1
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
2
|
Filipiak-Duliban A, Brodaczewska K, Majewska A, Kieda C. Spheroid culture models adequately imitate distinctive features of the renal cancer or melanoma microenvironment. In Vitro Cell Dev Biol Anim 2022; 58:349-364. [PMID: 35536385 DOI: 10.1007/s11626-022-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
Tumor development studies should adapt to cancer cells' specific mechanisms in connection with their microenvironment. Standard two-dimensional cultures and gas composition are not relevant to the real cancer environment. Existing three-dimensional models are often requiring sophisticated conditions. Here, we propose and characterize, in two cancer models, melanoma (B16F10) and kidney cancer (RenCa), a three-dimensional culture method, reporting the presence of hypoxia-related genes/proteins and aggressiveness mechanisms (epithelial mesenchymal transition and cancer stem cells). We validate the designed three-dimensional method by comparing it with in vivo growing tumors. The developed method brings simplicity and data reproducibility. Melanoma spheroid-growing cells reached a cell cycle arrest at the G0/G1 phase and showed induction of hypoxia. Spheroid-recovered RenCa cells were enriched in proliferating cells and displayed delayed hypoxia. Moreover, the responses to hypoxia observed in spheroids were validated by in vivo tumor studies for both lines. Three-dimensional shapes induced cancer stem cells in renal cancer, whereas epithelial to mesenchymal transition occurred in the melanoma model. Such distinction in the use of different aggressiveness-leading pathways was observed in in vivo melanoma vs kidney tumors. Thus, this 3D culture model approach is adequate to uncover crucial molecular pathways using distinct mechanisms to reach aggressiveness; i.e., B16F10 cells perform epithelial to mesenchymal transition while RenCa cells dedifferentiate into cancer stem cells. Such three-dimensional models help mimic the in vivo tumor features, i.e., hypoxia and aggressiveness mechanisms as validated here by next-generation sequencing analysis, and are proposed for further alternative methods to in vivo studies.
Collapse
Affiliation(s)
- Aleksandra Filipiak-Duliban
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Center for Molecular Biophysics UPR 4301 CNRS, 45071, Orleans, France
| |
Collapse
|
3
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Pietrus M, Pitynski K, Waligora M, Milian-Ciesielska K, Bialon M, Ludwin A, Skrzypek K. CD133 Expression in the Nucleus Is Associated with Endometrial Carcinoma Staging and Tumor Angioinvasion. J Clin Med 2021; 10:2144. [PMID: 34063525 PMCID: PMC8156002 DOI: 10.3390/jcm10102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND (1) Endometrial cancer is one of the most common cancers affecting women, with a growing incidence. To better understand the different behaviors associated with endometrial cancer, it is necessary to understand the changes that occur at a molecular level. CD133 is one of the factors that regulate tumor progression, which is primarily known as the transmembrane glycoprotein associated with tumor progression or cancer stem cells. The aim of our study was to assess the impact of subcellular CD133 expression on the clinical course of endometrial cancer. (2) Methods: CD133 expression in the plasma membrane, nucleus, and cytoplasm was assessed by immunohistochemical staining in a group of 64 patients with endometrial cancer representing FIGO I-IV stages, grades 1-3 and accounting for tumor angioinvasion. (3) Results: Nuclear localization of CD133 expression was increased in FIGO IB-IV stages compared to FIGO IA. Furthermore, CD133 expression in the nucleus and plasma membrane is positively and negatively associated with a higher grade of endometrial cancer and angioinvasion, respectively. (4) Conclusions: Our findings suggest that positive nuclear CD133 expression in the tumor may be related to a less favorable prognosis of endometrial carcinoma patients and has emerged as a useful biomarker of a high-risk group.
Collapse
Affiliation(s)
- Milosz Pietrus
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (M.P.); (K.P.); (M.B.); (A.L.)
| | - Kazimierz Pitynski
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (M.P.); (K.P.); (M.B.); (A.L.)
| | - Marcin Waligora
- Center for Innovative Medical Education, Department of Medical Education, Faculty of Medicine, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Katarzyna Milian-Ciesielska
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Krakow, Poland;
| | - Monika Bialon
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (M.P.); (K.P.); (M.B.); (A.L.)
| | - Artur Ludwin
- Department of Gynecology and Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland; (M.P.); (K.P.); (M.B.); (A.L.)
| | - Klaudia Skrzypek
- Institute of Pediatrics, Department of Transplantation, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
5
|
Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:888-904. [PMID: 34094709 PMCID: PMC8141673 DOI: 10.1016/j.omtn.2021.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue mesenchymal tumor that affects mostly children and adolescents. It originates from the impaired myogenic differentiation of stem cells or early progenitors. SNAIL, a transcription factor that regulates epithelial-to-mesenchymal transition in tumors of epithelial origin, is also a key regulator of RMS growth, progression, and myogenic differentiation. Here, we demonstrate that the SNAIL-dependent microRNAs (miRNAs) miR-28-3p and miR-193a-5p are crucial regulators of RMS growth, differentiation, and progression. miR-28-3p and miR-193a-5p diminished proliferation and arrested RMS cells in G0/G1 phase in vitro. They induced the myogenic differentiation of both RMS cells and human myoblasts by upregulating myogenic factors. Furthermore, miR-28-3p and miR-193a-5p inhibited migration in a scratch assay, adhesion to endothelial cells, chemotaxis, and invasion toward SDF-1 and HGF and regulated angiogenic capabilities of the cells. Overexpression of miR-28-3p and miR-193a-5p induced formation of fibrotic structures and abnormal blood vessels in RMS xenografts in immunodeficient mice in vivo. Simultaneous overexpression of both miRNAs diminished tumor growth after subcutaneous implantation and inhibited the engraftment of RMS cells into bone marrow after intravenous injection in vivo. To conclude, we discovered novel SNAIL-dependent miRNAs that may become new therapeutic targets in RMS in the future.
