1
|
Wang B, Xu Y, Huang Y, Shao S, Xu D, Zhang Y, Pang L, Nan Z, Ye Q, Wang Y, Wang W, Jin K, Yuan L. miR-210-5p Promotes Pulmonary Hypertension by Blocking ATP2A2. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07568-y. [PMID: 38656637 DOI: 10.1007/s10557-024-07568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
AIM Aberrant expression of ATPase sarcoplasmic/endoplasmic retic Ca2+ transporting 2 (ATP2A2) has attracted attention for its pathophysiologic role in pulmonary hypertension (PH). Several miRNAs, including miR-210-5p, have also been reported to be pathogenic factors in PH, but their exact mechanisms remain unknown. This study aimed to elucidate the potential mechanisms of miR-210-5p and ATP2A2 in MCT-induced PH. METHODS Eighteen Sprague-Dawley rats were randomly divided into two groups-monoclonal (MCT) group and control group-and then administered MCT (60 mg/kg) and saline, respectively. mPAP, PVR, RVHI, WT%, and WA% were significantly increased in PH rats after 3 weeks, confirming that the modeling of PH rats was successful. Subsequently, we determined the expression of ATP2A2 and miR-210-5p in lung tissues using WB and qRT-PCR methods. We established an in vitro model using BMP4 and TGF-β1 treatment of pulmonary artery smooth muscle cells (PASMCs) and examined the expression of ATP2A2 and miR-210-5p using the same method. To further elucidate the regulatory relationship between ATP2A2 and miR-210-5p, we altered the expression level of miR-210-5p and detected the corresponding changes in ATP2A2 levels. In addition, we demonstrated the relationship by dual luciferase experiments. Finally, the effect of silencing ATP2A2 could be confirmed by the level of cell membrane Ca2+ in PAMSCs. RESULTS Up-regulation of miR-210-5p and down-regulation of ATP2A2 were observed in the MCT group compared with the control group, which was confirmed in the in vitro model. In addition, elevated miR-210-5p expression decreased the level of ATP2A2 while increasing the proliferation of PASMCs, and the results of the dual luciferase assay further confirmed that ATP2A2 is a downstream target of miR-210-5p. Additionally, silencing ATP2A2 resulted in increased cytoplasmic Ca2+ levels in PAMSCs. CONCLUSION In MCT-induced PH, miR-210-5p promotes pulmonary vascular remodeling by inhibiting ATP2A2.
Collapse
Affiliation(s)
- Boxiang Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yidin Xu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Siming Shao
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dongshan Xu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yiying Zhang
- Alberta Institute, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lingxia Pang
- Functionality Experimental Teaching Center, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhuofan Nan
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qianxi Ye
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Cardiovascular Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China
| | - Yang Wang
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wantie Wang
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Keke Jin
- Department of Pathophysiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Linbo Yuan
- Department of Physiology, Basic Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
2
|
An Y, Wang X, Guan X, Yuan P, Liu Y, Wei L, Wang F, Qi X. Endoplasmic reticulum stress-mediated cell death in cardiovascular disease. Cell Stress Chaperones 2024; 29:158-174. [PMID: 38295944 PMCID: PMC10939083 DOI: 10.1016/j.cstres.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The endoplasmic reticulum (ER) plays a vital function in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) can trigger various modes of cell death by activating the unfolded protein response (UPR) signaling pathway. Cell death plays a crucial role in the occurrence and development of diseases such as cancer, liver diseases, neurological diseases, and cardiovascular diseases. Several cardiovascular diseases including hypertension, atherosclerosis, and heart failure are associated with ER stress. ER stress-mediated cell death is of interest in cardiovascular disease. Moreover, an increasing body of evidence supports the potential of modulating ERS for treating cardiovascular disease. This paper provides a comprehensive review of the UPR signaling pathway, the mechanisms that induce cell death, and the modes of cell death in cardiovascular diseases. Additionally, we discuss the mechanisms of ERS and UPR in common cardiovascular diseases, along with potential therapeutic strategies.
