1
|
Yu B, Fu L, Chen T, Zheng G, Yang J, Cheng Y, Liu Y, Huang X. Environmental impacts of cement kiln co-incineration sewage sludge biodried products in a scale-up trial. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:24-33. [PMID: 38290345 DOI: 10.1016/j.wasman.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
The biodrying technology as a pretreatment technology can overcome the limitations of cement kilns co-incineration sewage sludge (SS) on energy consumption. But the impact of SS biodried products on cement kilns and the route carbon reduction potential of biodrying + cement kilns have not been studied. In this study, SS biodrying and cement kiln co-incineration biodried product trials were conducted to highlight the matrix combustion characteristics, and the impact of biodried products on cement kilns (clinker capacity, coal consumption, and pollutant discharge). The carbon emissions of the four scenarios were assessed based on these results. The results showed that water removal rate reached 65.5 % after 11-day biodrying, and the wet-based lower heating value of the biodried product increased by 76.0 % compared with the initial matrix. Comprehensive combustibility index of the biodried product (0.745 × 10-7 %2℃-3min-2) was better than that of SS (0.433 × 10-7 %2℃-3min-2) although a portion of the organic matter was degraded. Cement kiln co-incineration of biodried products (150 t/d) resulted in per tonne of clinker saved 5.61 kg of coal due to the heat utilization efficiency of biodried products reached to 93.7 %. However, it led to an increase in the emission concentrations of NOX and SO2. Assessment results indicated that the biodrying + cement kiln pathway reduced CO2 emissions by 385.7 kg/t SS. Biodried products have greater potential to reduce emissions as alternative fuels than as fertilizers. This study indicated the advantages of SS biodrying + cement kiln co-incineration route.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| |
Collapse
|
2
|
Wang K, Chen Y, Cao MK, Zheng GD, Cai L. Influence of microbial community succession on biodegradation of municipal sludge during biodrying coupled with photocatalysis. CHEMOSPHERE 2024; 349:140901. [PMID: 38065267 DOI: 10.1016/j.chemosphere.2023.140901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
A 20-day sludge biodrying process was coupled with photocatalysis to improve biodrying efficiency and investigate the effect of photocatalysis on biodegradation. After biodrying, the moisture content in the coupled photocatalytic group (TCA) and the control group (TUCA) decreased from 63.61% to 50.82% and 52.94%, respectively, and the volatile solids content decreased from 73.18% to 63.42% and 64.39%, respectively. Neutral proteinase activity decreased by 9.38% and 28.69%, and lipase activity decreased by 6.12% and 26.17%, respectively, indicating that photocatalysis helped maintain neutral proteinase and lipase activities. The Chao1 and Shannon indices showed that photocatalysis increased fungal diversity and reduced bacterial richness and diversity. The β diversity clustering analysis indicated that the bacterial community structure during the thermophilic phase in TCA differed from that in TUCA. The Kyoto Encyclopedia of Genes and Genomes annotation showed that photocatalysis has the potential to promote the synthesis and degradation of ketone bodies. Biodrying coupled with photocatalysis can improve the dewatering of sludge without negatively affecting biodegradation.
Collapse
Affiliation(s)
- Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Ying Chen
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Meng-Ke Cao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Zhang Z, Jin B, Zhang Y, Huang Z, Li C, Tan M, Huang J, Lei T, Qi Y, Li H. The synergistic regulation of sewage sludge biodrying and greenhouse gas reduction by additives. BIORESOURCE TECHNOLOGY 2024; 394:130180. [PMID: 38086457 DOI: 10.1016/j.biortech.2023.130180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
As a dewatering method of high moisture solid waste sludge, biodrying still faces environmental problems such as material loss and greenhouse gas emission in the process of treatment. In this study, biochar and magnesium chloride were used to explore the synergistic effect of enhancing sludge biodrying and reducing greenhouse gas emissions. The highest temperature of biodrying was raised to 68.2 °C within 3 days, extending the longest high-temperature period to 5 days, which reduced the water content to 28.8 % in the single addition of biochar treatment. The complex addition increased the NH4+-N content of materials by 57.49 % and decreased the NO3--N content of materials by 40.62 %. The use of additives significantly reduced the emissions of CO2, CH4, and N2O compared to the no-addition treatment. The increase in dominant Actinomycetes and Chloroflexibacter was the main reason for the reduction in gas emissions.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Baicheng Jin
- College of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Mengjiao Tan
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Youxiang Qi
- Zhilan Ecological Environment Construction Co., Ltd, 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha 410004, PR China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
4
|
Yu B, Chen T, Wang X, Yang J, Zheng G, Fu L, Huang X, Wang Y. Insights into the effect mechanism of back-mixing inoculation on sewage sludge biodrying process: Biodrying characteristics and microbial community succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159460. [PMID: 36257443 DOI: 10.1016/j.scitotenv.2022.159460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Back mixing was frequently used to replace conventional bulking agenting, however, however, the internal effect mechanism was unclear. This study compared four bulking agents: mushroom residue (MR), MR + primary BM (BM-P), BM-P, and secondary BM (BM-S). The effect mechanism of back mixing (BM) inoculation was assessed based on biodrying performance and microbial community succession. Four trials (Trial A, Trial B, Trial C, and Trial D) reached maximum temperatures of 61.9, 68.8, 73.7, and 69.9 °C on days 6, 3, 2, and 2, respectively. Application of BM increased pile warming rate and resulted in higher temperatures. Temperature changes and microbial competition lead to decline in microbial diversity and richness during the biodrying process. Microbial diversity increased of four biodried products. The number of microorganisms shared by Trial A, Trial B, Trial C, and Trial D were 90, 119, 224, and 300, respectively. The addition of BM improved microbial community stability, and facilitating the initiation of biodrying process. Microbial genera that played an important role in the biodrying process included Ureibacillus, Bacillus, Sphaerobacter, and Tepidimicrobium. Based on these results, it was concluded that BM was efficient method to enhanced the microbial activity and reduced the usage of bulking agent.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| | - Yagen Wang