Collapse
|
6
|
Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol (Dordr) 2021; 44:715-737. [PMID: 33835425 DOI: 10.1007/s13402-021-00602-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Angiogenesis is a key and early step in tumorigenesis, and is known as a hallmark of solid tumors and a key promoter of tumor recurrence. Unlike normal tissue vessels, the architecture of the tumor vasculature is abnormal, being leaky, tortuous, fragile and blind-ended. Perivascular cells are either detached or absent, causing reduction of vascular integrity, an increase in vessel immaturity, incoherent perfusion, defective functionality and enhanced tumor dissemination and metastasis. The abnormal tumor vasculature along with the defective tumor vessel functionality finally causes bouts of hypoxia and acidity in the tumor microenvironment (TME), further reinvigorating tumor aggression. Interstitial hypertension or high interstitial fluid pressure (IFP) is an outcome of tumor hyper-permeability. High IFP can be a barrier for either effective delivery of anti-cancer drugs toward the TME or accumulation of drugs within the tumor area, thus promoting tumor resistance to therapy. Some tumors do, however, not undergo angiogenesis but instead undergo vessel co-option or vascular mimicry, thereby adding another layer of complexity to cancer development and therapy. CONCLUSIONS Combination of anti-angiogenesis therapy with chemotherapy and particularly with immune checkpoint inhibitors (ICIs) is a promising strategy for a number of advanced cancers. Among the various approaches for targeting tumor angiogenesis, vascular normalization is considered as the most desired method, which allows effective penetration of chemotherapeutics into the tumor area, thus being an appropriate adjuvant to other cancer modalities.
Collapse
Affiliation(s)
- Jamal Majidpoor
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
7
|
El Hafny-Rahbi B, Brodaczewska K, Collet G, Majewska A, Klimkiewicz K, Delalande A, Grillon C, Kieda C. Tumour angiogenesis normalized by myo-inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response. J Cell Mol Med 2021; 25:3284-3299. [PMID: 33624446 PMCID: PMC8034441 DOI: 10.1111/jcmm.16399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023] Open
Abstract
Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2 ) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+ T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+ NK cells to tumour cells is due to their adhesion to PD-L1+ /PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
| | | | - Guillaume Collet
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Aleksandra Majewska
- Laboratory of Molecular Oncology and Innovative Therapies, WIM, Warsaw, Poland.,Postgraduate School of Molecular Medicine (SMM), Warsaw Medical University, Warsaw, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France.,Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anthony Delalande
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France
| | - Claudine Kieda
- Centre for Molecular Biophysics, UPR CNRS 4301, Orléans CEDEX 2, France.,Laboratory of Molecular Oncology and Innovative Therapies, WIM, Warsaw, Poland
| |
Collapse
|
8
|
Abou Khouzam R, Brodaczewska K, Filipiak A, Zeinelabdin NA, Buart S, Szczylik C, Kieda C, Chouaib S. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies. Front Immunol 2021; 11:613114. [PMID: 33552076 PMCID: PMC7854546 DOI: 10.3389/fimmu.2020.613114] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 01/19/2023] Open
Abstract
The environmental and metabolic pressures in the tumor microenvironment (TME) play a key role in molding tumor development by impacting the stromal and immune cell fractions, TME composition and activation. Hypoxia triggers a cascade of events that promote tumor growth, enhance resistance to the anti-tumor immune response and instigate tumor angiogenesis. During growth, the developing angiogenesis is pathological and gives rise to a haphazardly shaped and leaky tumor vasculature with abnormal properties. Accordingly, aberrantly vascularized TME induces immunosuppression and maintains a continuous hypoxic state. Normalizing the tumor vasculature to restore its vascular integrity, should hence enhance tumor perfusion, relieving hypoxia, and reshaping anti-tumor immunity. Emerging vascular normalization strategies have a great potential in achieving a stable normalization, resulting in mature and functional blood vessels that alleviate tumor hypoxia. Biomarkers enabling the detection and monitoring of tumor hypoxia could be highly advantageous in aiding the translation of novel normalization strategies to clinical application, alone, or in combination with other treatment modalities, such as immunotherapy.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Aleksandra Filipiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Nagwa Ahmed Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Stephanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Cezary Szczylik
- Centre of Postgraduate Medical Education, Department of Oncology, European Health Centre, Otwock, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Faulty. De médecine Univ. Paris-Sud, University Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Endothelial Cells as Tools to Model Tissue Microenvironment in Hypoxia-Dependent Pathologies. Int J Mol Sci 2021; 22:ijms22020520. [PMID: 33430201 PMCID: PMC7825710 DOI: 10.3390/ijms22020520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) lining the blood vessels are important players in many biological phenomena but are crucial in hypoxia-dependent diseases where their deregulation contributes to pathology. On the other hand, processes mediated by ECs, such as angiogenesis, vessel permeability, interactions with cells and factors circulating in the blood, maintain homeostasis of the organism. Understanding the diversity and heterogeneity of ECs in different tissues and during various biological processes is crucial in biomedical research to properly develop our knowledge on many diseases, including cancer. Here, we review the most important aspects related to ECs’ heterogeneity and list the available in vitro tools to study different angiogenesis-related pathologies. We focus on the relationship between functions of ECs and their organo-specificity but also point to how the microenvironment, mainly hypoxia, shapes their activity. We believe that taking into account the specific features of ECs that are relevant to the object of the study (organ or disease state), especially in a simplified in vitro setting, is important to truly depict the biology of endothelium and its consequences. This is possible in many instances with the use of proper in vitro tools as alternative methods to animal testing.
