1
|
Molina-Peñate E, Artola A, Sánchez A. Exploring biorefinery alternatives for biowaste valorization: a techno-economic assessment of enzymatic hydrolysis coupled with anaerobic digestion or solid-state fermentation for high-value bioproducts. Bioengineered 2024; 15:2307668. [PMID: 38265757 PMCID: PMC10810166 DOI: 10.1080/21655979.2024.2307668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Enzymatic hydrolysis of organic waste is gaining relevance as a complementary technology to conventional biological treatments. Moreover, biorefineries are emerging as a sustainable scenario to integrate waste valorization and high-value bioproducts production. However, their application on municipal solid waste is still limited. This study systematically evaluates the techno-economic feasibility of the conversion of the organic fraction of municipal solid waste (OFMSW) into high-value bioproducts through enzymatic hydrolysis. Two key variables are examined: (a) the source of the enzymes: commercial or on-site produced using OFMSW, and (b) the treatment of the solid hydrolyzate fraction: solid-state fermentation (SSF) for the production of biopesticides or anaerobic digestion for the production of energy. As a result, four different biorefinery scenarios are generated and compared in terms of profitability. Results showed that the most profitable scenario was to produce enzymes on-site and valorize the solid fraction via SSF, with an internal rate of return of 13%. This scenario led to higher profit margins (74%) and a reduced payback time (6 years), in contrast with commercial enzymes that led to an unprofitable biorefinery. Also, the simultaneous production of higher-value bioproducts and energy reduced the economic dependence of OFMSW treatment on policy instruments while remaining energetically self-sufficient. The profitability of the biorefinery scenarios evaluated was heavily dependent on the enzyme price and the efficiency of the anaerobic digestion process, highlighting the importance of cost-efficient enzyme production alternatives and high-quality OFMSW. This paper contributes to understanding the potential role of enzymes in future OFMSW biorefineries and offers economical insights on different configurations.
Collapse
Affiliation(s)
- Esther Molina-Peñate
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Adriana Artola
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
2
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
3
|
Molina-Peñate E, Del Carmen Vargas-García M, Artola A, Sánchez A. Filling in the gaps in biowaste biorefineries: The use of the solid residue after enzymatic hydrolysis for the production of biopesticides through solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:92-103. [PMID: 36871406 DOI: 10.1016/j.wasman.2023.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Alternative production processes using waste are necessary to preserve non-renewable resources and prevent scarcity of materials for future generations. Biowaste, the organic fraction of municipal solid waste, is abundant and easily available. It can be fractionated into building blocks for which fermentative processes can be designed. By using solid-state fermentation, this paper proposes a method of valorizing biowaste's residual solid fraction after enzymatic hydrolysis. In a 22 L bioreactor, two digestates from anaerobic digestion processes were evaluated as cosubstrates to modify the acidic pH of the solid residue after enzymatic hydrolysis and promote the growth of the bacterial biopesticide producer Bacillus thuringiensis. Regardless of the cosubstrate used, the final microbial populations were similar indicating microbial specialization. The final product contained 4 × 108 spores per gram of dry matter and also crystal proteins of Bacillus thuringiensis var israelensis, which have insecticidal activity against pests. This method allows for the sustainable use of all materials liberated during the enzymatic hydrolysis of biowaste, including residual solids.
Collapse
Affiliation(s)
- Esther Molina-Peñate
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Aeris Tecnologías Ambientales S.L, Carrer Santa Rosa, 38, local, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - María Del Carmen Vargas-García
- Microbiology Unit, Department of Biology and Geology, University of Almeria, International Excellence Campus of the Sea (CEI·MAR), Crta. Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain
| | - Adriana Artola
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Molina-Peñate E, Sánchez A, Artola A. Enzymatic hydrolysis of the organic fraction of municipal solid waste: Optimization and valorization of the solid fraction for Bacillus thuringiensis biopesticide production through solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 137:304-311. [PMID: 34823137 DOI: 10.1016/j.wasman.2021.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/28/2023]
Abstract
To reach a more sustainable society, the implementation of a circular economy perspective in municipal waste management becomes essential. In this work, the enzymatic hydrolysis of source-separated organic fraction of municipal solid waste (OFMSW) has been optimized as a sugar-releasing step. A liquid sugar concentrate, with a maximum reducing sugar concentration of 50.56 g L-1, and a solid hydrolyzed fraction were obtained. The effect of the harshness of the hydrolysis conditions was evaluated on the performance of the resulting solid fraction as a substrate for Bacillus thuringiensis biopesticide production through solid-state fermentation. A production of 3.9 × 108 viable cells g-1 dry matter with a 33% sporulation ratio was achieved for milder hydrolysis conditions, highlighting the potential of the solid fraction of hydrolysis as a substrate of SSF processes. The proposed valorization pathway for the OFMSW results in a sugar concentrate with potential for fermentative processes and a fermented solid containing biopesticides from Bacillus thuringiensis.