- Beijing Greentech Technology Group Co.Ltd., Beijing 100080, China
| |
Collapse
|
5
|
Xu M, Sun H, Yang M, Xie D, Sun X, Meng J, Wang Q, Wu C. Biodrying of biogas residue through a thermophilic bacterial agent inoculation: Insights into dewatering contribution and microbial mechanism. BIORESOURCE TECHNOLOGY 2022; 355:127256. [PMID: 35550925 DOI: 10.1016/j.biortech.2022.127256] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Biogas residue (BR) is difficult to transport and compost due to its high moisture content. The purpose of this study was to elucidate the dewatering and microbial mechanisms underlying the inoculation of a thermophilic bacterial agent (TBA) onto BR with a high moisture content (i.e., 90.4%). TBA accounted for 78.7% of the water loss rate in BR, dramatically higher than the effects of aeration, external heat, or indigenous microorganisms (i.e., 1.8%, 0.1%, and 19.4%, respectively). Furthermore, TBA inoculation resulted in a stable product [with a low moisture content (9.4%) and a high seed germination index (107.3%)]. Finally, TBA increased microbial diversity and the abundance of functional bacteria (Proteobacteria and Bacteroidota), which might be beneficial for refractory organic compound decomposition and plant growth. Thus, biodrying BR via inoculation with a TBA is recommended economically.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Haishu Sun
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Min Yang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Dong Xie
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jie Meng
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
6
|
Wang Y, Jia L, Guo B, Wang B, Zhang L, Zheng X, Xiang J, Jin Y. N migration and transformation during the co-combustion of sewage sludge and coal slime. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 145:83-91. [PMID: 35525001 DOI: 10.1016/j.wasman.2022.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
The co-combustion of sewage sludge and coal slime is considered a promising technique for reducing the volume of sewage sludge, adding value, and decreasing the risks associated with these wastes. This work aimed to study N migration and transformation mechanisms and the related interactions during the co-combustion of sewage sludge (SS) and coal slime (CS) by thermogravimetric-mass spectrometry combined with X-ray photoelectron spectroscopy. The results revealed that the main N-containing gases produced during the combustion of SS and CS were NH3 generated from Amino-N at 200-400 °C and HCN generated from heterocyclic nitrogen at 400-600 °C, respectively. The increase of CS ratio led to a decrease in the release of NH3 and NO, but an increase in the release of HCN. Distinct interactions were observed during the co-combustion process, which promoted the production of NH3 and inhibited the production of HCN and NO. Co-combustion inhibited the release of NO by 36.9% when the CS ratio was 50%. The interaction mechanism suggested that H radicals from SS promoted the premature decomposition of N species in CS, and increased the selectivity of N species for NH3 formation by promoting the conversion of heterocyclic-N to Amino-N. In addition, the interaction of char (in SS) and char (in CS) enhanced the reduction of NO. Above 600 °C, co-combustion promoted the retention of N species in the ash.
Collapse
Affiliation(s)
- Yanlin Wang
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Li Jia
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Baihe Guo
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Biru Wang
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Liu Zhang
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xin Zheng
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jun Xiang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Yan Jin
- School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
7
|
Ma J, Feng S, Zhang Z, Wang Z, Kong W, Yuan P, Shen B, Mu L. Pyrolysis characteristics of biodried products derived from municipal organic wastes: Synergistic effect of bulking agents and modification of biodegradation. ENVIRONMENTAL RESEARCH 2022; 206:112300. [PMID: 34736638 DOI: 10.1016/j.envres.2021.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Derived from the biodrying of municipal organic wastes (MOWs), biodried products (BPs) are widely identified as renewable energy sources. In this study, for efficient energy recovery, the pyrolysis characteristics of BPs were investigated by comprehensive kinetic analysis, with special focus on the synergistic effect of bulking agents and the influence of biodegradation. Compared with theoretical raw materials (RMs), it was suggested that the synergistic effect of organics and lignocelluloses in RMs promoted decomposition in Stage 1 (400-570 K), especially for the pyrolysis of RM using sawdust, during which the positive effect achieved decomposition in advance with lower overlap ratio (0.9264) and ΔW (-9.50% at 619.0 K) values. Furthermore, compared with RMs, it was indicated that the kinetic indices (Ea and ln A values) of the BPs were upward in Stage 1 and decreased in Stage 2 due to biodegradation. The results of ΔH, ΔG and ΔS indicated that BP pyrolysis required more heat supply as the reaction progressed but formed a more organized activated complex. In addition, biodegradation observably decreased the generation of gas products and typical functional groups of volatiles during BP pyrolysis, such as CO2 and CO, which presented decreasing ratios of 32.18-42.47% and 30.25-46.47%, respectively. In general, the pyrolysis of BPs was intensified by bulking agents and modified by biodegradation.