Collapse
|
10
|
Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies. Int J Mol Sci 2020; 21:ijms21249492. [PMID: 33327450 PMCID: PMC7764929 DOI: 10.3390/ijms21249492] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia, a common factor ruling the microenvironment composition, leads to tumor progression. In this hypoxic context, cytokines and cells cooperate to favor cancer development and metastasis. Tumor hypoxia is heterogeneously distributed. Oxygen gradients depend on the vicinity, functionality of blood vessels, and oxygen ability to diffuse into surrounding tissues. Thus, the vasculature state modulates the microenvironment of the tumor cells. Cells sense and react to small variations in oxygen tension, which explains the lack of tumor cells’ unicity in their reaction to drugs. Ovarian cancers are highly hypoxia-dependent, ascites worsening the access to oxygen, in their reactions to both chemotherapy and new immunotherapy. Consequently, hypoxia affects the results of immunotherapy, and is thus, crucial for the design of treatments. Controlling key immunosuppressive factors and receptors, as well as immune checkpoint molecule expression on tumor, immune and stromal cells, hypoxia induces immunosuppression. Consequently, new approaches to alleviate hypoxia in the tumor microenvironment bring promises for ovarian cancer immunotherapeutic strategies. This review focuses on the effects of hypoxia in the microenvironment and its consequences on tumor treatments. This opens the way to innovative combined treatments to the advantage of immunotherapy outcome in ovarian cancers.
Collapse
|
11
|
Resistance of melanoma cells to anticancer treatment: a role of vascular endothelial growth factor. Postepy Dermatol Alergol 2020; 37:11-18. [PMID: 32467677 PMCID: PMC7247075 DOI: 10.5114/ada.2020.93378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Melanoma is one of the most aggressive and resistant to treatment neoplasms. There are still many challenges despite many promising advances in anticancer treatment. Currently, the main problem for all types of treatment is associated with heterogeneity. Due to heterogeneity of cancer cells, "precise" targeting of a medicine against a single phenotype limits the efficacy of treatment and affects resistance to applied therapy. Therefore it is important to understand aetiology and reasons for heterogeneity in order to develop effective and long-lasting treatment. This review summarises roles of vascular endothelial growth factor (VEGF) that may stimulate growth of a melanoma tumour irrespective of its proangiogenic effects, contributing to cancer heterogeneity. VEGF triggers processes associated with extracellular matrix remodelling, cell migration, invasion, angiogenesis, inhibition of immune responses and favours phenotypic plasticity and epithelial-mesenchymal transition. Consequently, it participates in mechanisms of interactions between melanoma cancer cells and microenvironment and it can modify sensitivity to therapeutic factors.
Collapse
|
12
|
Oknińska M, El-Hafny-Rahbi B, Paterek A, Mackiewicz U, Crola-Da Silva C, Brodaczewska K, Mączewski M, Kieda C. Treatment of hypoxia-dependent cardiovascular diseases by myo-inositol trispyrophosphate (ITPP)-enhancement of oxygen delivery by red blood cells. J Cell Mol Med 2020; 24:2272-2283. [PMID: 31957267 PMCID: PMC7011163 DOI: 10.1111/jcmm.14909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Heart failure is a consequence of progression hypoxia-dependent tissue damages. Therapeutic approaches to restore and/or protect the healthy cardiac tissue have largely failed and remain a major challenge of regenerative medicine. The myo-inositol trispyrophosphate (ITPP) is a modifier of haemoglobin which enters the red blood cells and modifies the haemoglobin properties, allowing for easier and better delivery of oxygen by the blood. Here, we show that this treatment approach in an in vivo model of myocardial infarction (MI) results in an efficient protection from heart failure, and we demonstrate the recovery effect on post-MI left ventricular remodelling in the rat model. Cultured cardiomyocytes used to study the molecular mechanism of action of ITPP in vitro displayed the fast stimulation of HIF-1 upon hypoxic conditions. HIF-1 overexpression was prevented by ITPP when incorporated into red blood cells applied in a model of blood-perfused cardiomyocytes coupling the dynamic shear stress effect to the enhanced O2 supply by modification of haemoglobin ability to release O2 in hypoxia. ITPP treatment appears a breakthrough strategy for the efficient and safe treatment of hypoxia- or ischaemia-induced injury of cardiac tissue.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | | | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Center for Molecular Biophysics, UPR 4301 CNRS, Orleans, France.,Laboratory of Molecular Oncology and Innovative Therapies, MMI, Warsaw, Poland
| |
Collapse
|
13
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
14
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
15
|
Wu JB, Tang YL, Liang XH. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. Onco Targets Ther 2018; 11:6901-6909. [PMID: 30410348 PMCID: PMC6200071 DOI: 10.2147/ott.s172042] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular normalization is a new concept of targeting angiogenesis to restore vessel structure and function and to increase blood perfusion and delivery of drugs. It has been confirmed that vascular normalization can decrease relapse and benefit other cancer therapy, including chemotherapy, radiotherapy, and immune cell therapy. The key point of this therapy is to inhibit pro-angiogenic factors and make it be balanced with anti-angiogenic factors, resulting in a mature and normal vessel characteristic. Vascular endothelial growth factor (VEGF) is a key player in the process of tumor angiogenesis, and inhibiting VEGF is a primary approach to tumor vessel normalization. Herein, we review newly uncovered mechanisms governing angiogenesis and vascular normalization of cancer and place emphasis on targeting VEGF pathway to normalize the vasculature. Also, important methods to depress VEGF pathway and make tumor vascular are discussed.