Collapse
Affiliation(s)
- Esther Molina-Peñate
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Aeris Tecnologías Ambientales S.L, Carrer Santa Rosa, 38, local, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Antoni Sánchez
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Adriana Artola
- GICOM Research Group, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Edifici Q, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
6
|
Sala A, Vittone S, Barrena R, Sánchez A, Artola A. Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113113. [PMID: 34214791 DOI: 10.1016/j.jenvman.2021.113113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
As a waste valorisation option, agro-industrial residues (rice husk, apple pomace, whisky draff, soy fiber, rice fiber, wheat straw, beer draff, orange peel and potato peel) were tested as feasible substrates for fungal conidia production. Solid-state fermentation tests were conducted at laboratory scale (100 g) with Beauveria bassiana or Trichoderma harzianum which conidia are reported to have biopesticide properties. Conidia concentrations with all substrates were at least two orders of magnitude above inoculum except for both fibers, thus demonstrating the possibilities of the proposed waste recovery option. Highest productions were at least 1 × 109 conidia g-1 dry matter for Beauveria bassiana using rice husk or potato peel and higher than 5 × 109 conidia g-1 dry matter for Trichoderma harzianum using beer draff, potato peel or orange pomace. Principal component analysis has been used to understand which parameters affect the most fungal conidia production for an easier evaluation of other similar wastes, being air-filled porosity and initial pH for Beauveria bassiana and cumulative oxygen consumption, initial moisture and total sugar content for Trichoderma harzianum.
Collapse
Affiliation(s)
- Arnau Sala
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering Edifici Q, Carrer de Les Sitges Universitat Autònoma de Barcelona 08193 Bellatera (Cerdanyola Del Vallès), Barcelona, Spain.
| | - Silvana Vittone
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering Edifici Q, Carrer de Les Sitges Universitat Autònoma de Barcelona 08193 Bellatera (Cerdanyola Del Vallès), Barcelona, Spain.
| | - Raquel Barrena
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering Edifici Q, Carrer de Les Sitges Universitat Autònoma de Barcelona 08193 Bellatera (Cerdanyola Del Vallès), Barcelona, Spain.
| | - Antoni Sánchez
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering Edifici Q, Carrer de Les Sitges Universitat Autònoma de Barcelona 08193 Bellatera (Cerdanyola Del Vallès), Barcelona, Spain.
| | - Adriana Artola
- GICOM Research Group Department of Chemical, Biological and Environmental Engineering Edifici Q, Carrer de Les Sitges Universitat Autònoma de Barcelona 08193 Bellatera (Cerdanyola Del Vallès), Barcelona, Spain.
| |
Collapse
|
7
|
Martínez-Avila O, Muñoz-Torrero P, Sánchez A, Font X, Barrena R. Valorization of agro-industrial wastes by producing 2-phenylethanol via solid-state fermentation: Influence of substrate selection on the process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:403-411. [PMID: 33445113 DOI: 10.1016/j.wasman.2020.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
2-phenylethanol (2-PE) is a value-added compound widely used in industry due to its rose-like odor and antibacterial properties that can be bioproduced using wastes as raw materials. This study presents the valorization of nine agro-industrial wastes as potential substrates for 2-PE production using an isolated 2-PE producer Pichia kudriavzevii, and the solid-state fermentation (SSF) technology as an alternative approach. The assessed substrates comprised wastes of varied traits such that each of them provided different characteristics to the fermentation. Thus, by using a principal component analysis (PCA), it was possible to identify the most significant characteristics associated with the substrates affecting the 2-PE production. Results show that L-phenylalanine biotransformation was more efficient than de novo synthesis for producing 2-PE. Besides, from the evaluated set, the maximum 2-PE production was achieved with red apple pomace, reaching 1.7 and 25.2 mg2PE per gram of used waste through de novo and L-phenylalanine biotransformation, respectively. In that scenario, volumetric productivity and precursor yield were 39.6 mg2PE L-1h-1 and 0.69 g2PE per gram of L-phenylalanine added, respectively. From the PCA, it was identified that the reducing sugars content of the substrate, the air-filled porosity of the bed and the L-phenylalanine availability were the most critical parameters (associated with the substrates) influencing the microbial activity and 2-PE production. These results suggest that the desirable traits a solid media needs for promoting 2-PE production via SSF could be reached by using a combination of wastes in a synergistic approach.