Collapse
Affiliation(s)
- Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Yuan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Fei Wang
- Department of Vascular Surgery, Hebei General Hospital, Hebei, China
| | - Xin Qi
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
3
|
Zhang Z, Fu X, Zhou F, Zhang D, Xu Y, Fan Z, Wen S, Shao Y, Yao Z, He Y. Huaju Xiaoji Formula Regulates ERS-lncMGC/miRNA to Enhance the Renal Function of Hypertensive Diabetic Mice with Nephropathy. J Diabetes Res 2024; 2024:6942156. [PMID: 38282657 PMCID: PMC10821808 DOI: 10.1155/2024/6942156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Background Better therapeutic drugs are required for treating hypertensive diabetic nephropathy. In our previous study, the Huaju Xiaoji (HJXJ) formula promoted the renal function of patients with diabetes and hypertensive nephropathy. In this study, we investigated the therapeutic effect and regulation mechanism of HJXJ in hypertensive diabetic mice with nephropathy. Methods We constructed a mouse hypertensive diabetic nephropathy (HDN) model by treating mice with streptozotocin (STZ) and nomega-nitro-L-arginine methyl ester (LNAME). We also constructed a human glomerular mesangial cell (HGMC) model that was induced by high doses of sugar (30 mmol/mL) and TGFβ1 (5 ng/mL). Pathological changes were evaluated by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and Masson staining. The fibrosis-related molecules (TGFβ1, fibronectin, laminin, COL I, COL IV, α-SMA, and p-smad2/3) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA levels and protein expression of endoplasmic reticulum stress, fibrosis molecules, and their downstream molecules were assessed using qPCR and Western blotting assays. Results Administering HJXJ promoted the renal function of HDN mice. HJXJ reduced the expression of ER stress makers (CHOP and GRP78) and lncMGC, miR379, miR494, miR495, miR377, CUGBP2, CPEB4, EDEM3, and ATF3 in HDN mice and model HGMCs. The positive control drugs (dapagliflozin and valsartan) also showed similar effects after treatment with HJXJ. Additionally, in model HGMCs, the overexpression of CHOP or lncMGC decreased the effects of HJXJ-M on the level of fibrosis molecules and downstream target molecules. Conclusion In this study, we showed that the HJXJ formula may regulate ERS-lncMGC/miRNA to enhance renal function in hypertensive diabetic mice with nephropathy. This study may act as a reference for further investigating whether combining HJXJ with other drugs can enhance its therapeutic effect. The findings of this study might provide new insights into the clinical treatment of hypertensive diabetic nephropathy with HJXJ.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Fu
- Department of Integrated Traditional Chinese and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fengzhu Zhou
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Duanchun Zhang
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanqiu Xu
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhaohua Fan
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shimei Wen
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanting Shao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Yao
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
4
|
Camargo LL, Wang Y, Rios FJ, McBride M, Montezano AC, Touyz RM. Oxidative Stress and Endoplasmic Reticular Stress Interplay in the Vasculopathy of Hypertension. Can J Cardiol 2023; 39:1874-1887. [PMID: 37875177 DOI: 10.1016/j.cjca.2023.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Yu Wang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Martin McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; McGill University, Department of Medicine and Department of Family Medicine, Montréal, Québec, Canada.
| |
Collapse
|
5
|
Lin S, Long H, Hou L, Zhang M, Ting J, Lin H, Zheng P, Lei W, Yin K, Zhao G. Crosstalk between endoplasmic reticulum stress and non-coding RNAs in cardiovascular diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1767. [PMID: 36420580 DOI: 10.1002/wrna.1767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 07/20/2023]
Abstract
Cells are exposed to various pathological stimulus within the cardiovascular system that challenge cells to adapt and survive. Several of these pathological stimulus alter the normal function of the endoplasmic reticulum (ER), leading to the accumulation of unfolded and misfolded proteins, thus triggering the unfolded protein response (UPR) to cope with the stress or trigger apoptosis of damaged cells. Downstream components of the UPR regulate transcription and translation reprogramming to ensure selective gene expression in response to pathological stimulus, including the expression of non-coding RNAs (ncRNAs). The ncRNAs play crucial roles in regulating transcription and translation, and their aberrant expression is associated with the development of cardiovascular disease (CVD). Notably, ncRNAs and ER stress can modulate each other and synergistically affect the development of CVD. Therefore, studying the interaction between ER stress and ncRNAs is necessary for effective prevention and treatment of CVD. In this review, we discuss the UPR signaling pathway and ncRNAs followed by the interplay regulation of ER stress and ncRNAs in CVD, which provides further insights into the understanding of the pathogenesis of CVD and therapeutic strategies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Shuyun Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haijiao Long
- Xiangya Hospital, Central South University, Changsha, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Ming Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Jiang Ting
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Haiyue Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Pan Zheng
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Weixing Lei
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
6
|
Li MC, Tian Q, Liu S, Han SM, Zhang W, Qin XY, Chen JH, Liu CL, Guo YJ. The mechanism and relevant mediators associated with neuronal apoptosis and potential therapeutic targets in subarachnoid hemorrhage. Neural Regen Res 2023; 18:244-252. [PMID: 35900398 PMCID: PMC9396483 DOI: 10.4103/1673-5374.346542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neurons, which subsequently promotes a series of pathophysiological responses leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy, and inflammation are involved solely or in combination in this disorder. Among them, irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. In this review, we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the treatment of SAH.
