1
|
Garg N, Pekkinen S, Martínez González E, Serna-Guerrero R, Peljo P, Santasalo-Aarnio A. Enhanced electrochemical discharge of Li-ion batteries for safe recycling. SUSTAINABLE ENERGY & FUELS 2024; 8:2777-2788. [PMID: 38868442 PMCID: PMC11165673 DOI: 10.1039/d4se00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
The recycling of spent lithium-ion batteries (LIBs) is crucial to sustainably manage resources and protect the environment as the use of portable electronics and electric vehicles (EVs) increases. However, the safe recycling of spent LIBs is challenging, as they often contain residual energy. Left untreated, this can trigger a thermal runaway and result in disasters during the recycling process. For efficient recycling, it is important to withdraw any leftover energy from LIBs, regardless of the processing method that follows the discharge. The electrochemical discharge method is a quick and inexpensive method to eliminate this hazard. This method works by immersing batteries in an aqueous inorganic salt solution to discharge LIBs completely and efficiently. Previously, research focus has been on different inorganic salt solutions that release toxic or flammable gaseous products during discharge. In contrast, we present an entirely new approach for electrochemical discharge - the utilization of an Fe(ii)-Fe(iii) redox couple electrolyte. We show that this medium can be used for efficient LIB deep discharge to a voltage of 2.0 V after rebound, a level that is low enough for safe discharge. To accomplish this, periodic discharge methods were used. In addition, no corrosion on the battery casing was observed. The pH behavior at the poles was also investigated, and it was found that without convection, gas evolution during discharge cannot be avoided. Finally, it was discovered that the battery casing material plays a vital role in electrochemical discharge, and its industrial standardization would facilitate efficient recycling.
Collapse
Affiliation(s)
- Neha Garg
- Research group of Energy Conversion and Systems, Department of Mechanical Engineering, School of Engineering, Aalto University PO Box 14400 Aalto FI-00076 Finland
| | - Simo Pekkinen
- Research group of Energy Conversion and Systems, Department of Mechanical Engineering, School of Engineering, Aalto University PO Box 14400 Aalto FI-00076 Finland
| | - Eduardo Martínez González
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku Turun Yliopisto FI-20014 Finland
| | - Rodrigo Serna-Guerrero
- Research group of Mineral Processing and Recycling, Department of Chemical Engineering and Metallurgy, School of Chemical Engineering, Aalto University PO Box 16200 Aalto FI-00076 Finland
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku Turun Yliopisto FI-20014 Finland
| | - Annukka Santasalo-Aarnio
- Research group of Energy Conversion and Systems, Department of Mechanical Engineering, School of Engineering, Aalto University PO Box 14400 Aalto FI-00076 Finland
| |
Collapse
|
2
|
Gao Y, Zhang S, Lin S, Li Z, Chen Y, Wang C. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review. ENVIRONMENTAL RESEARCH 2024; 247:118216. [PMID: 38242420 DOI: 10.1016/j.envres.2024.118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Recent concerns have emerged regarding the improper disposal of spent lithium-ion batteries (LIBs), which has garnered widespread societal attention. Graphite materials accounted for 12-21 wt % of LIBs' mass, typically contain heavy metals, binders, and residual electrolytes. Regenerating spent graphite not only alleviated the shortage of plumbago, but also contributed to the supports environmental protection as well as national carbon peak and neutrality ("dual carbon" goals). Despite significant advancements in recycling spent LIBs had been made, a comprehensive overview of the processes for pretreatment, regeneration, and functionalization of spent graphite from retired LIBs, along with the associated technical standards and industry regulations enabling their smooth implementation still needed to be mentioned. Hence, we conducted the following research work. Firstly, the pre-treatment process of spent graphite, including discharging, crushing, and screening was summed up. Next,. Subsequently, graphite recovery methods, such as acid leaching, pyrometallurgy, and combined methods were summarized. Moreover, the modification and doping approach was used to enhance the electrochemical properties of graphite. Afterwards, we reviewed the functionalization of anode graphite from an economically and environmentally friendly view. Meanwhile, the technical standards and industry regulations of spent LIBs in domestic and oversea industries were described. Finally, we provided an overview of the technical challenges and development bottlenecks in graphite recycling, along with future prospects Overall, this study outlined the opportunities and challenges in recovering and functionalizing of anode materials via a efficient and sustainable processes.
Collapse
Affiliation(s)
- Yang Gao
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei, 050035, China
| | - Shaoyan Zhang
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei, 050035, China.
| | - Shuanglong Lin
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei, 050035, China
| | - Zhongqiu Li
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei, 050035, China; Shijiazhuang Concrete Green Intelligent Manufacturing and Recycling Technology Innovation Center, Shijiazhuang, Hebei, 050035, China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Abe Y, Watanabe R, Yodose T, Kumagai S. Cathode active materials using rare metals recovered from waste lithium-ion batteries: A review. Heliyon 2024; 10:e28145. [PMID: 38560163 PMCID: PMC10981055 DOI: 10.1016/j.heliyon.2024.e28145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Large-scale lithium-ion batteries (LIBs) are overtaking as power sources for electric vehicles and grid-scale energy-storage systems for renewable sources. Accordingly, large amounts of LIBs are expected to be discarded in the near future. Recycling technologies for waste LIBs, particularly for valuable rare metals (Li, Co, and Ni) used in cathode active materials, need to be developed to construct continuous LIB supply chains. Various recovery methodologies, such as pyrometallurgy, hydrometallurgy, and direct recycling, as well as their advantages, disadvantages, and technical features, are briefly introduced. We review the electrochemical performances of these cathode active materials based on recycled rare metals from LIB waste. Moreover, the physicochemical properties and electrochemical performance of the cathode active materials with impurities incorporated during recycling, which have high academic significance, are outlined. In hydrometallurgy-based LIB recycling, the complete removal of impurities in cathode active materials is not realistic for the mass and sustainable production of LIBs; thus, optimal control of the impurity levels is of significance. Meanwhile, the studies on the direct recycling of LIB showed the necessity of almost complete impurity removal and restoration of physicochemical properties in cathode active materials. This review provides a survey of the technological outlook of reusing cathode active materials from waste LIBs.
Collapse
Affiliation(s)
- Yusuke Abe
- Joint Research Center for Electric Architecture, Akita University, Tegatagakuen-machi 1-1, Akita, 010-8502, Japan
| | - Ryoei Watanabe
- Environmental Protection Laboratory, DOWA ECO-SYSTEM Co., Ltd., 65-1 Omoriyama-shita, Hanaoka, Odate, 017-0005, Japan
| | - Tatsuya Yodose
- Environmental Protection Laboratory, DOWA ECO-SYSTEM Co., Ltd., 65-1 Omoriyama-shita, Hanaoka, Odate, 017-0005, Japan
| | - Seiji Kumagai
- Department of Mathematical Science and Electrical-Electronic-Computer Engineering, Akita University, Tegatagakuen-machi 1-1, Akita, 010-8502, Japan
| |
Collapse
|
4
|
Zhang Z, Xiao J, Chen Y, Su F, Xu F, Zhong Q. Potential environmental and human health menace of spent graphite in lithium-ion batteries. ENVIRONMENTAL RESEARCH 2024; 244:117967. [PMID: 38109964 DOI: 10.1016/j.envres.2023.117967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
The growing demand for lithium-ion batteries for portable electronics and electric vehicles results in a booming lithium battery market, leading to a concomitant increase in spent graphite. This research investigated the potential impacts of spent graphite on environmental and human health using standardized toxicity extraction and Life Cycle Impact Assessment models. The spent graphite samples were classified as hazardous waste due to the average nickel content of 337.14 mg/L according to Chinese regulations. Besides, cadmium and fluorine were the other elements that exceeded the regulations threshold. Easily ignored aluminum and heavy metal cobalt are other harmful elements according to the results of Life Cycle Impact Assessments. All the metallic harmful elements mainly exist in a transferable state. Thermogravimetry infrared spectrometry coupled with mass spectrometry was employed to recognize the emitted gases and explore gas emission behavior. Inorganic gases of CO, H2S, SO2, SO3, oxynitride, HCl, and fluoride-containing gases were detected. Sulfur-containing gases released from spent graphite were contributed by the residual sulfuric acid after leaching. The correlation between the evolution of emitted gases and the heating schedule was established simultaneously. The research comprehensively illustrates the pollution of spent graphite and provides assistance for the design of green recycling schemes for spent graphite.