Collapse
Affiliation(s)
- Jiao Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuo Feng
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhikun Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhuozhi Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Wenwen Kong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
8
|
Yu B, Chen T, Zheng G, Yang J, Huang X, Fu L, Cai L. Water-heat balance characteristics of the sewage sludge bio-drying process in a full-scale bio-drying plant with circulated air. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:220-230. [PMID: 35149478 DOI: 10.1016/j.wasman.2022.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludge bio-drying technology has attracted considerable attention in recent years. In this study, we explored the water-heat balance under two ventilation strategies for the first time in bio-drying plants with circulated air, and examined the influence of air circulation on water removal and heat recovery. We want to obtain the relationships of pile temperature, ventilation, and water removal. Then, it provides support for optimizing the bio-drying process conditions and improving the efficiency through analysis of the water-heat relationship. In the low-ventilation and high-ventilation trials, water removed was mainly on Days 9-12 and 1-4, respectively. Ventilation and pile temperature jointly determine the water removed during the bio-drying process. Water balance indicated that more than 30% of the water was removed under the nonventilated process. More organic matter was degraded to maintain a higher pile temperature under low-ventilation than under high-ventilation, which also led to more radiation heat being lost. High-ventilation trial input less energy (3.36 MJ/kg water removed) but obtained a higher bio-drying index I (7.04) and heat utilization efficiency Qeffic (94.1%). Heat balance showed that lower energy consumption by dry air (Qdryair) was obtained due to circulation air with high temperature. Circulation air also has a higher carried capacity of water vapor but carries more water into the pile due to higher humidity.
Collapse
Affiliation(s)
- Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Group Co. Ltd., Beijing 100080, China
| | - Lili Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Greentech Group Co. Ltd., Beijing 100080, China
| | - Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
9
|
Sun G, Zhang G, Liu J, Evrendilek DE, Buyukada M. Thermal behaviors, combustion mechanisms, evolved gasses, and ash analysis of spent potlining for a hazardous waste management. J Environ Sci (China) 2021; 107:124-137. [PMID: 34412775 DOI: 10.1016/j.jes.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/13/2023]
Abstract
An unavoidable but reusable waste so as to enhance a more circular waste utilization has been spent potlining (SPL) generated by the aluminum industry. The combustion mechanisms, evolved gasses, and ash properties of SPL were characterized dynamically in response to the elevated temperature and heating rates. Differential scanning calorimetric (DSC) results indicated an exothermic reaction behavior probably able to meet the energy needs of various industrial applications. The reaction mechanisms for the SPL combustion were best described using the 1.5-, 3- and 2.5-order reaction models. Fluoride volatilization rate of the flue gas was estimated at 2.24%. The SPL combustion emitted CO2, HNCO, NO, and NO2 but SOx. The joint optimization of remaining mass, derivative thermogravimetry, and derivative DSC was achieved with the optimal temperature and heating rate combination of 783.5 °C, and 5 °C/min, respectively. Interaction between temperature and heating rate exerted the strongest and weakest impact on DSC and remaining mass, respectively. The fluorine mainly as the formation of substantial NaF and CaF2 in the residual ash. Besides, the composition and effect of environment of residual solid were evaluated. The ash slagging tendency and its mineral deposition mechanisms were elucidated in terms of turning SPL waste into a benign input to a circular waste utilization.
Collapse
Affiliation(s)
- Guang Sun
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Dongguan University of Technology, Dongguan 523808, China
| | - Gang Zhang
- Engineering Research Center of None-food Biomass Efficient Pyrolysis and Utilization Technology of Guangdong Higher Education Institutes, Dongguan University of Technology, Dongguan 523808, China
| | - Jingyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Deniz Eren Evrendilek
- Department of Computing Science, Simon Fraser University, British Columbia V5A, Canada
| | - Musa Buyukada
- Department of Chemical Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey
| |
Collapse
|
10
|
Liew CS, Kiatkittipong W, Lim JW, Lam MK, Ho YC, Ho CD, Ntwampe SKO, Mohamad M, Usman A. Stabilization of heavy metals loaded sewage sludge: Reviewing conventional to state-of-the-art thermal treatments in achieving energy sustainability. CHEMOSPHERE 2021; 277:130310. [PMID: 33774241 DOI: 10.1016/j.chemosphere.2021.130310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Sewage sludge has long been regarded as a hazardous waste by virtue of the loaded heavy metals and pathogens. Recently, more advanced technologies are introduced to make use of the nutrients from this hazardous sludge. Successful recovery of sludge's carbon content could significantly convert waste to energy and promote energy sustainability. Meanwhile, the recovery of nitrogen and trace minerals allows the production of fertilizers. This review is elucidating the performances of modern thermal treatment technologies in recovering resources from sewage sludge while reducing its environmental impacts. Exhaustive investigations show that most modern technologies are capable of recovering sludge's carbon content for energy generation. Concurrently, the technologies could as well stabilize heavy metals, destroy harmful pathogens, and reduce the volume of sludge to minimize the environmental impacts. Nevertheless, the high initial investment cost still poses a huge hurdle for many developing countries. Since the initial investment cost is inevitable, the future works should focus on improving the profit margin of thermal technologies; so that it would be more financially attractive. This can be done through process optimization, improved process design as well as the use of suitable co-substrates, additives, and catalyst as propounded in the review.