Collapse
|
7
|
Investigation of the relationship between serum adropin levels, oxidative stress biomarkers, and blood pressure in DOCA-salt hypertensive rats. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1061010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background/Aim: Adropin is involved in the pathophysiology and development of cardiovascular diseases, such as hypertension. The aim of this study was to investigate the effects of adropin in serum, potential use as a biochemical biomarker of oxidative stress, and effects on blood pressure in deoxycorticosterone acetate (DOCA) salt hypertensive rats.
Methods: Eighteen male Sprague-Dawley rats were divided into two groups: (1) Control (C) and (2) Hypertensive (H). Systolic and diastolic blood pressures (SBP and DBP, respectively), and mean blood pressure (MBP) were measured using the tail-cuff method. At the end of the study, serum endothelin-1 (ET-1), adropin, nitric oxide (NO), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were also analyzed.
Results: Significant increases in SBP, DBP, MBP, cardiac hypertrophy index (CHI), and left ventricular hypertrophy index (LVCI) in the H group compared with the C group were found. Serum levels of ET-1, TOS, and OSI were significantly higher in the H group and serum levels of NO, adropin, and TAS were lower than in the C group. A negative correlation between serum adropin levels and the variables SBP, DBP, MBP, TOS, OSI, CHI, and LVHI was found. Adropin levels were positively correlated positively with serum NO levels in both groups.
Conclusion: Serum adropin levels decreased in hypertensive DOCA-salt rats. Lower serum adropin levels were found to be significantly associated with hypertension and may play a role in this disease. However, further comprehensive and diverse studies are needed.
Collapse
|
8
|
Guo CL, Liu HM, Li B, Lu ZY. Angiotensin-(1–9) prevents angiotensin II-induced endothelial apoptosis through CNPY2/PERK pathway. Apoptosis 2022; 28:379-396. [PMID: 36422742 DOI: 10.1007/s10495-022-01793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2022] [Indexed: 11/25/2022]
Abstract
Endothelial apoptosis caused by activation of renin-angiotensin system (RAS) plays a vital part in the occurrence and progress of hypertension. Angiotensin-(1-9) (Ang-(1-9)) is a peptide of the counter-regulatory non-classical RAS with anti-hypertensive effects in vascular endothelial cells (ECs). However, the mechanism of action remains unclear. Considering that the endothelial apoptosis was closely related to endoplasmic reticulum stress (ERS) and mitochondrial function. Herein, we aimed to elucidate the effects of Ang-(1-9) on endothelial apoptosis and the underlying molecular mechanism in angiotensin II (Ang II) induced hypertension. In human umbilical vascular endothelial cells (HUVECs), we observed Ang-(1-9) inhibited Ang II-induced ERS associated endothelial apoptosis. Mechanically, Ang-(1-9) inhibited endothelial apoptosis by blocking CNPY2/PERK mediated CaMKII/Drp1-dependent mitochondrial fission and eIF2α/CHOP signal. Consistent with above effects in HUVECs, in Ang II-induced hypertensive mice, we found administration of exogenous Ang-(1-9) attenuated endothelial apoptosis and arterial blood pressure, which were mediated by CNPY2/PERK signaling pathway. Our study indicated Ang-(1-9) inhibited Ang II-induced hypertension through CNPY2/PERK pathway. These findings may provide new insights for prevention and treatment of hypertension in future.