Collapse
Affiliation(s)
- Zhenhua Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jin Xiao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; National Engineering Research Center of Low-carbon Nonferrous Metallurgy, Central South University, Changsha, 410083, China
| | - Yiwen Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Feiyang Su
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Fanghong Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Qifan Zhong
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
5
|
Lei S, Sun W, Yang Y. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3609-3628. [PMID: 38329241 DOI: 10.1021/acs.est.3c08585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The lithium iron phosphate (LFP) battery has been widely used in electric vehicles and energy storage for its good cyclicity, high level of safety, and low cost. The massive application of LFP battery generates a large number of spent batteries. Recycling and regenerating materials from spent LFP batteries has been of great concern because it can significantly recover valuable metals and protect the environment. This paper aims to critically assess the latest technical information available on the echelon utilization and recycling of spent LFP batteries. First, it focuses on the progress of disassembly, evaluation and detection, regrouping, and application in echelon utilization. Then, the recycling technologies, including pretreatment, direct repair, and material regeneration, of spent LFPs are summarized. Finally, the paper proposes some challenges in the echelon utilization and recycling of spent LFP batteries, and concludes with recommendations for an intelligent, refined, and clean LFP battery circulation system that are required to ensure the sustainable development of spent LFP battery recycling.
Collapse
Affiliation(s)
- Shuya Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Nazari P, Hamidi A, Golmohammadzadeh R, Rashchi F, Vahidi E. Upcycling spent graphite in LIBs into battery-grade graphene: Managing the produced waste and environmental impacts analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:140-152. [PMID: 38056363 DOI: 10.1016/j.wasman.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
This study focuses on connecting graphite demand to battery materials demand, providing a solution to the identified shortage of battery materials and promoting sustainable development. This research used modified Hummer's method to synthesize graphene from the recycled graphite and compared it with graphene synthesized from purified recycled graphite. The purification of recycled graphite was implemented by acid curing-leaching and calcination. The analysis showed that the reduction reaction effectively removed oxygen-containing functional groups from the graphene, resulting in enhanced quality of the produced graphene. Hummer's waste acid was used as a leaching reagent for different LIBs' cathode types in waste management. The waste acid was found to be a strong reagent for transition metals leaching and obtained almost full recoveries of Li, Co, Mn, and Ni from spent LIB cathodes. The synthesized graphene exhibited higher specific surface areas and conductivity values compared to battery-grade graphite. The electrochemical performance of the graphene sheets in lithium half-cells was evaluated, and it was found that the graphene synthesized from recycled graphite enabled increased lithium insertion at active sites, suggesting its potential for enhanced lithium retention. Furthermore, a life cycle assessment study was conducted to evaluate the environmental impacts of the recycling and synthesis processes. This study demonstrates the potential of recycling graphite from spent battery anodes to produce high-quality graphene with improved electrochemical properties.
Collapse
Affiliation(s)
- Pouria Nazari
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Amirhossein Hamidi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Rabeeh Golmohammadzadeh
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3200, Australia; Environment Protection Authority Victoria, EPA Science, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| | - Fereshteh Rashchi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ehsan Vahidi
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA.
| |
Collapse
|
7
|
Huang H, Xie D, Zheng Z, Zeng Y, Xie S, Liu P, Zhang M, Wang S, Cheng F. Recycled Graphite from Spent Lithium-Ion Batteries as a Conductive Framework Directly Applied in Red Phosphorus-Based Anodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37913551 DOI: 10.1021/acsami.3c13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The recycling of spent graphite from waste lithium-ion batteries (LIBs) holds great importance in terms of environmental protection and conservation of natural resources. In this study, a simple two-step method involving heat treatment and solution washing was employed to recycle spent graphite. Subsequently, the recycled graphite was milled with red phosphorus to create a carbon/red phosphorus composite that served as an anode material for the new LIBs, aiming to address the low capacity issue. In a half-cell configuration, the carbon/red phosphorus composite exhibited remarkable cycling stability, maintaining a capacity of 721.7 mAh g-1 after 500 cycles at 0.2 A g-1, and demonstrated an excellent rate performance with a capacity of 276.2 mAh g-1 at 3 A g-1. The improved performance can be attributed to the structure of the composite, where the red phosphorus particles are covered by the carbon layer. This composite outperformed pure recycled graphite, highlighting its potential in enhancing the electrochemical properties of LIBs. Furthermore, when the carbon/red phosphorus composite was assembled into a full-cell configuration with LiCoO2 as the cathode material, it displayed a stable electrochemical performance, further validating its practical applicability. This work presents a promising and green strategy for recycling spent graphite and using it in the production of new batteries. The findings offer a high potential for commercialization, contributing to the advancement of sustainable and ecofriendly energy storage technologies.
Collapse
Affiliation(s)
- Han Huang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Dong Xie
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zeqiang Zheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yinan Zeng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shilei Xie
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
8
|
Chen X, Hua W, Yuan L, Ji S, Wang S, Yan S. Evolution fate of battery chemistry during efficient discharging processing of spent lithium-ion batteries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:278-286. [PMID: 37734349 DOI: 10.1016/j.wasman.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
Residual electricity in spent lithium-ion batteries (LIBs) may cause safety issues during their dismantling and shredding in pretreatment processes. However, the migration and transformation of pollutants generated from spent LIBs during discharging were rarely reported, which is critical for prevention of pollution risk and facilitation of discharging efficiency. Herein, this work is focused on the evolution fate of battery chemistry during discharging processing. Here, migration of metal ions inside battery, galvanic corrosion on surface of battery and chemical evolution outside battery were investigated to attain the comprehensive understanding of discharging process. Firstly, efficient and complete discharging can be achieved using 5 wt% CuSO4 as discharging medium, which mainly drive the migration of Li, instead of transition metals, from anode to cathode, resulting in enrichment of Li in cathode material. Besides, different degrees of galvanic corrosion phenomena on surface of spent LIBs can be discovered in different electrolyte solutions, involving with the corrosion of Al or Fe shells and resulting in the leakage of organic electrolytes inside battery into electrolyte solution. The detailed characterization results of the composition of solute indicate that hydroxide precipitates liberated from corroded shell and organic pollutants are their main existence states.
Collapse
Affiliation(s)
- Xiangping Chen
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China; College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410081, PR China
| | - Weiming Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Lu Yuan
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410081, PR China.
| | - Shaowen Ji
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi Province 710021, PR China
| | - Shubin Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, Guangdong Province 510655, PR China.
| | - Shuxuan Yan
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province 410083, PR China
| |
Collapse
|
9
|
Niu B, Xu Z, Xiao J, Qin Y. Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach. Chem Rev 2023. [PMID: 37339582 DOI: 10.1021/acs.chemrev.3c00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Recycling spent lithium-ion batteries (LIBs) is becoming a hot global issue due to the huge amount of scrap, hazardous, and valuable materials associated with end-of-life LIBs. The electrolyte, accounting for 10-15 wt % of spent LIBs, is the most hazardous substance involved in recycling spent LIBs. Meanwhile, the valuable components, especially Li-based salts, make recycling economically beneficial. However, studies of electrolyte recycling still account for only a small fraction of the number of spent LIB recycling papers. On the other hand, many more studies about electrolyte recycling have been published in Chinese but are not well-known worldwide due to the limitations of language. To build a bridge between Chinese and Western academic achievements on electrolyte treatments, this Review first illustrates the urgency and importance of electrolyte recycling and analyzes the reason for its neglect. Then, we introduce the principles and processes of the electrolyte collection methods including mechanical processing, distillation and freezing, solvent extraction, and supercritical carbon dioxide. We also discuss electrolyte separation and regeneration with an emphasis on methods for recovering lithium salts. We discuss the advantages, disadvantages, and challenges of recycling processes. Moreover, we propose five viable approaches for industrialized applications to efficiently recycle electrolytes that combine different processing steps, ranging from mechanical processing with heat distillation to mechanochemistry and in situ catalysis, and to discharging and supercritical carbon dioxide extraction. We conclude with a discussion of future directions for electrolyte recycling. This Review will contribute to electrolyte recycling more efficiently, environmentally friendly, and economically.