Collapse
Affiliation(s)
- Chin-Seng Liew
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Man-Kee Lam
- Department of Chemical Engineering, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yeek-Chia Ho
- Department of Civil and Environmental Engineering, Centre of Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, 251, Taiwan
| | - Seteno K O Ntwampe
- School of Chemical and Minerals Engineering, North West University, Private BagX1290, Potchefstroom, 2520, South Africa
| | - Mardawani Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
11
|
Comparative Analysis of Pelletized and Unpelletized Sunflower Husks Combustion Process in a Batch-Type Reactor. MATERIALS 2021; 14:ma14102484. [PMID: 34064892 PMCID: PMC8150302 DOI: 10.3390/ma14102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
This paper describes characteristics of the combustion of sunflower husk (SH), sunflower husk pellets (SHP), and, for comparison, hardwood pellets (HP). The experiments were carried out using a laboratory-scale combustion reactor. A proximate analysis showed that the material may constitute an alternative fuel, with a relatively high heating value (HHV) of 18 MJ/kg. For SHP, both the maximum combustion temperatures (TMAX = 1110 °C) and the kinetic parameters (temperature front velocity vt = 7.9 mm/min, combustion front velocity vc = 8 mm/min, mass loss rate vm = 14.7 g/min) of the process were very similar to those obtained for good-quality hardwood pellets (TMAX = 1090 °C, vt = 5.4 mm/min, vc = 5.2 mm/min, vm = 13.2 g/min) and generally very different form SH (TMAX = 840 °C, vt = 20.7 mm/min, vc = 19 mm/min, vm = 13.1 g/min). The analysis of ash from SH and SHP combustion showed that it has good physicochemical properties (ash melting point temperatures >1500 °C) and is safe for the environment. Furthermore, the research showed that the pelletization of SH transformed a difficult fuel into a high-quality substitute for hardwood pellets, giving a similar fuel consumption density (Fout = 0.083 kg/s·m2 for SHP and 0.077 kg/s·m2 for HP) and power output density (Pρ = MW/m2 for SHP and 1.5 MW/m2 for HP).
Collapse
|
12
|
Fedorov AV, Dubinin YV, Yeletsky PM, Fedorov IA, Shelest SN, Yakovlev VA. Combustion of sewage sludge in a fluidized bed of catalyst: ASPEN PLUS model. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124196. [PMID: 33131942 DOI: 10.1016/j.jhazmat.2020.124196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
This paper presents the results of the simulation of a sewage sludge combustion plant with a productivity of 6 tons per hour using the ASPEN Plus. It is shown that catalytic combustion technology can be used for the efficient utilization of mechanically dehydrated sludge with the moisture of ~75% in autothermal mode (without the use of additional fuel). At the same time, the plant for utilization of 6.0 tons of sludge per hour enables us to obtain 3.07 MW of heat energy. It is shown that the sludge moisture and its calorific value significantly affect the combustion process. Thus, at the moisture of less than 72%, additional water supply is necessary to avoid overheating of the catalyst bed. In the case of an increase in sludge moisture of more than 76%, an additional supply of fuel (for example, brown coal) is required. Also, the article discusses the emissions of harmful substances generated during sewage sludge combustion and methods for their utilization.
Collapse
Affiliation(s)
- A V Fedorov
- Federal Research Center Boreskov Institute of Catalysis, Lavrentieva str., 5, Novosibirsk 630090, Russian Federation.
| | - Yu V Dubinin
- Federal Research Center Boreskov Institute of Catalysis, Lavrentieva str., 5, Novosibirsk 630090, Russian Federation
| | - P M Yeletsky
- Federal Research Center Boreskov Institute of Catalysis, Lavrentieva str., 5, Novosibirsk 630090, Russian Federation.