Collapse
|
9
|
Zhu Q, Zhu Y, Liu Y, Tao Y, Lin Y, Lai S, Liang Z, Chen Y, Chen Y, Wang L. Moderation of gut microbiota and bile acid metabolism by chlorogenic acid improves high-fructose-induced salt-sensitive hypertension in mice. Food Funct 2022; 13:6987-6999. [PMID: 35708145 DOI: 10.1039/d2fo00038e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CGA) is a natural compound with many important pharmacological effects including anti-hypertension. This study aimed to investigate the anti-hypertensive effect of CGA on high-fructose-induced salt-sensitive hypertension and the underlying mechanism. Hypertension was induced in male C57BL/6 mice by 20% fructose in drinking water plus 4% sodium chloride in the diet (HFS) for 8 weeks. CGA (50, 100 or 200 mg kg-1 d-1) was orally administered to HFS-treated mice. The blood pressure of mice was recorded via the tail cuff method. The structure of gut microbiota and profiles of bile acids (BAs) in the serum were determined. Here, we found that HFS-elevated systolic blood pressure was greatly attenuated by CGA. The microbiota analysis showed that CGA restructured the HFS-treated gut microbiota, and markedly enriched Klebsiella. Oral administration of a Klebsiella isolate, Klebsiella oxytoca, also exhibited an anti-hypertensive effect in HFS-fed mice. Furthermore, we found that CGA and CGA-enriched K. oxytoca enhanced the expression of colonic Farnesoid X Receptor (FXR), modulated BA metabolism and enriched some BAs including deoxycholic acid (DCA) in the serum of HFS-fed mice. Treatment with DCA improved phenylephrine-induced vasoconstriction in arterioles of mice and attenuated hypertension in HFS-fed mice, suggesting that DCA serves as a link between gut microbiota and blood pressure. Our results clearly demonstrate that CGA attenuates HFS-induced hypertension in mice by modulating gut microbiota and BA metabolism. These findings provide insights into the potential mechanism of CGA for the treatment of hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yeyan Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuting Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yufeng Tao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yike Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sijie Lai
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zixing Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yating Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci 2022; 296:120424. [PMID: 35196531 DOI: 10.1016/j.lfs.2022.120424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
AIMS Hypertension is one of the major causes of cardiac damage. In this study, the effects of resveratrol supplementation and regular exercise on hypertension-induced cellular stress responses of myocardium were compared. MAIN METHODS Hypertension was induced in male Wistar rats by deoxycorticosterone-acetate + salt administration for 12 weeks. Resveratrol and regular exercise were applied for the last six weeks. In addition to biochemical and molecular examinations, isoprenaline, phenylephrine and, acetylcholine-mediated contractions and sinus rate were recorded in the isolated cardiac tissues. KEY FINDINGS Resveratrol and regular exercise reduced systolic blood pressure in hypertensive rats. The altered adrenergic and cholinergic responses of the right atrium and left papillary muscles in hypertension were separately improved by resveratrol and regular exercise. Resveratrol and regular exercise decreased plasma and cardiac total antioxidant capacity and, augmented the expression of antioxidant genes in hypertensive rats. While regular exercise restored the increase in p-PERK expression associated with endoplasmic reticulum stress and decrease in mitophagic marker PINK1 expression, resveratrol only ameliorated PINK1 expression in hypertensive rats. Resveratrol and exercise training suppressed hypertension-induced NLRP3 inflammasome activation by reversing the increase in NLRP3, p-NF-κB expression and the mature-IL-1β/pro-IL-1β and cleaved-caspase-1/pro-caspase-1 ratio. Resveratrol and exercise enhanced mRNA expression of caspase-3, bax, and bcl-2 involved in the apoptotic pathway, but attenuated phosphorylation of stress-related mitogenic proteins p38 and JNK induced by hypertension. SIGNIFICANCE Our study demonstrated the protective effect of resveratrol and exercise on hypertension-induced cardiac dysfunction by modulating cellular stress responses including oxidative stress, ER stress, mitophagy, NLRP3 inflammasome-mediated inflammation, and mitogenic activation.