Collapse
Affiliation(s)
- Bo Niu
- College of Resources and Environmental Science, Hebei Agricultural University, Hebei Baoding 071000, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiefeng Xiao
- Department of Environmental Science and Engineering, Huaqiao University, Jiemei Road 668, Xiamen 361021, China
| | - Yufei Qin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Jiangxi Green Recycling Co., Ltd., Fengcheng 331100, Jiangxi China
| |
Collapse
|
10
|
Ma X, Ge P, Wang L, Sun W, Bu Y, Sun M, Yang Y. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials. Molecules 2023; 28:molecules28104081. [PMID: 37241821 DOI: 10.3390/molecules28104081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The recycling of spent lithium-ion batteries (LIBs) has attracted great attention, mainly because of its significant impact on resource recycling and environmental protection. Currently, the processes involved in recovering valuable metals from spent LIBs have shown remarkable progress, but little attention has been paid to the effective separation of spent cathode and anode materials. Significantly, it not only can reduce the difficulty in the subsequent processing of spent cathode materials, but also contribute to the recovery of graphite. Considering the difference in their chemical properties on the surface, flotation is an effective method to separate materials, owing to its low-cost and eco-friendly characteristics. In this paper, the chemical principles of flotation separation for spent cathodes and materials from spent LIBs is summarized first. Then, the research progress in flotation separation of various spent cathode materials (LiCoO2, LiNixCoyMnzO2, and LiFePO4) and graphite is summarized. Given this, the work is expected to offer the significant reviews and insights about the flotation separation for high-value recycling of spent LIBs.
Collapse
Affiliation(s)
- Xuesong Ma
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Peng Ge
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Lisha Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yongjie Bu
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Miaomiao Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Zhang M, Wang L, Wang S, Ma T, Jia F, Zhan C. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles. SMALL METHODS 2023:e2300125. [PMID: 37086120 DOI: 10.1002/smtd.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Electric vehicles (EVs) are one of the most promising decarbonization solutions to develop a carbon-negative economy. The increasing global storage of EVs brings out a large number of power batteries requiring recycling. Lithium iron phosphate (LFP) is one of the first commercialized cathodes used in early EVs, and now gravimetric energy density improvement makes LFP with low cost and robustness popular again in the market. Developments in LFP recycling techniques are in demand to manage a large portion of the EV batteries retired both today and around ten years later. In this review, first the operation and degradation mechanisms of LFP are revisited aiming to identify entry points for LFP recycling. Then, the current LFP recycling methods, from the pretreatment of the retired batteries to the regeneration and recovery of the LFP cathode are summarized. The emerging direct recovery technology is highlighted, through which both raw material and the production cost of LFP can be recovered. In addition, the current issues limiting the development of the LIBs recycling industry are presented and some ideas for future research are proposed. This review provides the theoretical basis and insightful perspectives on developing new recycling strategies by outlining the whole-life process of LFP.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lifan Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyi Ma
- China Automotive Technology and Research Center Co., Ltd., Tianjin, 300300, China
| | - Feifei Jia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Chun Zhan
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
Wöhrl K, Kotak Y, Geisbauer C, Barra S, Wilhelm G, Schneider G, Schweiger HG. Analysis of Deactivation of 18,650 Lithium-Ion Cells in CaCl 2, Tap Water and Demineralized Water for Different Insertion Times. SENSORS (BASEL, SWITZERLAND) 2023; 23:3901. [PMID: 37112241 PMCID: PMC10140900 DOI: 10.3390/s23083901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The deployment of battery-powered electric vehicles in the market has created a naturally increasing need for the safe deactivation and recycling of batteries. Various deactivating methods for lithium-ion cells include electrical discharging or deactivation with liquids. Such methods are also useful for cases where the cell tabs are not accessible. In the literature analyses, different deactivation media are used, but none include the use of calcium chloride (CaCl2) salt. As compared to other media, the major advantage of this salt is that it can capture the highly reactive and hazardous molecules of Hydrofluoric acid. To analyse the actual performance of this salt in terms of practicability and safety, this experimental research aims to compare it against regular Tap Water and Demineralized Water. This will be accomplished by performing nail penetration tests on deactivated cells and comparing their residual energy against each other. Moreover, these three different media and respective cells are analysed after deactivation, i.e., based on conductivity measurements, cell mass, flame photometry, fluoride content, computer tomography and pH value. It was found that the cells deactivated in the CaCl2 solution did not show any signs of Fluoride ions, whereas cells deactivated in TW showed the emergence of Fluoride ions in the 10th week of the insertion. However, with the addition of CaCl2 in TW, the deactivation process > 48 h for TW declines to 0.5-2 h, which could be an optimal solution for real-world situations where deactivating cells at a high pace is essential.
Collapse
Affiliation(s)
- Katharina Wöhrl
- Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), 85049 Ingolstadt, Germany (S.B.); (H.-G.S.)
| | - Yash Kotak
- Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), 85049 Ingolstadt, Germany (S.B.); (H.-G.S.)
| | | | - Sönke Barra
- Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), 85049 Ingolstadt, Germany (S.B.); (H.-G.S.)
| | - Gudrun Wilhelm
- Hochschule Aalen, Materials Research Institute, 73430 Aalen, Germany; (G.W.); (G.S.)
| | - Gerhard Schneider
- Hochschule Aalen, Materials Research Institute, 73430 Aalen, Germany; (G.W.); (G.S.)
| | - Hans-Georg Schweiger
- Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), 85049 Ingolstadt, Germany (S.B.); (H.-G.S.)
| |
Collapse
|
13
|
Jiang SQ, Nie CC, Li XG, Shi SX, Gao Q, Wang YS, Zhu XN, Wang Z. Review on comprehensive recycling of spent lithium-ion batteries: a full component utilization process for green and sustainable production. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Applications of Spent Lithium Battery Electrode Materials in Catalytic Decontamination: A Review. Catalysts 2023. [DOI: 10.3390/catal13010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For a large amount of spent lithium battery electrode materials (SLBEMs), direct recycling by traditional hydrometallurgy or pyrometallurgy technologies suffers from high cost and low efficiency and even serious secondary pollution. Therefore, aiming to maximize the benefits of both environmental protection and e-waste resource recovery, the applications of SLBEM containing redox-active transition metals (e.g., Ni, Co, Mn, and Fe) for catalytic decontamination before disposal and recycling has attracted extensive attention. More importantly, the positive effects of innate structural advantages (defects, oxygen vacancies, and metal vacancies) in SLBEMs on catalytic decontamination have gradually been unveiled. This review summarizes the pretreatment and utilization methods to achieve excellent catalytic performance of SLBEMs, the key factors (pH, reaction temperature, coexisting anions, and catalyst dosage) affecting the catalytic activity of SLBEM, the potential application and the outstanding characteristics (detection, reinforcement approaches, and effects of innate structural advantages) of SLBEMs in pollution treatment, and possible reaction mechanisms. In addition, this review proposes the possible problems of SLBEMs in practical decontamination and the future outlook, which can help to provide a broader reference for researchers to better promote the implementation of “treating waste to waste” strategy.