Collapse
Affiliation(s)
- Jing-Biao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| |
Collapse
|
16
|
|
17
|
Increased Endothelial Progenitor Cell Number in Early Stage of Endometrial Cancer. Int J Gynecol Cancer 2018; 27:947-952. [PMID: 28498245 DOI: 10.1097/igc.0000000000000961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES It is generally believed that circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) reflect the state of the endothelium, its injury and/or repair possibilities. In different types of cancers, increased numbers of CECs and EPCs were found, suggesting their participation in cancer angiogenesis. The objective of this study was to determine whether, in the blood circulation of women with early endometrial cancer, CEC and EPC levels differ from those of healthy women of similar age. METHODS For CEC number evaluation, samples of peripheral blood cells of women with endometrial carcinoma and control subjects were labeled with anti-CD31 and anti-CD45 antibodies; for EPCs, with anti-VEGFR2 (vascular-endothelium growth factor receptor 2)/KDR and anti-CD34 antibodies. The CEC and EPC cells were then quantified by flow cytometry. RESULTS Endothelial progenitor cell numbers (CD34, VEGFR2/KDR) in the peripheral blood of women with endometrial carcinoma were significantly augmented as compared with those of control healthy women and CEC numbers (CD31, CD45) were similar in both groups. Cancer patients were divided according to the grading into G1 and G2 groups and according to the stage into International Federation of Gynecology and Obstetrics (FIGO) stage IA and FIGO IB groups. Statistically significant augmented EPC numbers were demonstrated only in G1 and FIGO IA patients. CONCLUSIONS These results strongly suggest new vessel formation from recruited endothelial precursors as being involved mainly at the early stages of tumor progression.
Collapse
|
18
|
Larsen CJ. [Spheroids: A reference model for in vitro culture of solid tumors?]. Bull Cancer 2017; 105:25-34. [PMID: 29224886 DOI: 10.1016/j.bulcan.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/16/2023]
Abstract
The recognition that solid tumors are complex entities composed of the tumor cell mass itself and a stromal micro-environnement providing a variety of cells from the host (fibroblasts, endothelial cells, immune cells) led to recognize that this heterogeneity could not be recapitulated in vitro by conventional bidimensional (2-D) cultures. This justified numerous attempts to develop tridimensional (3-D) cultures that provided better tools for approaching tumor complexity and more convincing drug testing systems. Among various 3-D technologies, tumor spheroids are more likely suited to provide in vitro platforms for apprehending specific aspects of different processes specifically defining each tumor category as well as testing drug delivery systems. This review summarizes current features of multicellular tumor spheroids and their suitability for studying different aspects of cancer cell biology, patient-specific therapies and drug treatment.
Collapse
|
19
|
Xu F, Wang X, Wu N, He S, Yi W, Xiang S, Zhang P, Xie X, Ying C. Bisphenol A induces proliferative effects on both breast cancer cells and vascular endothelial cells through a shared GPER-dependent pathway in hypoxia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1609-1620. [PMID: 28964603 DOI: 10.1016/j.envpol.2017.09.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells.
Collapse
MESH Headings
- Animals
- Benzhydryl Compounds/toxicity
- Cattle
- Caveolin 1/biosynthesis
- Cell Culture Techniques
- Cell Hypoxia/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Culture Media, Serum-Free
- Endocrine Disruptors/toxicity
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- HSP90 Heat-Shock Proteins/biosynthesis
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mice, SCID
- Phenols/toxicity
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Fangyi Xu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Xiaoning Wang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Nannan Wu
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Shuiqing He
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Weijie Yi
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Siyun Xiang
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Piwei Zhang
- Department of Clinical Nutrition, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Xie
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China
| | - Chenjiang Ying
- Department of Nutrition & Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, PR China.