| | - I A Fedorov
- SPKB "Energy" Ltd, Planirovochnaya str. 18/1, Novosibirsk 630032, Russian Federation
| | - S N Shelest
- "OmskVodokanal" Ltd, Mayakovsky str., 2, Omsk 644042, Russian Federation
| | - V A Yakovlev
- Federal Research Center Boreskov Institute of Catalysis, Lavrentieva str., 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
13
|
Wang K, Wang YY, Chen TB, Zheng GD, Cao MK, Cai L. Adding a recyclable amendment to facilitate sewage sludge biodrying and reduce costs. CHEMOSPHERE 2020; 256:127009. [PMID: 32438127 DOI: 10.1016/j.chemosphere.2020.127009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Finding an economical amendment, available in a steady supply, is needed to support the biodrying industrialization. This research developed a recyclable biodrying amendment (RBA) to condition the biodrying of sewage sludge. The pilot-scale treatment (TR), which included the addition of equivalent weights of RBA and sawdust as amendments, resulted in a higher pile temperature and longer thermophilic phase compared to the control (TC), which used only sawdust as an amendment. The final moisture content levels were below 50% with both TR and TC. The heat use efficiency for water evaporation was 72.2% and 73.0% in TR and TC, respectively. The activity of α-amylase and cellulose 1,4-β-cellobiosidase increased during the thermophilic phase, while the activity of endo-1,4-β-glucanase and endo-1,4-β-xylanase decreased during the thermophilic phase with both TR and TC. The fourier-transform infrared spectra indicated that adding the RBA resulted in good biodegradability of the lipids, proteins, and polysaccharides. The humic acid to fulvic acid ratio in TR and TC increased from 0.33 (TR) and 0.35 (TC) on day 0-0.46 (TR) and 0.45 (TC) on day 21, indicating the humification process. The RBA recovery rate was 95.6% and can be reused. These findings highlight that adding RBA showed satisfactory biodrying performance, reduced the amendment cost, and the biodrying product could be incinerated without energy deficit.
Collapse
Affiliation(s)
- Kan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang-Yan Wang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Tong-Bin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Di Zheng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng-Ke Cao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| | - Lu Cai
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
14
|
Zhao R, Qin J, Chen T, Wang L, Wu J. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:91-99. [PMID: 32799100 DOI: 10.1016/j.wasman.2020.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Co-combustion was proposed as an effective and complementary means for the co-treatment of low rank coal semicoke (LRCS) and oil sludge. The combustion, kinetics and gaseous pollutants emission characteristics during co-combustion of LRCS and oil sludge were investigated by thermogravimetric analyzer coupled with Fourier transform infrared spectrometer (TG-FTIR). Results showed oil sludge had more complex weight loss characteristics than LRCS. Proper addition of oil sludge could effectively improve the ignition, burnout and comprehensive combustion performance of blends and 60% was a recommended oil sludge blend ratio. High heating rates could also enhance the combustion performance of blends. The activation energy determined by Coats-Redfern method gradually decreased with the increase of oil sludge blend ratio. DAEM kinetic analysis results showed the maximum activation energy of 113.4 kJ/mol was obtained when conversion rate was 0.4 due to the poor ignition performance of LRCS. All of the CO, CO2, NOx and SO2 emission gradually decreased with the increasing oil sludge blend ratio. LRCS had suppression effect on NOx emission during co-combustion while oil sludge was just the opposite. The low sulfur release rate of oil sludge resulted in the decreasing SO2 emission of blends although oil sludge had promotion effect on SO2 emission.
Collapse
Affiliation(s)
- Ruidong Zhao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Jianguang Qin
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Tianju Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Leilei Wang
- Qilu University of Technology (Shandong Academy of Sciences), Ecology Institute of Shandong Academy of Sciences, Shandong Province Key Laboratory of Applied Microbiology, Jinan 250014, China
| | - Jinhu Wu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
15
|
Çelebi EB, Aksoy A, Sanin FD. Effects of anaerobic digestion enhanced by ultrasound pretreatment on the fuel properties of municipal sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17350-17358. [PMID: 32157536 DOI: 10.1007/s11356-020-08230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
In this study, effects of ultrasound pretreatment on combustion characteristics and elemental composition of municipal sludge were examined for energy-based evaluation of sludge pretreatment. Waste activated sludge (WAS) from a municipal wastewater treatment plant was pretreated with ultrasound at varying durations and was subjected to anaerobic digestion in a biochemical methane potential (BMP) assay. Changes in gas production rates, calorific value (CV), elemental compositions, and ash contents of sludge samples were examined to assess the effects of pretreatment and digestion. Sonication at 0.73 W/mL enhanced gas production by 28%. Moreover, volatile solids (VS) and chemical oxygen demand (COD) removals increased from 41 to 45% and 33 to 37%, respectively. Following anaerobic digestion, CVs of samples decreased by about 18%. Sonicated samples exhibited a higher decrease. In order to quantify the change in overall energy content, total solids (TS) reduction was also taken into account. Loss was magnified as both CV and the amount of TS that would provide the overall energy were reduced. This loss was 38% for the control group and 41% for the 15 min sonicated sludge. Digestion decreased the C content of sludge by about 20% and H content by 50% due to biogas production. Ash content increased relatively as some of the combustible solids were lost due to digestion. Experimental results indicate that if sludge is to be combusted, digestion with or without ultrasound pretreatment may be disadvantageous if the aim is to maximize energy gain from sludge.