Collapse
|
15
|
Wu X, Ma J, Wang J, Zhang X, Zhou G, Liang Z. Progress, Key Issues, and Future Prospects for Li-Ion Battery Recycling. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200067. [PMID: 36532240 PMCID: PMC9749081 DOI: 10.1002/gch2.202200067] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Indexed: 06/03/2023]
Abstract
The overuse and exploitation of fossil fuels has triggered the energy crisis and caused tremendous issues for the society. Lithium-ion batteries (LIBs), as one of the most important renewable energy storage technologies, have experienced booming progress, especially with the drastic growth of electric vehicles. To avoid massive mineral mining and the opening of new mines, battery recycling to extract valuable species from spent LIBs is essential for the development of renewable energy. Therefore, LIBs recycling needs to be widely promoted/applied and the advanced recycling technology with low energy consumption, low emission, and green reagents needs to be highlighted. In this review, the necessity for battery recycling is first discussed from several different aspects. Second, the various LIBs recycling technologies that are currently used, such as pyrometallurgical and hydrometallurgical methods, are summarized and evaluated. Then, based on the challenges of the above recycling methods, the authors look further forward to some of the cutting-edge recycling technologies, such as direct repair and regeneration. In addition, the authors also discuss the prospects of selected recycling strategies for next-generation LIBs such as solid-state Li-metal batteries. Finally, overall conclusions and future perspectives for the sustainability of energy storage devices are presented in the last chapter.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Jun Ma
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Junxiong Wang
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Xuan Zhang
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Guangmin Zhou
- Shenzhen Geim Graphene CenterTsinghua‐Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zheng Liang
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
16
|
Zhang R, Shi X, Esan OC, An L. Organic Electrolytes Recycling From Spent Lithium-Ion Batteries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200050. [PMID: 36532239 PMCID: PMC9749074 DOI: 10.1002/gch2.202200050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Lithium-ion batteries (LIBs) are regarded to be the most promising electrochemical energy storage device for portable electronics as well as electrical vehicles. However, due to their limited-service life, tons of spent LIBs are expected to be produced in the recent years. Suitable recycling technology is therefore becoming more and more important as improper treatment of spent LIBs, especially the aged organic electrolyte, can cause severe environmental pollution and threats to human health. The organic solvents and high concentration of lithium salts in aged electrolytes are always sensitive toward water and air, which would easily hydrolyze and decompose into toxic fluorine-containing compounds, leading to severe fluorine pollution of the surrounding environment. Hence, recycling aged electrolytes from spent LIBs is an efficient way to avoid this potential risk to the environment. However, several issues inhibit the realization of electrolyte recycling, including the volatile, inflammable, and toxic nature of the electrolytes, the difficulty to extract electrolytes from the electrodes and separators, and various electrolyte compositions inside LIBs from different applications and companies. Herein, the current progress in recycling methods for aged electrolytes from spent LIBs is summarized and perspectives on future development of electrolyte recycling are presented.
Collapse
Affiliation(s)
- Ruihan Zhang
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Xingyi Shi
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Oladapo Christopher Esan
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| | - Liang An
- Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong SAR999077China
| |
Collapse
|
17
|
Nazarov VI, Retivov VM, Makarenkov DA, Popov AP, Aflyatunova GR, Kuznetsova NA. Preliminary Discharge of Spent Lithium Batteries in Salt Solution for Safe Disposal. COKE AND CHEMISTRY 2022. [DOI: 10.3103/s1068364x22700296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
18
|
Wu L, Zhang FS, Zhang ZY, Zhang CC. Corrosion behavior and corrosion inhibition performance of spent lithium-ion battery during discharge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Niu B, Xiao J, Xu Z. Advances and challenges in anode graphite recycling from spent lithium-ion batteries. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129678. [PMID: 36104906 DOI: 10.1016/j.jhazmat.2022.129678] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Spent lithium-ion batteries (LIBs) have been one of the fast-growing and largest quantities of solid waste in the world. Spent graphite anode, accounting for 12-21 wt% of batteries, contains metals, binders, toxic, and flammable electrolytes. The efficient recovery of spent graphite is urgently needed for environmental protection and resource sustainability. Recently, more and more studies have been focused on spent graphite recycling, while the advance and challenges are rarely summarized. Hence, this study made a comprehensive review of graphite recycling including separation, regeneration, and synthesis of functional materials. Firstly, the pretreatment of graphite separation was overviewed. Then, the spent graphite regeneration methods such as leaching, pyrometallurgy, their integration processes, etc. were systematically introduced. Furthermore, the modification strategies to enhance the electrochemical performance were discussed. Subsequently, we reviewed in detail the synthesis of functional materials using spent graphite for energy and environmental applications including graphene, adsorbents, catalysts, capacitors, and graphite/polymer composites. Meanwhile, we briefly compared the economic and environmental benefits of graphite regeneration and other functional materials production. Finally, the technical bottlenecks and challenges for spent graphite recycling were summarized and some future research directions were proposed. This review contributes to spent LIBs recycling more efficiently and profitably in the future.
Collapse
Affiliation(s)
- Bo Niu
- College of Resources and Environmental Science, Hebei Agricultural University, Baoding 07100, Hebei, People's Republic of China; Key Laboratory of Farmland Ecological Environment of Hebei Province, Baoding 071000, People's Republic of China
| | - Jiefeng Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| |
Collapse
|
20
|
A green process to recover valuable metals from the spent ternary lithium-ion batteries. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
The Efficiency of Black Mass Preparation by Discharge and Alkaline Leaching for LIB Recycling. MINERALS 2022. [DOI: 10.3390/min12060753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lithium-ion batteries (LIBs) are dangerous to recycle, as they pose a fire hazard when cut and contain various chemical hazards. If recycled safely, LIBs provide a rich secondary source for metals such as lithium and cobalt, while reducing the environmental impact of end-of-life LIBs. Discharging the spent LIBs in a 5 wt.% NaCl electrolyte at room temperature enables their safe dismantling. A sludge was observed to form during the LIB discharging, with a composition of 34.9 wt.% Fe, 35 wt.% O, 17.7 wt.% Al, 6.2 wt.% C, and 4.2 wt.% Na. The average electrolytic solution composition after the first discharge cycle contained only 12.6 mg/L Fe, 4.5 mg/L Li, 2.5 mg/L Mn, and trace amounts of Ni and Co. Separating the active cathode powder from the aluminum cathode with a 10 wt.% NaOH leach produced an aqueous filtrate with an Al metal purity of 99.7%. The leach composition consisted of 9558 mg/L Al, 13 mg/L Li, 8.7 mg/L Co, and trace amounts of Mn and Ni. The hydrometallurgical sample preparation processes in this study enables the production of a pure black mass with less than 0.05 wt.% Co, 0.2 wt.% Li, 0.02 wt.% Mn, and 0.02 wt.% Ni losses from the active cathode material.
Collapse
|
22
|
Raj T, Chandrasekhar K, Kumar AN, Sharma P, Pandey A, Jang M, Jeon BH, Varjani S, Kim SH. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128312. [PMID: 35086036 DOI: 10.1016/j.jhazmat.2022.128312] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The intrinsic advancement of lithium-ion batteries (LIBs) for application in electric vehicles (EVs), portable electronic devices, and energy-storage devices has led to an increase in the number of spent LIBs. Spent LIBs contain hazardous metals (such as Li, Co, Ni, and Mn), toxic and corrosive electrolytes, metal casting, and polymer binders that pose a serious threat to the environment and human health. Additionally, spent LIBs may serve as an economic source for transition metals, which could be applied to redesigning under a closed-circuit recycling process. Thus, the development of environmentally benign, low cost, and efficient processes for recycling of LIBs for a sustainable future has attracted worldwide attention. Therefore, herein, we introduce the concept of LIBs and review state-of-art technologies for metal recycling processes. Moreover, we emphasize on LIB pretreatment approaches, metal extraction, and pyrometallurgical, hydrometallurgical, and biometallurgical approaches. Direct recycling technologies combined with the profitable and sustainable cathode healing technology have significant potential for the recycling of LIBs without decomposition into substituent elements or precipitation; hence, these technologies can be industrially adopted for EV batteries. Finally, commercial technological developments, existing challenges, and suggestions are presented for the development of effective, environmentally friendly recycling technology for the future.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kuppam Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amradi Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Torabian MM, Jafari M, Bazargan A. Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:402-409. [PMID: 34060962 PMCID: PMC8915232 DOI: 10.1177/0734242x211022658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The use of lithium-ion batteries (LIBs) has grown in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials, such as Cobalt and Nickel. Recycling LIBs can help reduce fossil energy consumption, CO2 emissions, environmental pollution, and consumption of valuable materials with limited supplies. On the other hand, the hazards associated with spent LIBs recycling are mainly due to fires and explosions caused by unwanted short-circuiting. The high voltage and reactive components of end-of-life LIBs pose safety hazards during mechanical processing and crushing stages, as well as during storage and transportation. Electrochemical discharge using salt solutions is a simple, quick, and inexpensive way to eliminate such hazards. In this paper, three different salts (NaCl, Na2S, and MgSO4) from 12% to 20% concentration are investigated as possible candidates. The effectiveness of discharge was shown to be a function of molarity rather than ionic strength of the solution. Experiments also showed that the use of ultrasonic waves can dramatically improve the discharge process and reduce the required time more than 10-fold. This means that the drainage time was reduced from nearly 1 day to under 100 minutes. Finally, a practical setup in which the tips of the batteries are directly immersed inside the salt solution is proposed. This creative configuration can fully discharge the batteries in less than 5 minutes. Due to the fast discharge rates in this configuration, sedimentation and corrosion are also almost entirely avoided.
