1
|
Hunt RD, Sedighi O, Clark WM, Doiron AL, Cipolla M. Differential effect of gold nanoparticles on cerebrovascular function and biomechanical properties. Physiol Rep 2023; 11:e15789. [PMID: 37604668 PMCID: PMC10442527 DOI: 10.14814/phy2.15789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Human stroke serum (HSS) has been shown to impair cerebrovascular function, likely by factors released into the circulation after ischemia. 20 nm gold nanoparticles (GNPs) have demonstrated anti-inflammatory properties, with evidence that they decrease pathologic markers of ischemic severity. Whether GNPs affect cerebrovascular function, and potentially protect against the damaging effects of HSS on the cerebral circulation remains unclear. HSS obtained 24 h poststroke was perfused through the lumen of isolated and pressurized third-order posterior cerebral arteries (PCAs) from male Wistar rats with and without GNPs (~2 × 109 GNP/ml), or GNPs in vehicle, in an arteriograph chamber (n = 8/group). All vessels were myogenically reactive ≥60 mmHg intravascular pressure; however, vessels containing GNPs had significantly less myogenic tone. GNPs increased vasoreactivity to small and intermediate conductance calcium activated potassium channel activation via NS309; however, reduced vasoconstriction to nitric oxide synthase inhibition. Hydraulic conductivity and transvascular filtration, were decreased by GNPs, suggesting a protective effect on the blood-brain barrier. The stress-strain curves of PCAs exposed to GNPs were shifted leftward, indicating increased vessel stiffness. This study provides the first evidence that GNPs affect the structure and function of the cerebrovasculature, which may be important for their development and use in biomedical applications.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Omid Sedighi
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Wayne M. Clark
- Oregon Stroke Center, Department of NeurologyOregon Health, and Science UniversityPortlandUSA
| | - Amber L. Doiron
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
| | - Marilyn J. Cipolla
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of Electrical and Biomedical EngineeringUniversity of Vermont College of Engineering and Mathematical SciencesBurlingtonVermontUSA
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Department of PharmacologyUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
2
|
Soloviev A, Ivanova I, Sydorenko V, Sukhanova K, Melnyk M, Dryn D, Zholos A. Calcium-dependent modulation of BK Ca channel activity induced by plasmonic gold nanoparticles in pulmonary artery smooth muscle cells and hippocampal neurons. Acta Physiol (Oxf) 2023; 237:e13922. [PMID: 36599422 DOI: 10.1111/apha.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
AIM Gold nanoparticles are widely used for biomedical applications, but the precise molecular mechanism of their interaction with cellular structures is still unclear. Assuming that intracellular calcium fluctuations associated with surface plasmon-induced calcium entry could modulate the activity of potassium channels, we studied the effect of 5 nm gold nanoparticles on calcium-dependent potassium channels and associated calcium signaling in freshly isolated rat pulmonary artery smooth muscle cells and cultured hippocampal neurons. METHODS Outward potassium currents were recorded using patch-clamp techniques. Changes in intracellular calcium concentration were measured using the high affinity Ca2+ fluorescent indicator fluo-3 and laser confocal microscope. RESULTS In pulmonary artery smooth muscle cells, plasmonic gold nanoparticles increased the amplitude of currents via large-conductance Ca2+ -activated potassium channels, which was potentiated by green laser irradiation near plasmon resonance wavelength (532 nm). Buffering of intracellular free calcium with ethylene glycol-bis-N,N,N',N'-tetraacetic acid (EGTA) abolished these effects. Furthermore, using confocal laser microscopy it was found that application of gold nanoparticles caused oscillations of intracellular calcium concentration that were decreasing in amplitude with time. In cultured hippocampal neurons gold nanoparticles inhibited the effect of EGTA slowing down the decline of the BKCa current while partially restoring the amplitude of the slow after hyperpolarizing currents. CONCLUSION We conclude that fluctuations in intracellular calcium can modulate plasmonic gold nanoparticles-induced gating of BKCa channels in smooth muscle cells and neurons through an indirect mechanism, probably involving the interaction of plasmon resonance with calcium-permeable ion channels, which leads to a change in intracellular calcium level.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Department of Pharmacology of Cell Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science of Ukraine, Kyiv, Ukraine