Collapse
Affiliation(s)
- Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Aykut Bostanci
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman 70100, Turkey
| | - Muhammet Oguzhan Dönmez
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
11
|
Chen X, Mi L, Gu G, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang JN. Dysfunctional ER-mitochondrion coupling is associated with ER stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma 2022; 39:560-576. [PMID: 35018820 DOI: 10.1089/neu.2021.0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes (MAMs) and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damages of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact (CCI) device. We analyzed the physical ER-mitochondrion contacts in the perilesional cortex using transmission electron microscopy, western blot, and immunofluorescence. We specifically measured changes in the production of reactive oxygen species (ROS) in mitochondria, the unfolded protein response (UPR), the neuroinflammatory response, and ER stress-mediated apoptosis in the traumatic injured cerebral tissue. A modified neurological severity score (mNSS) was used to evaluate neurological function in the sTBI mice. We found that sTBI induced significant reorganizations of MEMs in the cerebral cortex within the first 24 hr post-injury. This ER-mitochondrion coupling was enhanced, reaching its peak level at 6 hrs post-sTBI. This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (IP3R1, VDAC1, GRP75, Sigma-1R), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Furthermore, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
Collapse
Affiliation(s)
- Xin Chen
- Tianjin Medical University General Hospital, 117865, Neurosurgery, 154 Anshan Road, Heping District, Tianjin, Tianjin, China, 300052.,Tianjin Neurological Institute, 230967, 154 Anshan Road, Heping District, Tianjin, China, 300052;
| | - Liang Mi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Gang Gu
- Tianjin Medical University General Hospital, 117865, Tianjin, Tianjin, China;
| | - Xiangliang Gao
- Tianjin Medical University General Hospital, 117865, Department of Neurosurgery, Tianjin, Tianjin, China;
| | - Mingming Shi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Yan Chai
- Tianjin Neurological Institute, 230967, Tianjin, China;
| | - Fanglian Chen
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Weidong Yang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Jian-Ning Zhang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| |
Collapse
|
12
|
Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biol 2021; 46:102115. [PMID: 34474396 PMCID: PMC8408632 DOI: 10.1016/j.redox.2021.102115] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota produce Trimethylamine N-oxide (TMAO) by metabolizing dietary phosphatidylcholine, choline, l-carnitine and betaine. TMAO is implicated in the pathogenesis of chronic kidney disease (CKD), diabetes, obesity and atherosclerosis. We test, whether TMAO augments angiotensin II (Ang II)-induced vasoconstriction and hence promotes Ang II-induced hypertension. Plasma TMAO levels were indeed elevated in hypertensive patients, thus the potential pathways by which TMAO mediates these effects were explored. Ang II (400 ng/kg−1min−1) was chronically infused for 14 days via osmotic minipumps in C57Bl/6 mice. TMAO (1%) or antibiotics were given via drinking water. Vasoconstriction of renal afferent arterioles and mesenteric arteries were assessed by microperfusion and wire myograph, respectively. In Ang II-induced hypertensive mice, TMAO elevated systolic blood pressure and caused vasoconstriction, which was alleviated by antibiotics. TMAO enhanced the Ang II-induced acute pressor responses (12.2 ± 1.9 versus 20.6 ± 1.4 mmHg; P < 0.05) and vasoconstriction (32.3 ± 2.6 versus 55.9 ± 7.0%, P < 0.001). Ang II-induced intracellular Ca2+ release in afferent arterioles (147 ± 7 versus 234 ± 26%; P < 0.001) and mouse vascular smooth muscle cells (VSMC, 123 ± 3 versus 157 ± 9%; P < 0.001) increased by TMAO treatment. Preincubation of VSMC with TMAO activated the PERK/ROS/CaMKII/PLCβ3 pathway. Pharmacological inhibition of PERK, ROS, CaMKII and PLCβ3 impaired the effect of TMAO on Ca2+ release. Thus, TMAO facilitates Ang II-induced vasoconstriction, thereby promoting Ang II-induced hypertension, which involves the PERK/ROS/CaMKII/PLCβ3 axis. Orally administered TMAO aggravates Ang II-induced hypertension. Antibiotics alleviate Ang II-induced hypertension by reducing TMAO generation. High concentrations of TMAO constrict afferent arterioles and mesenteric arteries and increase blood pressure. Low concentrations of TMAO enhance Ang II-induced vasoconstriction and acute pressor response via activating PERK/ROS/CaMKII/PLCβ3/Ca2+ pathway.