Collapse
Affiliation(s)
| | - Milad Jafari
- Civil Engineering Department, K N Toosi University of Technology, Tehran, Iran
| | - Alireza Bazargan
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
- Alireza Bazargan, School of Environment, College of Engineering, University of Tehran, Enghelab, Tehran, Iran.
| |
Collapse
|
24
|
Xu R, Xu W, Wang J, Liu F, Sun W, Yang Y. A Review on Regenerating Materials from Spent Lithium-Ion Batteries. Molecules 2022; 27:2285. [PMID: 35408680 PMCID: PMC9000613 DOI: 10.3390/molecules27072285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Recycling spent lithium-ion batteries (LIBs) have attracted increasing attention for their great significance in environmental protection and cyclic resources utilization. Numerous studies focus on developing technologies for the treatment of spent LIBs. Among them, the regeneration of functional materials from spent LIBs has received great attention due to its short process route and high value-added product. This paper briefly summarizes the current status of spent LIBs recycling and details the existing processes and technologies for preparing various materials from spent LIBs. In addition, the benefits of material preparation from spent LIBs, compared with metals recovery only, are analyzed from both environmental and economic aspects. Lastly, the existing challenges and suggestions for the regeneration process are proposed.
Collapse
Affiliation(s)
- Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.X.); (J.W.)
| | - Wei Xu
- Quzhou Huayou Cobalt New Material Co., Ltd., Quzhou 324002, China; (W.X.); (F.L.)
| | - Jinggang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.X.); (J.W.)
| | - Fengmei Liu
- Quzhou Huayou Cobalt New Material Co., Ltd., Quzhou 324002, China; (W.X.); (F.L.)
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.X.); (J.W.)
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.X.); (J.W.)
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-Containing Mineral Resources, Central South University, Changsha 410083, China
| |
Collapse
|
25
|
Yu J, Liu Y, Han S, Tan Q, Liu L, Li J. Unveiling Sodium Ion Pollution in Spray-Dried Precursors and Its Implications for the Green Upcycling of Spent Lithium-Ion Batteries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14897-14905. [PMID: 34664935 DOI: 10.1021/acs.est.1c05511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Unclear impurity pollution is one of the key scientific problems that limit the large-scale production of new lithium-ion batteries (LIBs) from spent LIBs. This work is the first to report the pollution path, pollution degree, and solution method of sodium ions in the recycling process of spent LIBs in the real world. The results show that sodium ions can intrude into the precursor particles to form crystalline salts with the anion of the leaching acid that cover the transition metal elements, thereby resulting in a failed precursor. Specifically, the intrusion of sodium ions will produce a variety of pollutants containing metal oxide bonds, such as Na-O, NaO2, and Na+-O2, on the precursor surface. These active lattice oxygen will further adsorb or react to form organic oxygen, chemical oxygen, and free oxygen, which will highly deteriorate the surface cleanliness. Strictly controlling the consumption of sodium salt in each step and using ammonia instead of NaOH for pH regulation can effectively solve sodium ion pollution to prepare high-quality battery precursors. It reveals that for the green upcycling of spent LIBs, we should strengthen the design of the recycling process to reduce the consumption of chemical reagents, which will produce unexpected secondary pollution.
Collapse
Affiliation(s)
- Jiadong Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanjun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shiping Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanyin Tan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lili Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinhui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Martins LS, Guimarães LF, Botelho Junior AB, Tenório JAS, Espinosa DCR. Electric car battery: An overview on global demand, recycling and future approaches towards sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113091. [PMID: 34171777 DOI: 10.1016/j.jenvman.2021.113091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Li-ion batteries are daily present in our electronic devices. These batteries are used in electric and hybrid vehicles supporting the current agreements to decrease greenhouse gas emissions. As a result, the electric vehicle demand has increased in the world. As Li-ion batteries are composed of critical metals in which there is a risk of interruption of supply in the medium term, recycling is the key to a sustainable future without internal combustion vehicles. Understanding the current scenario and future perspectives is important for strategies of new battery design, recycling routes and reverse logistics, as well as policies for sustainable development. This paper presents an overview of current and future vehicles used worldwide. An increase from 1.3 to 2 billion vehicles is expected worldwide until 2030; an outstanding demand will occur mainly in BRICS countries. The data demonstrated a correlation between the number of vehicles in use and GDP. Patents and processes designed for recycling Li-ion batteries and the new developments on pyro-, hydro-, and bio-metallurgical routes have been revised. The manuscript describes the importance and benefits of recycling as regards the supply of critical metals and future trends towards a circular economy.
Collapse
Affiliation(s)
- Lívia Salles Martins
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Lucas Fonseca Guimarães
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Amilton Barbosa Botelho Junior
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil.
| | - Jorge Alberto Soares Tenório
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| | - Denise Crocce Romano Espinosa
- Department of Chemical Engineering, Polytechnic School of the University of Sao Paulo. Rua do Lago, 250 - 2° andar, CEP, 05508-080, São Paulo, SP, Brazil
| |
Collapse
|
27
|
Bi H, Zhu H, Zhan J, Zu L, Bai Y, Li H. Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1164-1173. [PMID: 33407040 DOI: 10.1177/0734242x20982060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium iron phosphate (LFP) batteries contain metals, toxic electrolytes, organic chemicals and plastics that can lead to serious safety and environmental problems when they are improperly disposed of. The published literature on recovering spent LFP batteries mainly focuses on policy-making and conceptual design. The production line of recovering spent LFP batteries and its detailed operation are rarely reported. A set of automatic line without negative impact to the environment for recycling spent LFP batteries at industrial scale was investigated in this study. It includes crushing, pneumatic separation, sieving, and poison gas treatment processes. The optimum retaining time of materials in the crusher is 3 minutes. The release rate is the highest when the load of the impact crusher is 800 g. An air current separator (ACS) was designed to separate LFP from aluminium (Al) foil and LFP powder mixture. Movement behaviour of LFP powder and Al foil in the ACS were analysed, and the optimized operation parameter (35.46 m/s) of air current speed was obtained through theoretical analysis and experiments. The weight contents of an Al foil powder collector from vibrating screen-3 and LFP powder collector from bag-type dust collector are approximately 38.7% and 52.4%, respectively. The economic cost of full manual dismantling is higher than the recovery production line. This recycling system provides a feasible method for recycling spent LFP batteries.
Collapse
Affiliation(s)
- Haijun Bi
- School of Mechanical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Huabing Zhu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jialin Zhan
- School of Mechanical Engineering, Auhui Vocational and Techical College, Hefei, People's Republic of China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yuxuan Bai
- School of Mechanical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Huabing Li
- School of Mechanical Engineering, Hefei University of Technology, Hefei, People's Republic of China
| |
Collapse
|
28
|
Sun S, Jin C, He W, Li G, Zhu H, Huang J. Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145913. [PMID: 33639457 DOI: 10.1016/j.scitotenv.2021.145913] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Lithium-ion batteries (LIBs) were used extensively in people's lives, especially with the vigorous promotion of new energy vehicles, which led to the generation of a large number of waste LIBs. In consideration of the enormous quantity, environmental risk, and resource properties, many countries have issued a series of laws and regulations to manage waste LIBs and developed a lot of recycling technologies. As the biggest producer of batteries in the world, China has also taken necessary measures to deal with this situation. This paper presents the latest regulations of waste LIBs in China and reviews the recycling strategies of waste LIBs, especially physical recycling methods. Based on the analysis of the current management status of waste LIBs in China and the recycling technologies, some management suggestions, and a complete closed-circuit recycling process including cascade utilization and resource recovery were put forward. A rough economic evaluation of the process was also conducted to demonstrate the economic feasibility of the proposed process. The purpose of this paper is to provide some valuable references for decision-making bodies in the improvement of waste lithium-ion battery management and to provide an environmentally friendly and industrial feasible recycling process for reference.
Collapse
Affiliation(s)
- Shiqiang Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Chenxi Jin
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China.