| | - Irina Ivanova
- Department of Pharmacology of Cell Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science of Ukraine, Kyiv, Ukraine
| | - Vadym Sydorenko
- Department of Pharmacology of Cell Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science of Ukraine, Kyiv, Ukraine
| | - Khrystyna Sukhanova
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mariia Melnyk
- Department of Biophysics and Medical Informatics, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Cellular Membranology, A.A. Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Dariia Dryn
- Department of Cellular Membranology, A.A. Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alexander Zholos
- Department of Biophysics and Medical Informatics, Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
3
|
Maldonado-Ortega DA, Martínez-Castañón G, Palestino G, Navarro-Tovar G, Gonzalez C. Two Methods of AuNPs Synthesis Induce Differential Vascular Effects. The Role of the Endothelial Glycocalyx. Front Med (Lausanne) 2022; 9:889952. [PMID: 35847820 PMCID: PMC9277019 DOI: 10.3389/fmed.2022.889952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AuNPs are synthesized through several methods to tune their physicochemical properties. Although AuNPs are considered biocompatible, a change in morphology or properties can modify their biological impact. In this work, AuNPs (~12 to 16 nm) capping with either sodium citrate (CA) or gallic acid (GA) were evaluated in a rat aorta ex vivo model, which endothelial inner layer surface is formed by glycocalyx (hyaluronic acid, HA, as the main component), promoting vascular processes, most of them dependent on nitric oxide (NO) production. Results showed that contractile effects were more evident with AuNPsCA, while dilator effects predominated with AuNPsGA. Furthermore, treatments with AuNPsCA and AuNPsGA in the presence or absence of glycocalyx changed the NO levels, differently. This work contributes to understanding the biological effects of AuNPs with different capping agents, as well as the key role that of HA in the vascular effects induced by AuNPs in potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Gabriela Palestino
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juarez, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- *Correspondence: Carmen Gonzalez
| |
Collapse
|
4
|
Li X, Yu H, Wang B, Chen W, Zhu M, Liang S, Chu R, Zhou S, Chen H, Wang M, Zheng L, Feng W. Multiscale Synchrotron-Based Imaging Analysis for the Transfer of PEGylated Gold Nanoparticles In Vivo. ACS Biomater Sci Eng 2021; 7:1462-1474. [PMID: 33764757 DOI: 10.1021/acsbiomaterials.0c01764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High spatial resolution imaging analysis is urgently needed to explore the biodistribution, transfer and clearance profiles, and biological impact of nanoparticles in the body, which will be helpful to clarify the efficacy of nanomedicine in clinical applications. Herein, by combination with multiscale synchrotron-based imaging techniques, including X-ray fluorescence (XRF) spectrometry, Fourier transform infrared (FTIR) spectroscopy, and micro X-ray phase contrast computed tomography (micro-XPCT), we visually displayed the transfer patterns and site-specific distribution of PEGylated gold nanoparticles (PEG-GNPs) in the suborgans of the liver, spleen, and kidney after an intravenous injection in mice. A combination of XRF and FTIR imaging analysis showed that the PEG bands presented similar distribution patterns with Au in the intraorgans, suggesting the stability of PEGylation on GNPs. We show that the PEG-GNPs presented heterogeneous distribution in the hepatic lobules with a large amount around the portal vein zone and then a gradient decrease in the sinusoidal region and the CV zone; in the spleen, it gradually accumulated in the splenic red pulp over time; and in the kidney, it quickly transported via the bloodstream to the renal pyramids and renal pelvis, and parts of PEG-GNPs finally accumulated in the renal medulla and renal cortex. Multidimensional micro-XPCT images further show that the PEG-GNP transfer in the liver induced hepatic blood vessel dilatation while they transferred in the liver, providing evidence of GNP transport across the blood vessel endothelial barrier.