Collapse
|
13
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
14
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
15
|
Bal NB, Han S, Kiremitci S, Uludag MO, Demirel-Yilmaz E. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol Biol Rep 2020; 47:2243-2252. [PMID: 32072406 DOI: 10.1007/s11033-020-05329-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/13/2020] [Indexed: 11/25/2022]
Abstract
Hypertension is an important risk factor for cardiovascular diseases. Besides cardiovascular system, it could cause damage to liver. It has been shown that endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of hypertension. ERS inhibitor tauroursodeoxycholic-acid (TUDCA) has favorable effects on various pathologies including cardiovascular, metabolic and hepatic diseases. In this study, the hepatoprotective effect and mechanism of TUDCA were investigated in the deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Male Wistar rats were used and divided into four groups: Control, DOCA, TUDCA and DOCA + TUDCA. Hypertension was induced by DOCA-salt administration for twelve weeks after the unilateral nephrectomy. TUDCA was given for the last 4 weeks. Systolic blood pressure was measured by using tail-cuff method. At the end of the treatment, liver was isolated and weighed. The expressions of various proteins and histopathological evaluation were examined in the liver. TUDCA markedly decreased systolic blood pressure in the hypertensive animals. Hypertension caused increase in the expressions of glucose-regulated protein-78 (GRP78), matrix metalloproteinase-2 (MMP-2) and phospho-inhibitor κB-α (p-IκB-α) and the decrease in the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and phospho-extracellular signal-regulated kinase (p-ERK) in the liver. Alterations in these protein expressions were not detected in the TUDCA-treated hypertensive group. Also, hepatic balloon degeneration, inflammation and fibrosis were observed in the hypertensive group. TUDCA improved inflammation and fibrosis in the hypertensive liver. Our findings indicate that the detrimental effect of DOCA-salt-induced hypertension on the liver was defended by the inhibition of ERS. Hepatic ERS and its treatment should be taken into consideration for therapeutic approaches to hypertension.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Faculty of Medicine, Ankara University, Sihhiye, 06100, Ankara, Turkey
| | - Mecit Orhan Uludag
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
16
|
Tauroursodeoxycholic acid prevents ER stress-induced apoptosis and improves cerebral and vascular function in mice subjected to subarachnoid hemorrhage. Brain Res 2020; 1727:146566. [DOI: 10.1016/j.brainres.2019.146566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
|
17
|
Han S, Uludağ MO, Demirel Yılmaz E. Deneysel Hipertansiyon Modelinde Farklı DOCA-tuz Uygulama Sürelerinin Kan Basıncı ve Damar Cevapları Üzerine Etkisi. DICLE MEDICAL JOURNAL 2019. [DOI: 10.5798/dicletip.661263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Bal NB, Han S, Kiremitci S, Sadi G, Uludag O, Demirel-Yilmaz E. Hypertension-induced cardiac impairment is reversed by the inhibition of endoplasmic reticulum stress. ACTA ACUST UNITED AC 2019; 71:1809-1821. [PMID: 31579948 DOI: 10.1111/jphp.13169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Endoplasmic reticulum stress (ERS) has been shown to play a crucial role in the pathogenesis of hypertension. However, the role and mechanisms of ERS on hypertension-induced cardiac functional and morphological changes remain unclear. In this study, the effect of ERS inhibition with tauroursodeoxycholic acid (TUDCA) on hypertension-induced cardiac remodelling was examined. METHODS Hypertension was induced by deoxycorticosterone-acetate (DOCA) and salt administration in uni-nephrectomized rats for 12 weeks. TUDCA was administered for the last four weeks. Rhythmic activity and contractions of the right atrium and left papillary muscle (LPM) were recorded. In the left ventricle, the expression of various proteins was examined and histopathological evaluation was performed. KEY FINDINGS Hypertension-induced increments in systolic blood pressure and ventricular contractions were reversed by TUDCA. In the hypertensive heart, while expressions of glucose-regulated protein-78 (GRP78), phospho-dsRNA-activated protein kinase-like ER kinase (p-PERK), sarcoplasmic reticulum Ca-ATPase-2 (SERCA2), matrix metalloproteinase-2 (MMP-2) and nuclear NF-κB p65 increased; Bcl-2 (B-cell lymphoma-2) expression decreased and the altered levels of all these markers were restored by TUDCA. In the microscopic examination, TUDCA treatment attenuated hypertension-stimulated cardiac inflammation and fibrosis. CONCLUSIONS These results suggest that ERS inhibition may ameliorate cardiac contractility through improving ERS-associated calcium mishandling, apoptosis, inflammation and fibrosis, thereby offering therapeutic potential in hypertension-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Gökhan Sadi
- Department of Biology, K.Ö. Faculty of Science, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Orhan Uludag
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|