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Haochen Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Juwen Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai, PR China; School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| |
Collapse
|
29
|
Wang D, Li W, Rao S, Tao J, Duan L, Zhang K, Cao H, Liu Z. Oxygen-free calcination for enhanced leaching of valuable metals from spent lithium-ion batteries without a reductant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Bi H, Zhu H, Zu L, Gao Y, Gao S, Peng J, Li H. Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:146-155. [PMID: 32938335 DOI: 10.1177/0734242x20957403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spent lithium iron phosphate (LFP) batteries contain abundant strategic lithium resources and are thus considered attractive secondary lithium sources. However, these batteries may contaminate the environment because they contain hazardous materials. In this work, a novel process involving low-temperature heat treatment is used as an alternative pretreatment method for recycling spent LFP batteries. When the temperature reaches 300°C, the dissociation effect of the anode material gradually improves with heat treatment time. At the heat treatment time of 120 minutes, an electrode material can be dissociated. The extension of heat treatment time has a minimal effect on quality loss. The physicochemical changes in thermally treated solid cathode and anode materials are examined through scanning electron microscopy with energy-dispersive X-ray spectroscopy. The heat treatment results in the complete separation of the materials from aluminium foil without contamination. The change in heat treatment temperature has a small effect on the quality of LFP material shedding. When the heat treatment temperature reaches 300°C and the time reaches 120 minutes, heat treatment time increases, and the yield of each particle size is stable and basically unchanged. The method can be scaled up and may reduce environmental pollution due to waste LFP batteries.
Collapse
Affiliation(s)
- Haijun Bi
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Huabing Zhu
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Yong Gao
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Song Gao
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Jielin Peng
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Huabing Li
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| |
Collapse
|
31
|
From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136856] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Bi H, Zhu H, Zu L, Gao Y, Gao S, Bai Y. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:911-920. [PMID: 32552572 DOI: 10.1177/0734242x20931933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consumption of lithium iron phosphate (LFP)-type lithium-ion batteries (LIBs) is rising sharply with the increasing use of electric vehicles (EVs) worldwide. Hence, a large number of retired LFP batteries from EVs are generated annually. A recovery technology for spent LFP batteries is urgently required. Compared with pyrometallurgical, hydrometallurgical and biometallurgical recycling technologies, physical separating technology has not yet formed a systematic theory and efficient sorting technology. Strengthening the research and development of physical separating technology is an important issue for the efficient use of retired LFP batteries. In this study, spent LFP batteries were discharged in 5 wt% sodium chloride solution for approximately three hours. A specially designed machine was developed to dismantle spent LFP batteries. Extending heat treatment time exerted minimal effect on quality loss. Within the temperature range of 240°C-300°C, temperature change during heat treatment slightly affected mass loss. The change in heat treatment temperature also had negligible effect on the shedding quality of LFP materials. The cathode material and the aluminium foil current collector accounted for a certain proportion in a sieve with a particle size of -1.25 + 0.40 mm. Corona electrostatic separation was performed to separate the metallic particles (with a size range of -1.5 + 0.2 mm) from the nonmetallic particles of crushed spent LFP batteries. No additional reagent was used in the process, and no toxic gases, hazardous solid waste or wastewater were produced. This study provides a complete material recovery process for spent LFP batteries.
Collapse
Affiliation(s)
- Haijun Bi
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Huabing Zhu
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Yong Gao
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Song Gao
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| | - Yuxuan Bai
- School of Mechanical Engineering, Hefei University of Technology, People's Republic of China
| |
Collapse
|
33
|
Choi Y, Rhee SW. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of). WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:261-270. [PMID: 32241694 DOI: 10.1016/j.wasman.2020.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The trend of the market of electric vehicles (EVs) in Korea is increasing because of reduction in heavy fine dust and economic benefit for purchasing EVs. With increasing number of EVs, the recycling of end-of-life battery of EVs is important to recover valuable metals such as Li and Co etc. and to control hazardous substances such as Pb, Cd and Cu. The current status on recycling policy and recycling technology of end-of-life battery of EV was explained in several countries including China, Europe, and Korea. It is necessary to immediately prepare the regulation on the storage, transportation and recycling of end-of-life battery of EV in Korea because of the safety management of end-of-life battery of EV. The new recycling scheme for the management of end-of-life batteries of EV by EPR system is proposed to secure recycling and stability because primary battery in internal combustion engine (ICE) vehicles is managed by the EPR system in Korea. For recycling of end-of-life battery of EVs, the technologies and the recycling level in Korea were compared with other countries. To develop the technical guidelines for the recycling of end-of-life battery of EV, it is proposed to set up an international committee on the recycling of end-of-life battery of EV as a new initiative in the Basel Convention.
Collapse
Affiliation(s)
- Yong Choi
- Department of Environmental Engineering, Graduate School, Kyonggi University, Suwon, South Korea
| | - Seung-Whee Rhee
- Department of Environmental Engineering, Graduate School, Kyonggi University, Suwon, South Korea.
| |
Collapse
|
34
|
Abstract
The recycling of spent lithium-ion batteries (LIB) is becoming increasingly important with regard to environmental, economic, geostrategic, and health aspects due to the increasing amount of LIB produced, introduced into the market, and being spent in the following years. The recycling itself becomes a challenge to face on one hand the special aspects of LIB-technology and on the other hand to reply to the idea of circular economy. In this paper, we analyze the different recycling concepts for spent LIBs and categorize them according to state-of-the-art schemes of waste treatment technology. Therefore, we structure the different processes into process stages and unit processes. Several recycling technologies are treating spent lithium-ion batteries worldwide focusing on one or several process stages or unit processes.
Collapse
|
35
|
Larouche F, Tedjar F, Amouzegar K, Houlachi G, Bouchard P, Demopoulos GP, Zaghib K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E801. [PMID: 32050558 PMCID: PMC7040742 DOI: 10.3390/ma13030801] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
An exponential market growth of Li-ion batteries (LIBs) has been observed in the past 20 years; approximately 670,000 tons of LIBs have been sold in 2017 alone. This trend will continue owing to the growing interest of consumers for electric vehicles, recent engagement of car manufacturers to produce them, recent developments in energy storage facilities, and commitment of governments for the electrification of transportation. Although some limited recycling processes were developed earlier after the commercialization of LIBs, these are inadequate in the context of sustainable development. Therefore, significant efforts have been made to replace the commonly employed pyrometallurgical recycling method with a less detrimental approach, such as hydrometallurgical, in particular sulfate-based leaching, or direct recycling. Sulfate-based leaching is the only large-scale hydrometallurgical method currently used for recycling LIBs and serves as baseline for several pilot or demonstration projects currently under development. Conversely, most project and processes focus only on the recovery of Ni, Co, Mn, and less Li, and are wasting the iron phosphate originating from lithium iron phosphate (LFP) batteries. Although this battery type does not dominate the LIB market, its presence in the waste stream of LIBs causes some technical concerns that affect the profitability of current recycling processes. This review explores the current processes and alternative solutions to pyrometallurgy, including novel selective leaching processes or direct recycling approaches.
Collapse
Affiliation(s)
- François Larouche
- Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; (F.L.); (K.A.); (P.B.)
- Mining and Materials Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Farouk Tedjar
- Energy Research Institute, NTU, 1 Cleantech loop, Singapore 634672, Singapore;
| | - Kamyab Amouzegar
- Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; (F.L.); (K.A.); (P.B.)
| | - Georges Houlachi
- Centre de Recherche d’Hydro-Québec (CRHQ), 600, avenue de la Montagne, Shawinigan, QC G9N 7N5, Canada;
| | - Patrick Bouchard
- Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; (F.L.); (K.A.); (P.B.)
| | - George P. Demopoulos
- Mining and Materials Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Karim Zaghib
- Center of Excellence in Transportation Electrification and Energy Storage (CETEES), Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; (F.L.); (K.A.); (P.B.)
| |
Collapse
|
36
|
Yang Y, Lei S, Song S, Sun W, Wang L. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:131-138. [PMID: 31677520 DOI: 10.1016/j.wasman.2019.09.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
A novel and efficient approach for stepwise recycling of valuable metals from Ni-rich cathode material is developed. First, the spent cathode materials are leached by H2SO4 + H2O2 solution. The leaching efficiencies of lithium, nickel, manganese and cobalt reach almost 100%, 100%, 94% and 100%, respectively, under the conditions of 2 M sulfuric acid, 0.97 M hydrogen peroxide, 10 ml·g-1 liquid-solid ratio, 30 min and 80 °C. Then, manganese and cobalt are co-extracted from the leaching liquor with PC88A, while almost 99% nickel and 100% lithium remain in the raffinate followed by being separated from each other by solvent extraction with neodecanoic acid (Versatic 10). The results show that 98% manganese and over 90% cobalt are co-extracted at pH = 5, 30 vol% PC88A and volume ratio of oil to water (O:A) = 2:1, while 100% nickel is separated from lithium under the optimum extraction conditions of initial pH = 4, O:A = 1:3 and 30 vol% Versatic 10. Finally, cobalt and manganese in the strip liquor of co-extraction are separated by selective precipitation method. Over 90% manganese is separated from cobalt under the conditions of pH = 0.5, 0.076 M KMnO4, 80 °C and 60 min.
