual role in cancer by either suppressing or promoting tumorigenesis in a context dependent manner. In this study we demonstrate for the first time that phosphorylation of profilin 1 at serine 137 enhances oncogenic properties in breast cancer cells. Inhibitors targeting profilin 1 phosphorylation directly or indirectly through inhibition of kinases that phosphorylate profilin could be valuable therapeutic agents that can alter its activity and thereby control the progression of cancer.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
- * E-mail: (WR); (SSS)
| | - Aneesa Fasim
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | - Deepshikha Sharma
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | - Divya J. Reddy
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | | | - Surya S. Singh
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
- * E-mail: (WR); (SSS)
| |
Collapse
|
14
|
Chaterji S, Kim P, Choe SH, Tsui JH, Lam CH, Ho DS, Baker AB, Kim DH. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function. Tissue Eng Part A 2014; 20:2115-26. [PMID: 24694244 DOI: 10.1089/ten.tea.2013.0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such high-throughput testing environments will pave the way for the evolution of the next generation of vascular scaffolds that can effectively crosstalk with the scaffold microenvironment and result in improved clinical outcomes.
Collapse
Affiliation(s)
- Somali Chaterji
- 1 Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin , Austin, Texas
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Veit F, Pak O, Egemnazarov B, Roth M, Kosanovic D, Seimetz M, Sommer N, Ghofrani HA, Seeger W, Grimminger F, Brandes RP, Schermuly RT, Weissmann N. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxid Redox Signal 2013; 19:2213-31. [PMID: 23706097 DOI: 10.1089/ars.2012.4904] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Chronic hypoxia induces pulmonary hypertension (PH) that is concomitant with pulmonary vascular remodeling. Reactive oxygen species (ROS) are thought to play a major role in this. Recent findings suggest that ROS production by NADPH oxidase 4 (Nox4) is important in this remodeling. We investigated whether ROS production by Nox is also important in an inflammatory model of monocrotaline (MCT)-induced PH. We examined ROS production, their possible sources, and their impact on the function of pulmonary arterial smooth muscle cells (PASMC) isolated from MCT-treated and healthy rats. RESULTS MCT-PASMC showed increased intracellular superoxide production, migration, and proliferation compared with healthy controls due to increased Nox1 expression. A comparison of PASMC from MCT- and nontreated rats revealed an up-regulation of Sod2, Nrf2, cyclin D1, and matrix metalloproteinase-9 (MMP-9) as well as an increased phosphorylation of cofilin and extracellular signal-regulated kinases (Erk). Expression of Sod2, Nrf2, and cyclin D1 and phosphorylation of cofilin and Erk were Nox1 dependent. INNOVATION The role of ROS in PH is not fully understood. Mitochondria and Nox have been suggested as sources of altered ROS generation in PH, yet it remains unclear whether increased or decreased ROS contributes to the development of PH. Our studies provide evidence that for different triggers of PH, different Nox isoforms regulate proliferation and migration of PASMC. CONCLUSION In contrast to hypoxia-induced PH, Nox1 but not Nox4 is responsible for pathophysiological proliferation and migration of PASMC in an inflammatory model of MCT-induced PH via increased superoxide production. Thus, different Nox isoforms may be targeted in different forms of PH.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellencecluster Cardio-Pulmonary System (ECCPS), German Lung Center (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen , Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Veith C, Schmitt S, Veit F, Dahal BK, Wilhelm J, Klepetko W, Marta G, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Fink L, Weissmann N, Kwapiszewska G. Cofilin, a hypoxia-regulated protein in murine lungs identified by 2DE: Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics 2013; 13:75-88. [DOI: 10.1002/pmic.201200206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Christine Veith
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Sigrid Schmitt
- Department of Biochemistry; University of Giessen; Giessen Germany
| | - Florian Veit
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Bhola Kumar Dahal
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Walter Klepetko
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Gabriel Marta
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | | | | | | | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Grazyna Kwapiszewska
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| |
Collapse
|
17
|
Trichinella spiralis infection induces β-actin co-localized with thymosin β4. Vet Parasitol 2012; 187:480-5. [PMID: 22305657 DOI: 10.1016/j.vetpar.2012.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
Trichinella spiralis (T. spiralis) infection in muscle is characterized by the vascular network for the nurse cell-larva complex. We showed in a previous report that thymosin β4 was up-regulated during nurse cell formation by T. spiralis. As thymosin β4 (Tβ4) is the actin-sequestering protein that regulates actin polymerization, the expression pattern of β-actin during the nurse cell formation was analyzed. The protein level of β-actin in muscle fibers 10 days after infection was significantly increased, and its expression remained high in the nurse cells for six weeks. In order to investigate the functional relationship between Tβ4 and β-actin, localization of two proteins was analyzed. Immunofluorescence showed that Tβ4 and β-actin were co-localized in the T. spiralis-infected nurse cells from 10 days to six weeks. The expression patterns of other actin-binding proteins, including thymosin β10 (Tβ10), subunits of the Arp2/3 complex, subunits of Capping protein, profilin, and cofilin, were also analyzed at the mRNA level. Tβ10 expression was also increased during nurse cell formation. Expressions of the Arp2/3 complex was increased at 21 days after infection and Capping proteins was increased during nurse cell formation but shows different expression patterns, depending on the subunit. Profilin and cofilin were specifically increased in the muscle fibers from 14 days after infection. These data show that Tβ4 and β-actin are over-expressed during nurse cell formation upon T. spiralis infection and may be involved in nurse cell formation along with other actin-binding proteins.