Collapse
Affiliation(s)
- Xue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyang Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meilin Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Runxuan Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanqing Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yin S, Liu J, Kang Y, Lin Y, Li D, Shao L. Interactions of nanomaterials with ion channels and related mechanisms. Br J Pharmacol 2019; 176:3754-3774. [PMID: 31290152 DOI: 10.1111/bph.14792] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
The pharmacological potential of nanotechnology, especially in drug delivery and bioengineering, has developed rapidly in recent decades. Ion channels, which are easily targeted by external agents, such as nanomaterials (NMs) and synthetic drugs, due to their unique structures, have attracted increasing attention in the fields of nanotechnology and pharmacology for the treatment of ion channel-related diseases. NMs have significant effects on ion channels, and these effects are manifested in many ways, including changes in ion currents, kinetic characteristics and channel distribution. Subsequently, intracellular ion homeostasis, signalling pathways, and intracellular ion stores are affected, leading to the initiation of a range of biological processes. However, the effect of the interactions of NMs with ion channels is an interesting topic that remains obscure. In this review, we have summarized the recent research progress on the direct and indirect interactions between NMs and ion channels and discussed the related molecular mechanisms, which are crucial to the further development of ion channel-related nanotechnological applications.
Collapse
Affiliation(s)
- Suhan Yin
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyuan Kang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongjian Li
- Liwan District Stomatology Hospital, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
7
|
Sun Q, Shi X, Feng J, Zhang Q, Ao Z, Ji Y, Wu X, Liu D, Han D. Cytotoxicity and Cellular Responses of Gold Nanorods to Smooth Muscle Cells Dependent on Surface Chemistry Coupled Action. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803715. [PMID: 30430733 DOI: 10.1002/smll.201803715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/24/2018] [Indexed: 05/25/2023]
Abstract
Gold nanorods (AuNRs), with their unique physicochemical properties, are recognized as promising materials for biomedical applications. Chemical modification of their surfaces is attracting increasing attention with regard to cytotoxicity and cellular uptake. Herein, the toxicological effects of three types of polymer-coated AuNRs, which are cetyltrimethylammonium bromide-coated AuNRs, polystyrene sulphonate-coated AuNRs, and poly(diallyldimethyl ammonium chloride-coated AuNRs (PDDAC-AuNRs), on vascular smooth muscle cells (VSMCs) are investigated. The results show significantly different effects on VSMCs with different surface coatings. PDDAC-AuNRs, which were nontoxic in cancer cells in previous reports, display extreme toxicity to VSMCs. Initial contact between AuNRs and cell membranes is the important step in AuNRs cellular uptake. Force spectroscopy based on atomic force microscopy is exploited to study interactions between AuNRs and VSMCs membrane in the absence or presence of a corona on the AuNRs surface. The results show that the binding force and binding probability between AuNRs and membranes are closely related to cytotoxicity and cellular responses. These findings highlight the importance of assessing nanoparticle cytotoxicity in somatic cells for medical applications.
Collapse
Affiliation(s)
- Quanmei Sun
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoli Shi
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiantao Feng
- Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Qiang Zhang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuo Ao
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yinglu Ji
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaochun Wu
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 10084, P. R. China
| | - Dong Han
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Endo M, Wei Z, Wang K, Karabiyik B, Yoshiiri K, Rokicka P, Ohtani B, Markowska-Szczupak A, Kowalska E. Noble metal-modified titania with visible-light activity for the decomposition of microorganisms. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:829-841. [PMID: 29600144 PMCID: PMC5852454 DOI: 10.3762/bjnano.9.77] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 02/02/2018] [Indexed: 05/21/2023]
Abstract
Commercial titania photocatalysts were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli (E. coli)) and antifungal (Aspergillus niger (A. niger), Aspergillus melleus (A. melleus), Penicillium chrysogenum (P. chrysogenum), Candida albicans (C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth ("poisoned food") and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible-light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties.