| |
Collapse
|
20
|
Huang S, He P, Xu D, Li J, Peng X, Tang Y. Acidic stress induces apoptosis and inhibits angiogenesis in human bone marrow-derived endothelial progenitor cells. Oncol Lett 2017; 14:5695-5702. [PMID: 29113197 PMCID: PMC5661383 DOI: 10.3892/ol.2017.6947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/30/2016] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived endothelial progenitor cells (BM-EPCs) are exposed to acidotic environments in a variety of physiological and pathological conditions, including in tumors. However, the effect of acidosis on the function of BM-EPCs is still not fully understood. In the present study, BM-EPCs were isolated and cultured at an extracellular pH (pHe) of 6.5 or pHe 7.4 in vitro prior to various experiments being performed. Cellular proliferation, migration and tube formation ability were detected by DNA content quantification, Transwell assay and Matrigel-based angiogenesis assay. ELISA and western blot analysis measured protein secretion and expression, respectively. The results demonstrated that BM-EPCs cultured at pHe 6.5 compared with at pHe 7.4 demonstrated: Induced apoptosis; inhibited cellular proliferation, migration and adhesion; markedly reduced vascular endothelial growth factor (VEGF) expression; and the capacity to incorporate into vascular networks. Acidic pHe 6.5 induced ratio expression of B-cell lymphoma 2 (Bcl2)/Bcl2 associated X-protein (Bax), which in turn induced apoptosis, and inhibited cellular proliferation and other functional activities, with involvement of activation of VEGF receptor 2, protein kinase B and p38 mitogen activated protein kinase. These observations raise the possibility that the acidic extracellular environment may perform an important role in the vasculogenesis of BM-EPCs in tumor microenvironments. Therefore, culturing cancer cells at a lower pH that simulates endogenous tumor conditions may improve retention of the cellular heterogeneity identified in tumors.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Peiheng He
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongliang Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinglei Li
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Xinsheng Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
21
|
A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection. Cancer Lett 2017; 396:10-20. [PMID: 28288873 DOI: 10.1016/j.canlet.2017.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
Abstract
Tumour microenvironment determines the fate of treatments. Reconstitution of tumour conditions is mandatory for alternative in vitro methods devoted to cancer development and the selection of therapeutic strategies. This work describes a 3D model of melanoma growth in its environment. Introducing means to mimic tumour angiogenesis, which turns on tumour progression, the model shows that melanoma tumour spheroids allow reconstitution of solid tumours with stromal cells. Angiogenesis evidenced the differential recruitment of endothelial cells (EC) from early progenitors (EEPCs) to mature ECs. Hypoxia was the key parameter that selected and stabilized melanoma cancer stem like cells (CSCs) phenotype based on aldehyde dehydrogenase expression as the best criterion. The 3D-tumour-model demonstrated the distinct reactivity of ECs toward tumour cells in terms of cellular cross-talk and humoral response. Intra-spheroid cell-to-cell membrane dye exchanges, mediated by intercellular interactions, uncovered the melanoma-to-EEPC cooperation. The resulting changes in tumour milieu were evidenced by the chemokinic composition and hypoxia-related variations in microRNA expression assessed in each cellular component of the spheroids. This method brings new tools to decipher the molecular mechanism of tumour-mediated cell recruitment and for in vitro assessment of therapeutic approaches.
Collapse
|
22
|
Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, Majka M. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget 2016; 6:31378-98. [PMID: 26384300 PMCID: PMC4741613 DOI: 10.18632/oncotarget.5145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Anna Kusienicka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Barbara Szewczyk
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Tomasz Adamus
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Ewa Lukasiewicz
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
23
|
Garg M. Emerging role of microRNAs in cancer stem cells: Implications in cancer therapy. World J Stem Cells 2015; 7:1078-1089. [PMID: 26435768 PMCID: PMC4591786 DOI: 10.4252/wjsc.v7.i8.1078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/27/2015] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
A small subset of cancer cells that act as tumor initiating cells or cancer stem cells (CSCs) maintain self-renewal and growth promoting capabilities of cancer and are responsible for drug/treatment resistance, tumor recurrence and metastasis. Due to their potential clinical importance, many researchers have put their efforts over decades to unravel the molecular mechanisms that regulate CSCs functions. MicroRNAs (miRNAs) which are 21-23 nucleotide long, endogenous non-coding RNAs, regulate gene expression through gene silencing at post-transcriptional level by binding to the 3’-untranslated regions or the open reading frames of target genes, thereby result in target mRNA degradation or its translational repression and serve important role in several cellular, physiological and developmental processes. Aberrant miRNAs expression and their implication in CSCs regulation by controlling asymmetric cell division, drug/treatment resistance and metastasis make miRNAs a tool of great therapeutic potential against cancer. Recent advancements on the biological complexities of CSCs, modulation in CSCs properties by miRNA network and development of miRNA based treatment strategies specifically targeting the CSCs as an attractive therapeutic targets for clinical application are being critically analysed.
Collapse
|
24
|
Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 2015; 309:C569-79. [PMID: 26310815 DOI: 10.1152/ajpcell.00207.2015] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor microenvironment is a complex system, playing an important role in tumor development and progression. Besides cellular stromal components, extracellular matrix fibers, cytokines, and other metabolic mediators are also involved. In this review we outline the potential role of hypoxia, a major feature of most solid tumors, within the tumor microenvironment and how it contributes to immune resistance and immune suppression/tolerance and can be detrimental to antitumor effector cell functions. We also outline how hypoxic stress influences immunosuppressive pathways involving macrophages, myeloid-derived suppressor cells, T regulatory cells, and immune checkpoints and how it may confer tumor resistance. Finally, we discuss how microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions.
Collapse
Affiliation(s)
- Muhammad Zaeem Noman
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Meriem Hasmim
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Yosra Messai
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Stéphane Terry
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition, and Glycobiology, UPR 4301 Centre National de la Recherche Scientifique, Orléans, France; and
| | - Bassam Janji
- Laboratory of Experimental Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Salem Chouaib
- Institut National de la Santé et de la Recherche Médicale U1186, Equipe Labellisée Par La Ligue Contre Le Cancer, Gustave Roussy Campus, Villejuif, France;
| |
Collapse
|
25
|
Abstract
The tumour microenvironment, long considered as determining cancer development, still offers research fields to define hallmarks of cancer. An early key-step, the “angiogenic switch”, allows tumour growth. Pathologic angiogenesis is a cancer hallmark as it features results of tumour-specific properties that can be summarised as a response to hypoxia. The hypoxic state occurs when the tumour mass reaches a volume sufficient not to permit oxygen diffusion inside the tumour centre. Thus tumour cells turn on adaptation mechanisms to the low pO2 level, inducing biochemical responses in terms of cytokines/chemokines/receptors and consequently recruitment of specific cell types, as well as cell-selection inside the tumour. Moreover, these changes are orchestrated by the microRNA balance strongly reflecting the hypoxic milieu and mediating the cross-talk between endothelial and tumour cells. MicroRNAs control of the endothelial precursor-vascular settings shapes the niche for selection of cancer stem cells.