Collapse
Affiliation(s)
- Oscar Martínez-Avila
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Patricia Muñoz-Torrero
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering. Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
8
|
Vaverková MD, Elbl J, Voběrková S, Koda E, Adamcová D, Mariusz Gusiatin Z, Al Rahman A, Radziemska M, Mazur Z. Composting versus mechanical-biological treatment: Does it really make a difference in the final product parameters and maturity. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:173-183. [PMID: 32222681 DOI: 10.1016/j.wasman.2020.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/14/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
One of crucial waste management problems is the management of organic waste. This activity employs the composting. In case of green waste, its application seems reasonable, whereas the use of selected mixed waste raises problems related to the compost quality. Across countries, the non-sterile organic fraction of municipal solid waste is being separated through the mechanical-biological treatment. The technology is a solution of waste treatment and meets objectives set out in the Landfill Directive. There are many problems associated with the use of output products. The use of compost as a fertilizer requires determination of its impact on the environment. Compost quality can be assessed using analytical methods and phytotoxicity tests. Therefore, the aim of this study was to describe changes in physico-chemical, enzymatic, phytotoxicity and vegetation parameters occurring in composts from two systems - a prismatic installation for green waste, and a mechanical-biological treatment installation. The compost from green waste exhibited greater stability. Values of dehydrogenase activity were lower if compared with the mechanically and biologically treated compost, which indicates lower compost maturity. The biomass production of Brassica napus L. and Fetuca rubra L. was higher in the variant with the application of green compost. The influence on Hordeum vulgare L., Cannabis sativa L., and Sinapis alba L. depended on the plant type and the compost used. Nevertheless, the compost from green waste was less toxic. The evidence from this study suggests that the mechanical-biological treatment had problems associated with the maturation and quality of the final product.
Collapse
Affiliation(s)
- Magdalena Daria Vaverková
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| | - Jakub Elbl
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno, University of Technology, Purkynova 656/123, Brno CZ-616 00, Czech Republic
| | - Stanislava Voběrková
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technická 3058/10, CZ-616 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelská 1, CZ-61300, Brno, Czech Republic
| | - Eugeniusz Koda
- Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Dana Adamcová
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Zygmunt Mariusz Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-719 Olsztyn, Poland
| | - Abd Al Rahman
- Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technická 3058/10, CZ-616 00 Brno, Czech Republic; Central European Institute of Technology, Mendel University in Brno, Zemedelská 1, CZ-61300, Brno, Czech Republic
| | - Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
| | - Zbigniew Mazur
- Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, 10-719 Olsztyn, Poland
| |
Collapse
|
9
|
Sánchez A. The Current Role of Chemical Engineering in Solving Environmental Problems. FRONTIERS IN CHEMICAL ENGINEERING 2019. [DOI: 10.3389/fceng.2019.00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Martínez O, Sánchez A, Font X, Barrena R. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. BIORESOURCE TECHNOLOGY 2018; 263:136-144. [PMID: 29738976 DOI: 10.1016/j.biortech.2018.04.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Bioproduction of generally recognized as safe (GRAS) products starting with low-cost raw materials has become significant in the biorefinery concept. Thus, the solid-state fermentation (SSF) of agro-industrial residues using GRAS strains appears as alternative to obtain aroma compounds. Here, the SSF of the mixture sugarcane bagasse/sugar beet molasses was used for producing a mixture of value-added fruit-like compounds. The study aimed to enhance the production and ester selectivity evaluating three operational strategies at three scales (0.5, 4.5 and 22 L) using non-sterilized residues. While the average total volatile production was 120 mgVol per gram of dry substrate (g-1ITS), fed-batch operation promoted the highest increases in the ester content up to 57 mgEst g-1ITS, an 88 and 59% more than in the static-batch and intermittent mixing modes respectively. Alternative operational strategies have compensated the scale-up adverse effects in the bioproduction, moving towards a sustainable large-scale application in a circular economy scheme.
Collapse
Affiliation(s)
- Oscar Martínez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xavier Font
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Trulli E, Ferronato N, Torretta V, Piscitelli M, Masi S, Mancini I. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:556-564. [PMID: 29066137 DOI: 10.1016/j.wasman.2017.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/21/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO2 h-1 kg-1VS, and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy.
Collapse
Affiliation(s)
- Ettore Trulli
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Navarro Ferronato
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, I-21100 Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, I-21100 Varese, Italy.
| | - Massimiliano Piscitelli
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Salvatore Masi
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| | - Ignazio Mancini
- School of Engineering, University of Basilicata, Viale dell'Ateneo Lucano, 10, I-85100 Potenza, Italy
| |
Collapse
|
12
|
Ballardo C, Barrena R, Artola A, Sánchez A. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 70:53-58. [PMID: 28988606 DOI: 10.1016/j.wasman.2017.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
In the framework of a circular economy, organic solid wastes are considered to be resources useful for obtaining value-added products. Among other potential uses, biodegradable wastes from agricultural, industrial, and domestic sources are being studied to obtain biopesticides through solid-state fermentation (SSF), mainly at the laboratory scale. The suitability of biowaste (source-selected organic fraction of municipal solid waste) for use as a substrate for Bacillus thuringiensis (Bt) growth under non-sterile conditions in a 10 L SSF reactor was determined in this study. An operational strategy for setting up a semi-continuous process yielding a stabilised organic compost-like material enriched with Bt suitable for use as a soil amendment was developed. Concentrations of 1.7·107-2.2·107 and 1.3·107-2.1·107 CFU g-1 DM for Bt viable cells and spores, respectively, were obtained in the final material. As the results confirmed, Bt-enriched compost-like material with potential biopesticide properties can be produced from non-sterile biowaste.
Collapse
Affiliation(s)
- Cindy Ballardo
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Raquel Barrena
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Adriana Artola
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Antoni Sánchez
- Composting Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|