Collapse
Affiliation(s)
- Maya Endo
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
| | - Zhishun Wei
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- School of Materials and Chemical Engineering, Hubei University of Technology, 430068 Wuhan, China
| | - Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, N10 W5, 060-0810 Sapporo, Japan
| | - Baris Karabiyik
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
| | - Kenta Yoshiiri
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, N10 W5, 060-0810 Sapporo, Japan
| | - Paulina Rokicka
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Institute of Inorganic Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, N10 W5, 060-0810 Sapporo, Japan
| | - Agata Markowska-Szczupak
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Institute of Inorganic Technology and Environment Engineering, West Pomeranian University of Technology, Szczecin, Pulaskiego 10, 70-322 Szczecin, Poland
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21 W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, N10 W5, 060-0810 Sapporo, Japan
| |
Collapse
|
9
|
Marino A, Arai S, Hou Y, Degl'Innocenti A, Cappello V, Mazzolai B, Chang YT, Mattoli V, Suzuki M, Ciofani G. Gold Nanoshell-Mediated Remote Myotube Activation. ACS NANO 2017; 11:2494-2508. [PMID: 28107625 DOI: 10.1021/acsnano.6b08202] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mild heat stimulation of muscle cells within the physiological range represents an intriguing approach for the modulation of their functions. In this work, photothermal conversion was exploited to remotely stimulate striated muscle cells by using gold nanoshells (NSs) in combination with near-infrared (NIR) radiation. Temperature increments of approximately 5 °C were recorded by using an intracellular fluorescent molecular thermometer and were demonstrated to efficiently induce myotube contraction. The mechanism at the base of this phenomenon was thoroughly investigated and was observed to be a Ca2+-independent event directly involving actin-myosin interactions. Finally, chronic remote photothermal stimulations significantly increased the mRNA transcription of genes encoding heat shock proteins and sirtuin 1, a protein which in turn can induce mitochondrial biogenesis. Overall, we provide evidence that remote NIR + NS muscle excitation represents an effective wireless stimulation technique with great potential in the fields of muscle tissue engineering, regenerative medicine, and bionics.
Collapse
Affiliation(s)
- Attilio Marino
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Satoshi Arai
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Yanyan Hou
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
| | - Andrea Degl'Innocenti
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia , Piazza San Silvestro 12, Pisa 56127, Italy
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, MedChem Program of Life Sciences Institute, National University of Singapore , 3 Science Drive 3, 117543 Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR) , Biopolis 138667 Singapore
| | - Virgilio Mattoli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore, Waseda University , Biopolis Way 11, #05-02 Helios, 138667 Singapore
- Comprehensive Research Organization, Waseda University , #304, Block 120-4, 513 Waseda-Tsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Gianni Ciofani
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia , Viale Rinaldo Piaggio 34, Pontedera (Pisa) 56025, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, Torino 10129, Italy
| |
Collapse
|
10
|
Feng D, Nan H, Wang W, Yan L, Du P, Zuo L, Zhang K, Zhao M, Cui G. Expression and alteration of BK Ca channels in the sphincter of Oddi's from rabbits with hypercholesterolemia. Channels (Austin) 2017; 11:236-244. [PMID: 28102743 DOI: 10.1080/19336950.2017.1279369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the expression and function of BKCa channels in the Sphincter of Oddi (SO) in a rabbit model of hypercholesterolemia (HC). New Zealand white rabbits were randomly divided into 2 groups: the control group was fed standard chow (n = 18) whereas the high-cholesterol group was fed cholesterol-enriched chow containing 1.5% cholesterol (n = 18). The serum cholesterol level was significantly greater in the HC groups than in the control group, but there was no significant difference in body weight between the control and HC groups. Although the total protein expression of BKCa α- and β1-subunit was not significantly different between the control and HC groups, the Tyr-phosphorylation of BKCa α-subunit was significantly decreased in the HC group than in the control group. In addition, hypercholesterolemia significantly increased Acetylcholine (ACh)-induced contraction of the SO rings. Pretreatment with 30 μM NS1619, a BKCa channel agonist, significantly reduced ACh-induced contraction of the SO rings in HC rabbits. Moreover, pretreatment with 100 μM Na3OV4, a protein tyrosine phosphatase inhibitor, significantly reduced ACh-induced contraction of the SO rings in HC rabbits, whereas it significantly increased upon pretreating with 10 μM Genistein, a tyrosine kinase inhibitor. Whole-cell patch clamp recordings showed that BKCa current density was significantly lower in SOSMCs from HC group than that from control group. Our findings suggest that hypercholesterolemia-induced downregulation of BKCa channel, and Tyr-phosphorylation of BKCa α-subunit may contribute to the hyperresponsiveness of the SO ring in HC rabbits.