Collapse
|
26
|
Kane NM, Thrasher AJ, Angelini GD, Emanueli C. Concise review: MicroRNAs as modulators of stem cells and angiogenesis. Stem Cells 2014; 32:1059-66. [PMID: 24449004 DOI: 10.1002/stem.1629] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 12/08/2013] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRs) are highly conserved, short noncoding RNA molecules that negatively regulate messenger RNA (mRNA) stability and/or translational efficiency. Since a given miR can control the expression of many mRNAs, their importance in governing gene expression in specific cell types including vascular cells and their progenitor cells has become increasingly clear. Understanding how the expression of miRs themselves is regulated and how miRs exert their influence on post-transcriptional gene control provides novel opportunities to dissect gene regulatory networks in clinically relevant cell types. A multitude of miRs have been identified with key roles in vascular development, homeostasis, function, disease, and regeneration. In this review, we will describe the impact of miRs on angiogenesis and their capacity to modulate the behavior of stem and progenitor cells which may be utilitarian for promoting vascular growth in ischemic tissue. Moreover, we summarize these strategies available for modulating miR expression and function and future therapeutic applications.
Collapse
Affiliation(s)
- Nicole M Kane
- Molecular Immunology Unit, Institute of Child Health, University College of London, London, United Kingdom
| | | | | | | |
Collapse
|
27
|
Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21:1516-54. [PMID: 24512032 PMCID: PMC4159937 DOI: 10.1089/ars.2013.5378] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor hypoxia is a well-established biological phenomenon that affects the curability of solid tumors, regardless of treatment modality. Especially for head and neck cancer patients, tumor hypoxia is linked to poor patient outcomes. Given the biological problems associated with tumor hypoxia, the goal for clinicians has been to identify moderately to severely hypoxic tumors for differential treatment strategies. The "gold standard" for detecting and characterizing of tumor hypoxia are the invasive polarographic electrodes. Several less invasive hypoxia assessment techniques have also shown promise for hypoxia assessment. The widespread incorporation of hypoxia information in clinical tumor assessment is severely impeded by several factors, including regulatory hurdles and unclear correlation with potential treatment decisions. There is now an acute need for approved diagnostic technologies for determining the hypoxia status of cancer lesions, as it would enable clinical development of personalized, hypoxia-based therapies, which will ultimately improve outcomes. A number of different techniques for assessing tumor hypoxia have evolved to replace polarographic pO2 measurements for assessing tumor hypoxia. Several of these modalities, either individually or in combination with other imaging techniques, provide functional and physiological information of tumor hypoxia that can significantly improve the course of treatment. The assessment of tumor hypoxia will be valuable to radiation oncologists, surgeons, and biotechnology and pharmaceutical companies who are engaged in developing hypoxia-based therapies or treatment strategies.
Collapse
Affiliation(s)
- Joseph C Walsh
- 1 Siemens Molecular Imaging, Inc. , Culver City, California
| | | | | | | | | | | |
Collapse
|
28
|
Evading anti-angiogenic therapy: resistance to anti-angiogenic therapy in solid tumours. Br J Cancer 2014. [DOI: 10.1038/bjc.2014.439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Fereidunian A, Sadeghalvad M, Oscoie MO, Mostafaie A. Soybean Bowman-Birk protease inhibitor (BBI): identification of the mechanisms of BBI suppressive effect on growth of two adenocarcinoma cell lines: AGS and HT29. Arch Med Res 2014; 45:455-61. [PMID: 25014623 DOI: 10.1016/j.arcmed.2014.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Bowman-Birk protease inhibitor (BBI) has been well known to suppress the emergence and progression of different cancers. In the present study, the mechanisms by which BBI alters cancers have been addressed. To reach this goal, the effects of BBI on proliferation of and VEGF secretion by two cell lines (AGS: gastric adenocarcinoma and HT-29: colorectal adenocarcinoma) and also BBI effect on MMP-2 and 9 synthesis/secretion by AGS cells was evaluated. METHODS ELISA method was used to assess VEGF concentration and gelatin zymography was used to address MMP-2 and 9 production/excretion. RESULTS BBI had powerful inhibitory effect on proliferation and VEGF secretion by both cell lines. In addition, inhibition of MMP-2 and MMP-9 secreted by AGS cells suggests BBI as a potent inhibitor of gastric cancer progression. On the other hand, the results indicated that inhibition of MMP-2, MMP-9 and VEGF secretion is one of the mechanisms of anti-angiogenic effect of BBI. CONCLUSION BBI expresses powerful suppressive effect on tumor progression of two prevalent cancers: gastric adenocarcinoma and colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Amirhossein Fereidunian
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Omidi Oscoie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Mostafaie
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Schuh A, Butzbach B, Curaj A, Simsekyilmaz S, Bucur O, Kanzler I, Deneke B, Konschalla S, Kroh A, Sönmez TT, Marx N, Liehn EA. Novel insights into the mechanism of cell-based therapy after chronic myocardial infarction. Discoveries (Craiova) 2014; 2:e9. [PMID: 32309541 PMCID: PMC6941593 DOI: 10.15190/d.2014.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cell transplantation therapy is considered a novel and promising strategy in regenerative medicine. Recent studies point out that paracrine effects and inflammation induced by transplanted cells are key factors for the improvement of myocardial function. The present study aims at differentiating paracrine effects from inflammatory reactions after cell transplantation.