Collapse
|
18
|
Cheng JF, Ni GH, Chen MF, Li YJ, Wang YJ, Wang CL, Yuan Q, Shi RZ, Hu CP, Yang TL. Involvement of profilin-1 in angiotensin II-induced vascular smooth muscle cell proliferation. Vascul Pharmacol 2011; 55:34-41. [DOI: 10.1016/j.vph.2011.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 04/03/2011] [Accepted: 04/29/2011] [Indexed: 12/26/2022]
|
19
|
Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:512-24. [PMID: 20581053 DOI: 10.2353/ajpath.2010.100168] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increased epithelial permeability is a common and important consequence of mucosal inflammation that results in perturbed body homeostasis and enhanced exposure to external pathogens. The integrity and barrier properties of epithelial layers are regulated by specialized adhesive plasma membrane structures known as intercellular junctions. It is generally believed that inflammatory stimuli increase transepithelial permeability by inducing junctional disassembly. This review highlights molecular events that lead to disruption of epithelial junctions during inflammation. We specifically focus on key mechanisms of junctional regulation that are dependent on reorganization of the perijunctional F-actin cytoskeleton. We discuss critical roles of myosin-II-dependent contractility and actin filament turnover in remodeling of the F-actin cytoskeleton that drive disruption of epithelial barriers under different inflammatory conditions. Finally, we highlight signaling pathways induced by inflammatory mediators that regulate reorganization of actin filaments and junctional disassembly in mucosal epithelia.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Gastroenterology and Hepatology Division, Department of Medicine, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
20
|
OKEYO KO, ADACHI T, HOJO M. Mechanical Regulation of Actin Network Dynamics in Migrating Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1299/jbse.5.186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Taiji ADACHI
- Department of Mechanical Engineering and Science, Kyoto University
- Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN
| | - Masaki HOJO
- Department of Mechanical Engineering and Science, Kyoto University
| |
Collapse
|
21
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
22
|
Wang KJ, Ren HL, Xu DD, Cai L, Yang M. Identification of the up-regulated expression genes in hemocytes of variously colored abalone (Haliotis diversicolor Reeve, 1846) challenged with bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1326-1347. [PMID: 18538840 DOI: 10.1016/j.dci.2008.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/16/2008] [Accepted: 04/23/2008] [Indexed: 05/26/2023]
Abstract
Variously colored abalone (Haliotis diversicolor Reeve, 1846), which is an important commercial aquatic species and has been widely cultured, frequently suffers from bacterial infection. Knowledge of the defense mechanism in this animal is still lacking and, so far few genes related to immune responses in abalones have been reported. In order to isolate differentially expressed genes in H. diversicolor challenged with bacteria, a forward suppression subtractive hybridization (SSH) cDNA library was constructed from their hemocytes and the up-regulated genes were identified. A total of 435 clones in the SSH library were sequenced and 111 genes were recognized based on BLAST searches in NCBI and were categorized in association with different biological processes using AmiGO against the Gene Ontology database. Of the 111 cDNAs, 86 genes were identified for the first time in H. diversicolor. The up-regulated cDNAs screened in the SSH library were validated using quantitative real-time PCR and 78 genes showed differential expression patterns. A total of 34 genes were confirmed to be distinctly up-regulated in abalones after bacterial challenge, encoding proteins involved in cellular metabolic processes; cellular component organization and biogenesis; signal transduction and biological regulation; immune defense and response to stimuli; other functions and unknown functions. This is the first report to unveil multiple up-regulated genes with differential expression patterns involving various cellular processes in bacterially challenged H. diversicolor. The data obtained from this study will provide new insights into the immune mechanism of H. diversicolor and facilitate future study of target genes involved in the response to invading microorganisms.
Collapse
Affiliation(s)
- Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen, 361005 Fujian, PR China.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including beta-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling.
Collapse
|
24
|
Abstract
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chemical and functional families is presented, along with a summary of key signaling events mediating migration. Extracellular molecules that modulate migration include small biogenic amines, peptide growth factors, cytokines, extracellular matrix components, and drugs used in cardiovascular medicine. Promigratory stimuli activate signal transduction cascades that trigger remodeling of the cytoskeleton, change the adhesiveness of the cell to the matrix, and activate motor proteins. This review focuses on the signaling pathways and effector proteins regulated by promigratory and antimigratory molecules. Prominent pathways include phosphatidylinositol 3-kinases, calcium-dependent protein kinases, Rho-activated protein kinase, p21-activated protein kinases, LIM kinase, and mitogen-activated protein kinases. Important downstream targets include myosin II motors, actin capping and severing proteins, formins, profilin, cofilin, and the actin-related protein-2/3 complex. Actin filament remodeling, focal contact remodeling, and molecular motors are coordinated to cause cells to migrate along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. The result is recruitment of cells to areas where the vessel wall is being remodeled. Vessel wall remodeling can be antagonized by common cardiovascular drugs that act in part by inhibiting vascular smooth muscle cell migration. Several therapeutically important drugs act by inhibiting cell cycle progression, which may reduce the population of migrating cells.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
25
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|