Collapse
Affiliation(s)
- Dan Feng
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Haiyan Nan
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Wen Wang
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Linfeng Yan
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Pang Du
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Lin Zuo
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Kun Zhang
- b Department of Pharmacology, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Minggao Zhao
- b Department of Pharmacology, School of Pharmacy , Fourth Military Medical University , Xi'an , China
| | - Guangbin Cui
- a Department of Radiology , Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
11
|
Abukabda AB, Stapleton PA, Nurkiewicz TR. Metal Nanomaterial Toxicity Variations Within the Vascular System. Curr Environ Health Rep 2016; 3:379-391. [PMID: 27686080 PMCID: PMC5112123 DOI: 10.1007/s40572-016-0112-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered nanomaterials (ENM) are anthropogenic materials with at least one dimension less than 100 nm. Their ubiquitous employment in biomedical and industrial applications in the absence of full toxicological assessments raises significant concerns over their safety on human health. This is a significant concern, especially for metal and metal oxide ENM as they may possess the greatest potential to impair human health. A large body of literature has developed that reflects adverse systemic effects associated with exposure to these materials, but an integrated mechanistic framework for how ENM exposure influences morbidity remains elusive. This may be due in large part to the tremendous diversity of existing ENM and the rate at which novel ENM are produced. In this review, the influence of specific ENM physicochemical characteristics and hemodynamic factors on cardiovascular toxicity is discussed. Additionally, the toxicity of metallic and metal oxide ENM is presented in the context of the cardiovascular system and its discrete anatomical and functional components. Finally, future directions and understudied topics are presented. While it is clear that the nanotechnology boom has increased our interest in ENM toxicity, it is also evident that the field of cardiovascular nanotoxicology remains in its infancy and continued, expansive research is necessary in order to determine the mechanisms via which ENM exposure contributes to cardiovascular morbidity.
Collapse
Affiliation(s)
- Alaeddin B. Abukabda
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A. Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
12
|
Shukur A, Whitehead D, Seifalian A, Azzawi M. The influence of silica nanoparticles on small mesenteric arterial function. Nanomedicine (Lond) 2016; 11:2131-46. [DOI: 10.2217/nnm-2016-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the influence of silica nanoparticles (SiNPs) on small arterial function; both ex vivo and in vivo. Methods: Mono-dispersed dye-encapsulated SiNPs (97.85 ± 2.26 nm) were fabricated and vasoconstrictor and vasodilator responses of mesenteric arteries assessed. Results: We show that while exposure to SiNPs under static conditions, attenuated endothelial dependent dilator responses ex vivo, attenuation was only evident at lower agonist concentrations, when exposed under flow conditions or after intravenous administration in vivo. Pharmacological inhibition studies suggest that SiNPs may interfere with the endothelial dependent hyperpolarizing factor vasodilator pathway. Conclusion: The dosage dependent influence of SiNPs on arterial function will help identify strategies for their safe clinical administration.
Collapse
Affiliation(s)
- Ali Shukur
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Debra Whitehead
- School of Science & the Environment, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
13
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|