Therefore, in vitro induced apoptotic bodies were transplanted after myocardial infarction in a rat model. Eight weeks after transplantation, the functional results showed no improvement in left ventricular function. Histological analysis revealed no significant differences in the amount of infiltrated cells and collagen content did not differ among the four groups, which sustains the functional data. Surprisingly, angiogenesis increased in groups with apoptotic bodies derived from HUVEC and endothelial progenitor cells, but not from fibroblasts. A complex genetic analysis of apoptotic bodies indicated that miRNAs could be responsible for these changes.
Our study demonstrates that inflammatory reaction is critical for scar remodelling and improvement of the heart function after late cell therapy, while neoangiogenesis alone is not sufficient to improve heart function.
Collapse
Affiliation(s)
- Alexander Schuh
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany
| | - Britta Butzbach
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Experimental Molecular Imaging, RWTH Aachen University, Germany.,"Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Isabela Kanzler
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen, Germany.,Department of Cardiothoracic and Vascular Surgery, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | - Bernd Deneke
- Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH Aachen University, Aachen, Germany
| | - Simone Konschalla
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Andreas Kroh
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Surgery, University Hospital Aachen, Germany
| | - Tolga Taha Sönmez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| |
Collapse
|
31
|
Badraoui R, Boubakri M, Bedbabiss M, Ben-Nasr H, Rebai T. Walker 256/B malignant breast cancer cells improve femur angioarchitecture and disrupt hematological parameters in a rat model of tumor osteolysis. Tumour Biol 2013; 35:3663-70. [PMID: 24318993 DOI: 10.1007/s13277-013-1485-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022] Open
Abstract
This study was designed to assess femur angioarchitecture and hematological effects of Walker 256/B cells in a rat model of tumor osteolysis. Tumor osteolysis was induced by in situ inoculation of Walker 256/B malignant cells. Six other rats were sham operated and served as control. Twenty days later, rats were euthanized, and femurs were collected than radiographed. Angioarchitecture [mean lumen diameter (MLD), wall thickness (WTh), Vessel number, volume, and separation (VNb, VV, and VSp respectively)] was studied by histomorphometry at 2 different positions (P1: diaphysis, and P2: metaphysis) of the operated femora. Some hematological parameters were also assessed. Walker 256/B induced marked tumor osteolysis, with cortical perforation and trabecular destruction, associated increase in bone vascularization (increases of VNb and VV and decrease of VSp). Angioarchitecture of W256/B rats was disorganized and showed large MLD and lower WTh. These effects were more prominent in P2. When compared to Sham group, significantly decreases at levels of red blood cell (RBC), hemoglobin (Hb), hematocrit (Ht), and white blood cell (WBC) were observed in W256/B rats. These results suggest that Walker 256/B cells induced tumor osteolysis, improve hypervasculature especially near the tumoral foci (P2) associated hematological disruption. Besides, tumor vessels showed abnormal (enlarged and thinner) and disorganized morphology.
Collapse
Affiliation(s)
- Riadh Badraoui
- Laboratory of Histo-Embryology and Cytogenetic, Medicine Faculty, University of Sfax, 3029, Sfax, Tunisia,
| | | | | | | | | |
Collapse
|
32
|
Lu Z, Zhang W, Jiang S, Zou J, Li Y. Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice. Fertil Steril 2013; 101:568-76. [PMID: 24290003 DOI: 10.1016/j.fertnstert.2013.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 10/06/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the effects of oxygen on the proliferation and angiogenesis of endometriosis in vivo. DESIGN Animal studies. SETTING Animal research facility. ANIMAL(S) Thirty-six female severe combined immunodeficiency (SCID) mice, implanted with eutopic endometrium from seven endometriosis patients. INTERVENTION(S) Human eutopic endometrial tissues were randomized to normoxia, hyperoxia, or hypoxia pretreatment and were subcutaneously implanted into estrogen-treated ovariectomized SCID mice. MAIN OUTCOME MEASURE(S) The growth and quality of the implants were measured, and the expression of proliferation- and angiogenesis-associated markers (i.e., Ki67, CD31, vascular endothelial growth factor, and hypoxia-inducible factor-1α) were assessed using immunohistochemistry and Western blot analyses. RESULT(S) The growth curves of the implants were distinct with different oxygen pretreatments. The growth of the implants of the hypoxia group was significantly increased compared with the normoxia group, but the growth of the implants of the hyperoxia group was significantly decreased compared with the normoxia group. Microscopic examination indicated that lesions with hyperplastic cylindrical glandular epithelium were surrounded by the endometrial stroma in the hypoxia group, but the glandular epithelium was partially depauperate in the hyperoxia group. The expression of Ki67, CD31, vascular endothelial growth factor, and hypoxia-inducible factor-1α in the hypoxia-pretreated implants was significantly higher compared with the hyperoxia or normoxia groups. CONCLUSION(S) Oxygen can alter the growth patterns of endometriosis implants in a SCID mouse model. Hypoxia pretreatment promoted the proliferation and angiogenesis of endometriosis, whereas hyperoxia pretreatment exhibited the opposite effect.