Collapse
Affiliation(s)
- Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| | - Shuya Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shaole Song
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| | - Linsong Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
37
|
Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y, Chen R, Wu F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem Rev 2020; 120:7020-7063. [DOI: 10.1021/acs.chemrev.9b00535] [Citation(s) in RCA: 470] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ersha Fan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Zhenpo Wang
- National Engineering Laboratory for EVs, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Jiao Lin
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Yao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
38
|
Xiao J, Li J, Xu Z. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9-25. [PMID: 31849217 DOI: 10.1021/acs.est.9b03725] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spent lithium ion battery (LIB) recovery is becoming quite urgent for environmental protection and social needs due to the rapid progress in LIB industries. However, recycling technologies cannot keep up with the exaltation of the LIB market. Technological improvement of processing spent batteries is necessary for industrial application. In this paper, spent LIB recovery processes are classified into three steps for discussion: gathering electrode materials, separating metal elements, and recycling separated metals. Detailed discussion and analysis are conducted in every step to provide beneficial advice for environmental protection and technology improvement of spent LIB recovery. Besides, the practical industrial recycling processes are introduced according to their advantages and disadvantages. And some recommendations are provided for existing problems. Based on current recycling technologies, the challenges for spent LIB recovery are summarized and discussed from technological and environmental perspectives. Furthermore, great effort should be made to promote the development of spent LIB recovery in future research as follows: (1) gathering high-purity electrode materials by mechanical pretreatment; (2) green metals leaching from electrode materials; (3) targeted extraction of metals from electrode materials.
Collapse
Affiliation(s)
- Jiefeng Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jia Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
39
|
Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P. Recycling lithium-ion batteries from electric vehicles. Nature 2019; 575:75-86. [PMID: 31695206 DOI: 10.1038/s41586-019-1682-5] [Citation(s) in RCA: 539] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Abstract
Rapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials. Here we outline and evaluate the current range of approaches to electric-vehicle lithium-ion battery recycling and re-use, and highlight areas for future progress.
Collapse
Affiliation(s)
- Gavin Harper
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK. .,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK. .,School of Metallurgy and Materials, University of Birmingham, Birmingham, UK.
| | - Roberto Sommerville
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Emma Kendrick
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Metallurgy and Materials, University of Birmingham, Birmingham, UK
| | - Laura Driscoll
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Chemistry, University of Birmingham, Birmingham, UK
| | - Peter Slater
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Chemistry, University of Birmingham, Birmingham, UK
| | - Rustam Stolkin
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Metallurgy and Materials, University of Birmingham, Birmingham, UK.,National Centre for Nuclear Robotics, University of Birmingham, Birmingham, UK
| | - Allan Walton
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK.,School of Metallurgy and Materials, University of Birmingham, Birmingham, UK
| | - Paul Christensen
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,School of Engineering, Newcastle University, Newcastle, UK
| | - Oliver Heidrich
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,School of Engineering, Newcastle University, Newcastle, UK.,Tyndall Centre for Climate Change Research, Newcastle University, Newcastle, UK
| | - Simon Lambert
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,School of Engineering, Newcastle University, Newcastle, UK
| | - Andrew Abbott
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Materials Centre, University of Leicester, Leicester, UK
| | - Karl Ryder
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK.,Materials Centre, University of Leicester, Leicester, UK
| | - Linda Gaines
- ReCell Center, Argonne National Laboratory, Lemont, IL, USA
| | - Paul Anderson
- Faraday Institution, ReLiB Project, University of Birmingham, Birmingham, UK. .,Birmingham Centre for Strategic Elements and Critical Materials, University of Birmingham, Birmingham, UK. .,School of Chemistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
40
|
Siqi Z, Guangming L, Wenzhi H, Juwen H, Haochen Z. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:1142-1152. [PMID: 31244410 DOI: 10.1177/0734242x19857130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heavy metals such as Co, Li, Mn, Ni, etc. and organic compounds enrich spent lithium-ion batteries (LIBs). These batteries seriously threaten human health and the environment. Meanwhile, with the development of new energy vehicles, the shortage of valuable metal resources which are used as raw materials for power batteries is becoming a serious problem. Using proper methods to recycle spent LIBs can both save resources and protect the environment. Pyrometallury is a kind of recycling method that is operated under high temperature with the aim of recovering useful metals after pre-treatment and organic binder removal with the characteristic of high temperature and it is easy to operate. Hydrometallurgy is characterized by high recovery efficiency, low reaction energy consumption, and high reaction rate, and is widely used in the recycling process of spent LIBs. During biometallurgy, valuable metals in the spent LIBs are extracted by microbial metabolism or microbial acid production processes. Since the drive for green and low secondary pollution, biometallurgy as well as solvent extraction and the electrochemical method have earned more attention during recent years. This mini-review analyzes the relationship between the emergence of new energy vehicles and the recycling status of spent LIBs. Meanwhile, this paper also consists of detailed treatment and recycling methods for LIBs and provides a summary of the management regulations of current waste for LIBs. What is more, the main challenges and further prospects in terms of LIBs management in China are analyzed.
Collapse
Affiliation(s)
- Zhao Siqi
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Li Guangming
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - He Wenzhi
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Huang Juwen
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Zhu Haochen
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Wuschke L, Jäckel HG, Leißner T, Peuker UA. Crushing of large Li-ion battery cells. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:317-326. [PMID: 30803586 DOI: 10.1016/j.wasman.2018.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/09/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
The number of electric and hybrid electric vehicles (EVs and HEVs) as an alternative to internal combustion engines (ICE) has been rapidly growing for the last five years. When the electric cars or their traction batteries reach their end of life (EOL), an efficient recycling (from a material as well as an energetic point of view) is important to ensure sustainability and to close the materials cycle. Combining mechanical processes like crushing, screening and sorting, valuable metals such as copper, steel and aluminium can be recovered. Key to this is a sufficient liberation of components by crushing and grinding. This study focuses on safety issues of mechanical processing and on the correlation between the material composition and the required specific mechanical energy input necessary to break the Li-ion battery cell apart. Investigations on the crushing behaviour of the single components (anode-, cathode- and separator foils as well as housing materials) and entire Li-ion battery cells were done. Measured specific mechanical stress energies for the crushing of complete battery cells are compared to calculated ones. Inputs to the calculation are the measured specific stress energies of the single components comminution. As a result, the comminution can be adjusted and optimized in order to keep up with the rapid development of Li-ion batteries. With respect to the recyclability of Li-Ion battery cells, recommendations for a design appropriate for recycling are made.