Collapse
Affiliation(s)
- Emrehan Berkay Çelebi
- Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Ayşegül Aksoy
- Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
16
|
Shi K, Yan J, Menéndez JA, Luo X, Yang G, Chen Y, Lester E, Wu T. Production of H 2-Rich Syngas From Lignocellulosic Biomass Using Microwave-Assisted Pyrolysis Coupled With Activated Carbon Enabled Reforming. Front Chem 2020; 8:3. [PMID: 32039161 PMCID: PMC6993598 DOI: 10.3389/fchem.2020.00003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
This study focuses on the use of a microwave reactor that combines biomass pyrolysis, at mild temperature, with catalytic reforming of the pyrolytic gas, using activated carbon, for generating hydrogen-rich synthesis gas. The traditional pyrolysis of biomass coupled with the reforming of its pyrolytic yields were also conducted using an electrically heated reactor. The bio-oil attained from conventional pyrolysis was higher in comparison to the yield from microwave pyrolysis. The reforming of the pyrolytic gas fraction led to reductions in bio-oil yield to <3.0 wt%, with a simultaneous increase in gaseous yields. An increase in the syngas and H2 selectivity was discovered with the reforming process such that the use of microwave pyrolysis with activated carbon reforming produced 85 vol% synthesis gas fraction containing 55 vol% H2 in comparison to the 74 vol% syngas fraction with 30 vol% H2 obtained without the reforming. Cracking reactions were improved with microwave heating, while deoxidation and dehydrogenation reactions were enhanced by activated carbon, which creates a reduction environment. Consequently, these reactions generated H2-rich syngas formation. The approach implemented in this study revealed higher H2, syngas yield and that the overall LHV of products has huge potential in the transformation of biomass into high-value synthesis gas.
Collapse
Affiliation(s)
- Kaiqi Shi
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, China
| | - Jiefeng Yan
- College of Science & Technology, Ningbo University, Ningbo, China
| | | | - Xiang Luo
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, China
| | - Gang Yang
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, China
| | - Yipei Chen
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, China
| | - Edward Lester
- Department of Chemical and Environmental Engineering, The University of Nottingham, Nottingham, United Kingdom
| | - Tao Wu
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, China
| |
Collapse
|
17
|
Lei K, Zhang R, Ye B, Cao J, Liu D. Combustion of single particles from sewage sludge/pine sawdust and sewage sludge/bituminous coal under oxy-fuel conditions with steam addition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:1-8. [PMID: 31585272 DOI: 10.1016/j.wasman.2019.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/18/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Co-pelletization of sewage sludge (SS) and conventional fuels for combustion is considered to be a feasible SS disposal method. Oxy-fuel combustion is recognized as a promising technology to reduce the emission of CO2. In practical applications, the combustion atmosphere in oxy-fuel boiler is O2/CO2/H2O, which is different from that in the conventional boiler (O2/N2). Therefore, the effects of gas composition on the combustion characteristics of boiler fuels should be both taken into consideration. In this work, the SS/pine sawdust (PS) and SS/bituminous coal (BC) blended fuel particles were prepared, and the single particle combustion experiments were conducted in O2/N2, O2/CO2 and O2/CO2/H2O atmospheres. The influences of SS blending proportion and gas composition on combustion characteristics of fuel particles were analyzed. The results reveal that increasing the blending proportion of SS from 20 to 40 wt% decreases the ignition delay time, burnout time and combustion temperature. The substitution of N2 by CO2 increases the ignition delay time and burnout time, while decreases the combustion temperature. Replacing CO2 by 10 vol%, 20 vol% and 30 vol% H2O decreases the ignition delay time and burnout time, while increases the combustion temperature.
Collapse
Affiliation(s)
- Kai Lei
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Rui Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Buqing Ye
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jin Cao
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
18
|
González D, Guerra N, Colón J, Gabriel D, Ponsá S, Sánchez A. Filling in sewage sludge biodrying gaps: Greenhouse gases, volatile organic compounds and odour emissions. BIORESOURCE TECHNOLOGY 2019; 291:121857. [PMID: 31377511 DOI: 10.1016/j.biortech.2019.121857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
In the present work, a complete study of the sewage sludge (SS) biodrying technology was conducted at bench-scale, aiming at assessing its performance and providing a valuable insight into the different gaseous emission patterns found for greenhouse gases (GHG) and odorant pollutants. As process key parameters, temperature, specific airflow, dynamic respiration index, final moisture content and Lower Calorific Value (LCV) were evaluated. At the end of the biodrying, a product with a 35.9% moisture content and a LCV of 7.1 MJ·kg-1product was obtained. GHGs emission factor was 28.22 kgCO2eq per Mg of initial mass of dry matter in the SS (DM0-SS). During the biodrying process, maximum odour concentration measured was 3043 ou·m-3 and the estimated odour emission factor of the biological treatment was 3.10E + 07 ou per Mg DM0-SS. Finally, VOCs were completely identified and quantified. The most abundant VOCs found in the biodrying gaseous emissions were terpenes, sulphur-compounds and ketones.