Collapse
Affiliation(s)
- Zechun Lu
- Department of Obstetrics and Gynecology, Chinese People's Liberation Army (PLA) 306 Hospital, Beijing, People's Republic of China; Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weiyi Zhang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Shufang Jiang
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jie Zou
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yali Li
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, People's Republic of China.
| |
Collapse
|
33
|
Collet G, Lamerant-Fayel N, Tertil M, El Hafny-Rahbi B, Stepniewski J, Guichard A, Foucault-Collet A, Klimkiewicz K, Petoud S, Matejuk A, Grillon C, Jozkowicz A, Dulak J, Kieda C. Hypoxia-regulated overexpression of soluble VEGFR2 controls angiogenesis and inhibits tumor growth. Mol Cancer Ther 2013; 13:165-78. [PMID: 24170768 DOI: 10.1158/1535-7163.mct-13-0637] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
VEGFs are found at high levels in hypoxic tumors. As major components directing pathologic neovascularization, they regulate stromal reactions. Consequently, novel strategies targeting and inhibiting VEGF overproduction upon hypoxia offer considerable potential for modern anticancer therapies controlling rather than destroying tumor angiogenesis. Here, we report the design of a vector expressing the soluble form of VEGF receptor-2 (sVEGFR2) driven by a hypoxia-responsive element (HRE)-regulated promoter. To enable in vivo imaging by infrared visualization, mCherry and IFP1.4 coding sequences were built into the vector. Plasmid construction was validated through transfection into embryonic human kidney HEK293 and murine B16F10 melanoma cells. sVEGFR2 was expressed in hypoxic conditions only, confirming that the gene was regulated by the HRE promoter. sVEGFR2 was found to bind efficiently and specifically to murine and human VEGF-A, reducing the growth of tumor and endothelial cells as well as impacting angiogenesis in vitro. The hypoxia-conditioned sVEGFR2 expression was shown to be functional in vivo: Tumor angiogenesis was inhibited and, on stable transfection of B16F10 melanoma cells, tumor growth was reduced. Enhanced expression of sVEGFR2 was accompanied by a modulation in levels of VEGF-A. The resulting balance reflected the effect on tumor growth and on control of angiogenesis. A concomitant increase of intratumor oxygen tension also suggested an influence on vessel normalization. The possibility to express an angiogenesis regulator as sVEGFR2, in a hypoxia-conditioned manner, significantly opens new strategies for tumor vessel-controlled normalization and the design of adjuvants for combined cancer therapies.
Collapse
Affiliation(s)
- Guillaume Collet
- Corresponding Authors: Claudine Kieda, CNRS, rue Charles Sadron, Orleans 45071, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The endothelium in vascular pharmacology — An overview of 2011–2012. Vascul Pharmacol 2013; 58:335-6. [DOI: 10.1016/j.vph.2013.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/19/2022]
|
35
|
Blaylock RL. Immunoexcitatory mechanisms in glioma proliferation, invasion and occasional metastasis. Surg Neurol Int 2013; 4:15. [PMID: 23493580 PMCID: PMC3589840 DOI: 10.4103/2152-7806.106577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence of an interaction between inflammatory cytokines and glutamate receptors among a number of neurological diseases including traumatic brain injuries, neurodegenerative diseases and central nervous system (CNS) infections. A number of recent studies have now suggested a strong relation between inflammatory mechanisms and excitatory cascades and these may play a role in glioma invasiveness and proliferation. Chronic inflammation appears to be a major initiating mechanism in most human cancers, involving cell-signaling pathways, which are responsible for cell cycling, cancer cell migration, invasion, tumor aggressiveness, and angiogenesis. It is less well appreciated that glutamate receptors also play a significant role in both proliferation and especially glioma invasion. There is some evidence that sustained elevations in glutamate may play a role in initiating certain cancers and new studies demonstrate an interaction between inflammation and glutamate receptors that may enhance tumor invasion and metastasis by affecting a number of cell-signaling mechanisms. These mechanisms are discussed in this paper as well as novel treatment options for reducing immune-glutamate promotion of cancer growth and invasion.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences LLC, Visiting Professor of Biology, Department of Biology, Belhaven University, Jackson, MS 39157, USA
| |
Collapse
|
36
|
Carulli C, Innocenti M, Brandi ML. Bone vascularization in normal and disease conditions. Front Endocrinol (Lausanne) 2013; 4:106. [PMID: 23986744 PMCID: PMC3752619 DOI: 10.3389/fendo.2013.00106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/06/2013] [Indexed: 01/14/2023] Open
Abstract
Bone vasculature is essential for many processes, such as skeletal development and growth, bone modeling and remodeling, and healing processes. Endothelium is an integral part of bone tissue, expressing a physiological paracrine function via growth factors and chemokines release, and interacting with several cellular lines. Alterations of the complex biochemical interactions between vasculature and bone cells may lead to various clinical manifestations. Two different types of pathologies result: a defect or an excess of bone vasculature or endothelium metabolism. Starting from the molecular basis of the interactions between endothelial and bone cells, the Authors present an overview of the recent acquisitions in the physiopathology of the most important clinical patterns, and the modern therapeutic strategies for their treatments.
Collapse
Affiliation(s)
- Christian Carulli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Massimo Innocenti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
- *Correspondence: Maria Luisa Brandi, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini, 650139 Florence, Italy e-mail:
| |
Collapse
|