Collapse
Affiliation(s)
- Lutz Wuschke
- Institute of Mechanical Engineering/Recycling Units, TU Bergakademie Freiberg, Leipziger Straße 32, 09599 Freiberg, Germany; Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg, Agricolastraße 1, 09500 Freiberg, Germany
| | - Hans-Georg Jäckel
- Institute of Mechanical Engineering/Recycling Units, TU Bergakademie Freiberg, Leipziger Straße 32, 09599 Freiberg, Germany
| | - Thomas Leißner
- Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg, Agricolastraße 1, 09500 Freiberg, Germany.
| | - Urs A Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, TU Bergakademie Freiberg, Agricolastraße 1, 09500 Freiberg, Germany
| |
Collapse
|
42
|
Yang Y, Song S, Lei S, Sun W, Hou H, Jiang F, Ji X, Zhao W, Hu Y. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:529-537. [PMID: 30803608 DOI: 10.1016/j.wasman.2019.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/04/2019] [Accepted: 01/06/2019] [Indexed: 05/24/2023]
Abstract
Recycling lithium and graphite from spent lithium-ion battery plays a significant role in mitigation of lithium resources shortage, comprehensive utilization of spent anode graphite and environmental protection. In this study, spent graphite was firstly collected by a two-stage calcination. Secondly, under the optimal conditions of 1.5 M HCI, 60 min and solid-liquid ratio (S/L) of 100 g·L-1, the collected graphite suffers simple acid leaching to make almost 100% lithium, copper and aluminum in it into leach liquor. Thirdly, 99.9% aluminum and 99.9% copper were removed from leach liquor by adjusting pH first to 7 and then to 9, and thenthe lithium was recovered by adding sodium carbonate in leach liquor to form lithium carbonate with high purity (>99%). The regenerated graphite is found to have high initial specific capacity at the rate of 37.2 mA·g-1 (591 mAh·g-1), 74.4 mA·g-1 (510 mAh·g-1) and 186 mA·g-1 (335 mAh·g-1), and with the high retention ratio of 97.9% after 100 cycles, it also displays excellent cycle performance at high rate of 372 mA·g-1. By this process, copper and lithium can be recovered and graphite can be regenerated, serving as a sustainable approach for the comprehensive utilization of anode material from spent lithium-ion battery.
Collapse
Affiliation(s)
- Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Shaole Song
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Shuya Lei
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Feng Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Wenqing Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuehua Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| |
Collapse
|
43
|
Li L, Zhang X, Li M, Chen R, Wu F, Amine K, Lu J. The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. ELECTROCHEM ENERGY R 2018. [DOI: 10.1007/s41918-018-0012-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Ojanen S, Lundström M, Santasalo-Aarnio A, Serna-Guerrero R. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 76:242-249. [PMID: 29615279 DOI: 10.1016/j.wasman.2018.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The use of lithium-ion batteries (LIB) has grown significantly in recent years, making them a promising source of secondary raw materials due to their rich composition of valuable materials such as Co, Ni and Al. However, the high voltage and reactive components of LIBs pose safety hazards during crushing stages in recycling processes, and during storage and transportation. Electrochemical discharge by immersion of spent batteries in salt solutions has been generally accepted as a robust and straightforward discharging step to address these potential hazards. Nonetheless, there is no clear evidence in the literature to support the use of electrochemical discharge in real systems, neither are there clear indications of the real-world limitations of this practice. To that aim, this work presents a series of experiments systematically conducted to study the behavior of LIBs during electrochemical discharge in salt solutions. In the first part of this study, a LIB sample was discharged ex-situ using Pt wires connected to the battery poles and submerged into the electrolyte solution on the opposite end. The evolution of voltage in the battery was measured for solutions of NaCl, NaSO4, FeSO4, and ZnSO4. The results indicate that, among the electrolytes used in the present study, NaCl solution is the most effective for LIBs discharge. The discharge of LIB using sulfate salts is however only possible with the aid of stirring, as deposition of solid precipitated on the electrodes hinder the electrochemical discharge. Furthermore, it was found that the addition of particulates of Fe or Zn as sacrificial metal further enhances the discharging rate, likely due to an increased contact area with the electrolyte solution. While these findings support the idea of using electrochemical discharge as a pre-treatment of LIBs, severe corrosion of the battery poles was observed upon direct immersion of batteries into electrolyte solutions. Prevention of such corrosion requires further research efforts, perhaps focused on a new design-for-recycling approach of LIBs.
Collapse
Affiliation(s)
- Severi Ojanen
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076 Aalto, Finland
| | - Mari Lundström
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076 Aalto, Finland
| | - Annukka Santasalo-Aarnio
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076 Aalto, Finland.
| | - Rodrigo Serna-Guerrero
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, P.O. Box 16200, 00076 Aalto, Finland
| |
Collapse
|
45
|
Zhang W, Xu C, He W, Li G, Huang J. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2018; 36:99-112. [PMID: 29241402 DOI: 10.1177/0734242x17744655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The wide use of lithium ion batteries (LIBs) has brought great numbers of discarded LIBs, which has become a common problem facing the world. In view of the deleterious effects of spent LIBs on the environment and the contained valuable materials that can be reused, much effort in many countries has been made to manage waste LIBs, and many technologies have been developed to recycle waste LIBs and eliminate environmental risks. As a review article, this paper introduces the situation of waste LIB management in some developed countries and in China, and reviews separation technologies of electrode components and refining technologies of LiCoO2 and graphite. Based on the analysis of these recycling technologies and the structure and components characteristics of the whole LIB, this paper presents a recycling strategy for all components from obsolete LIBs, including discharge, dismantling, and classification, separation of electrode components and refining of LiCoO2/graphite. This paper is intended to provide a valuable reference for the management, scientific research, and industrial implementation on spent LIBs recycling, to recycle all valuable components and reduce the environmental pollution, so as to realize the win-win situation of economic and environmental benefits.
Collapse
Affiliation(s)
- Wenxuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Chengjian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | - Juwen Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| |
Collapse
|
46
|
Zhang X, Li L, Fan E, Xue Q, Bian Y, Wu F, Chen R. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev 2018; 47:7239-7302. [DOI: 10.1039/c8cs00297e] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A comprehensive and novel view on battery recycling is provided in terms of the science and technology, engineering, and policy.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Ersha Fan
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Qing Xue
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yifan Bian
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
47
|
Yu J, He Y, Ge Z, Li H, Xie W, Wang S. A promising physical method for recovery of LiCoO 2 and graphite from spent lithium-ion batteries: Grinding flotation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.08.049] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Yang Y, Xu S, He Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 64:219-227. [PMID: 28336333 DOI: 10.1016/j.wasman.2017.03.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li2CO3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H2SO4, and the cathode material LiNi1/3Co1/3Mn1/3O2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi1/3Co1/3Mn1/3O2 is miro spherical morphology without any impurities, which can meet with LiNi1/3Co1/3Mn1/3O2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling.
Collapse
Affiliation(s)
- Yue Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Shengming Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; Beijing Key Lab of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China.
| | - Yinghe He
- College of Science, Technology and Engineering, James Cook University, Douglas, Queensland 4811, Australia
| |
Collapse
|
49
|
Singh P, Ojha A, Borthakur A, Singh R, Lahiry D, Tiwary D, Mishra PK. Emerging trends in photodegradation of petrochemical wastes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22340-22364. [PMID: 27566154 DOI: 10.1007/s11356-016-7373-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Various human activities like mining and extraction of mineral oils have been used for the modernization of society and well-beings. However, the by-products such as petrochemical wastes generated from such industries are carcinogenic and toxic, which had increased environmental pollution and risks to human health several folds. Various methods such as physical, chemical and biological methods have been used to degrade these pollutants from wastewater. Advance oxidation processes (AOPs) are evolving techniques for efficient sequestration of chemically stable and less biodegradable organic pollutants. In the present review, photocatalytic degradation of petrochemical wastes containing monoaromatic and poly-aromatic hydrocarbons has been studied using various heterogeneous photocatalysts (such as TiO2, ZnO and CdS. The present article seeks to offer a scientific and technical overview of the current trend in the use of the photocatalyst for remediation and degradation of petrochemical waste depending upon the recent advances in photodegradation of petrochemical research using bibliometric analysis. We further outlined the effect of various heterogeneous catalysts and their ecotoxicity, various degradation pathways of petrochemical wastes, the key regulatory parameters and the reactors used. A critical analysis of the available literature revealed that TiO2 is widely reported in the degradation processes along with other semiconductors/nanomaterials in visible and UV light irradiation. Further, various degradation studies have been carried out at laboratory scale in the presence of UV light. However, further elaborative research is needed for successful application of the laboratory scale techniques to pilot-scale operation and to develop environmental friendly catalysts which support the sustainable treatment technology with the "zero concept" of industrial wastewater. Nevertheless, there is a need to develop more effective methods which consume less energy and are more efficient in pilot scale for the demineralization of pollutant.
Collapse
Affiliation(s)
- Pardeep Singh
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India.
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, 110068, India.
| | - Ankita Ojha
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Anwesha Borthakur
- Centre for Studies in Science Policy, Jawaharlal Nehru University (JNU), New Delhi, 110067, India
| | - Rishikesh Singh
- Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, 221005, India
| | - D Lahiry
- Rajghat Education Centre, KFI, Varanasi, 221005, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (IIT-BHU), Varanasi, 221005, India
| |
Collapse
|