Collapse
Affiliation(s)
- Daniel González
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain; Group of Biological Treatment of Liquid and Gaseous Effluents (GENOCOV) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Nagore Guerra
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - Joan Colón
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - David Gabriel
- Group of Biological Treatment of Liquid and Gaseous Effluents (GENOCOV) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sergio Ponsá
- BETA Technology Centre: "U Science Tech", University of Vic-Central University of Catalonia, 08500 Vic, Barcelona, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM) Dept. of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| |
Collapse
|
19
|
Brisolara KF, Bourgeois J. Biosolids and sludge management. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1168-1176. [PMID: 31433899 DOI: 10.1002/wer.1212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The advancements in the field of sludge and biosolids have been made over the past year. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings throughout 2018. The review is organized in sections including regulatory developments and market analysis; analysis and quantification of characteristics including microconstituents and metals; treatment advances for the conversion of sludge to biosolids including pretreatment and sludge minimization, conditioning and dewatering, digestion, composting, and innovative technologies; product development and reuse including adsorbents and thermal products, agricultural and other uses, and innovative uses; odor and air emissions; and energy factors. PRACTITIONER POINTS: Summary of advances in the field of residuals and biosolids research in 2018. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings. Topics covered range from regulation to innovation.
Collapse
Affiliation(s)
| | - John Bourgeois
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
20
|
Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects. ENERGIES 2019. [DOI: 10.3390/en12163072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developing effective, economical, and environmentally sound approaches for sewage sludge management remains an important global issue. In this paper, we propose a bioethanol-lignin (nonfood biomass)-based sewage sludge upgrading process for enhancing the heating value and reducing air pollutants of hybrid sewage sludge fuel (HSF) for the effective management of sewage sludge. Sewage sludge paste with the lignin-CaO solution implies drying at 105 °C accompanied by torrefaction at 250 °C. During torrefaction, moisture and partly volatile matter begin to evaporate, and are almost vaporized out to the surface. In this study, the proposed process enhances the net caloric value (NCV) to 37%. The lignin-embedded HSF shows a two-in-one combustion peak regardless of the mixing ratio, resulting in a 70% reduction of unburned carbon (UBC) emissions, which is one of the particular matter (PM) sources of combustion flue gas. Other air pollutants, such as CO, hydrocarbon, NOx, and SOx, were also reduced by the proposed process. In particular, SOx emission remained at ~1 ppm (average value) regardless of the sulfur content of the fuel.
Collapse
|
21
|
Variations of organic matters and extracellular enzyme activities during biodrying of dewatered sludge with different bulking agents. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Sun G, Zhang G, Liu J, Xie W, Kuo J, Lu X, Buyukada M, Evrendilek F, Sun S. Thermogravimetric and mass-spectrometric analyses of combustion of spent potlining under N 2/O 2 and CO 2/O 2 atmospheres. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:237-249. [PMID: 31109523 DOI: 10.1016/j.wasman.2019.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Thermal decomposition and gaseous evolution of the spent potlining (SPL) combustion were quantified using thermogravimetric and mass-spectrometric analyses in CO2/O2 and N2/O2 atmospheres using three heating rates (15, 20 and 25 °C/min). The thermal decomposition of SPL occurred mainly between 450 and 800 °C. Based on the four kinetic methods of Friedman, Starink, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa under the various conversion degrees (α) from 0.1 to 0.7, the lowest apparent activation energy was estimated at 149.81 kJ/mol in the 70% CO2/30% O2 atmosphere. The pre-exponential factor, and changes in entropy, enthalpy and free Gibbs energy were also estimated. The reaction model did not suggest a single reaction of the SPL combustion. With the α value of 0.25-0.7, the following function best described the reaction based on the Malek method: f(α) = 1/2α and G(α) = lnα2. The gases released during the combustion process included CO2, CO, NOx, HCN, and HF.
Collapse
Affiliation(s)
- Guang Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Gang Zhang
- Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jingyong Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wuming Xie
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahong Kuo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingwen Lu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Musa Buyukada
- Department of Chemical Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey
| | - Fatih Evrendilek
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey; Department of Environmental Engineering, Ardahan University, Ardahan 75002, Turkey
| | - Shuiyu Sun
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Naqvi SR, Hameed Z, Tariq R, Taqvi SA, Ali I, Niazi MBK, Noor T, Hussain A, Iqbal N, Shahbaz M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 85:131-140. [PMID: 30803566 DOI: 10.1016/j.wasman.2018.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the thermal decomposition, thermodynamic and kinetic behavior of rice-husk (R), sewage sludge (S) and their blends during co-pyrolysis using thermogravimetric analysis at a constant heating rate of 20 °C/min. Coats-Redfern integral method is applied to mass loss data by employing seventeen models of five major reaction mechanisms to calculate the kinetics and thermodynamic parameters. Two temperature regions: I (200-400 °C) and II (400-600 °C) are identified and best fitted with different models. Among all models, diffusion models show high activation energy with higher R2(0.99) of rice husk (66.27-82.77 kJ/mol), sewage sludge (52.01-68.01 kJ/mol) and subsequent blends (45.10-65.81 kJ/mol) for region I and for rice husk (7.31-25.84 kJ/mol), sewage sludge (1.85-16.23 kJ/mol) and blends (4.95-16.32 kJ/mol) for region II, respectively. Thermodynamic parameters are calculated using kinetics data to assess the co-pyrolysis process enthalpy, Gibbs-free energy, and change in entropy. Artificial neural network (ANN) models are developed and employed on co-pyrolysis thermal decomposition data to study the reaction mechanism by calculating Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and coefficient of determination (R2). The co-pyrolysis results from a thermal behavior and kinetics perspective are promising and the process is viable to recover organic materials more efficiently.
Collapse
Affiliation(s)
- Salman Raza Naqvi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan.
| | - Zeeshan Hameed
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan
| | - Rumaisa Tariq
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan
| | - Syed A Taqvi
- Chemical Engineering Department, UniversitiTeknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia; Department of Chemical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Imtiaz Ali
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, Saudi Arabia
| | - M Bilal Khan Niazi
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan
| | - Arshad Hussain
- School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12 Islamabad, Pakistan
| | - Naseem Iqbal
- United States-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus, Islamabad, 44000, Pakistan
| | - M Shahbaz
- Chemical Engineering Department, University of Gujrat, Gujrat, Pakistan
| |
Collapse
|
24
|
Influence of physical, chemical and dual sewage sludge conditioning methods on the dewatering efficiency. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Lin Y, Tian Y, Xia Y, Fang S, Liao Y, Yu Z, Ma X. General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge. BIORESOURCE TECHNOLOGY 2019; 273:545-555. [PMID: 30472354 DOI: 10.1016/j.biortech.2018.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
In this work, pyrolysis kinetic evolution of mixture of bagasse and sewage sludge with 10%, 30% and 50% (respect to dry initial weight). In terms of kinetic mechanism, the uncertainty of the activation energy obtained by mode-free method was barely known. We found that increasing number of heating rates made result more reliable, but the modeling process more dependent on redundant experiments with extra data. We adapted a novel general distributed activation energy model (G-DAEM) with 5 pseudocomponents for the analysis of kinetic evolution with proposing a more applicable approximation to the general temperature integral. The G-DAEM was trained by data for 20 K/min, and the predictions were performed on data for 15 K/min and 25 K/min. The predictions were well matched to the experimental data. The G-DAEM enhances modeling efficiency of kinetics and provides a effective pathway for high precise model of complicated co-pyrolysis process.
Collapse
Affiliation(s)
- Yan Lin
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Yunlong Tian
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Yuqing Xia
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Shiwen Fang
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Yanfen Liao
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China.
| | - Zhaosheng Yu
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Xiaoqian Ma
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| |
Collapse
|
26
|
Abstract
The increasing volume of sewage sludge from wastewater treatment facilities is becoming a prominent concern globally. The disposal of this sludge is particularly challenging and poses severe environmental hazards due to the high content of organic, toxic and heavy metal pollutants among its constituents. This study presents a simple review of four sewage to energy recovery routes (anaerobic digestion, combustion, pyrolysis and gasification) with emphasis on recent developments in research, as well as benefits and limitations of the technology for ensuring cost and environmentally viable sewage to energy pathway. This study focusses on the review of various commercially viable sludge conversion processes and technologies used for energy recovery from sewage sludge. This was done via in-depth process descriptions gathered from literatures and simplified schematic depiction of such energy recovery processes when utilised for sludge. Specifically, the impact of fuel properties and its effect on the recovery process were discussed to indicate the current challenges and recent scientific research undertaken to resolve these challenges and improve the operational, environmental and cost competitiveness of these technologies.
Collapse
|
27
|
Ma J, Zhang L, Mu L, Zhu K, Li A. Thermally assisted bio-drying of food waste: Synergistic enhancement and energetic evaluation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:327-338. [PMID: 30455014 DOI: 10.1016/j.wasman.2018.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Recently, bio-drying is becoming a promising method to treat the slurry-type food waste together with recovering refused derived fuels (RDFs). In practice, however, conventional process frequently encountered low temperature and inefficient drying performance due to the low microbial activity and organics degradability. In order to improve bio-drying performance, in this study, an externally thermal assistant strategy was proposed to increase water evaporation and stimulate microbial degradability. Based on this idea, a series of experiments were conducted to establish, evaluate and optimize the thermally assisted bio-drying system. It was found that staged heating acclimation was an effective strategy to obtain a superior thermophilic inoculum with high metabolic activity and microbial consortia. In thermally assisted bio-drying process, an extremely high metabolic activity [cumulative OUR, 38.98 mg/(g TS·h)] was obtained, which was greatly higher than that of conventional bio-drying [19.74 mg/(g TS·h)]. Furthermore, thermally assisted bio-drying exhibited a high water-evaporation capacity as thermal drying (157.9 g vs. 147.8 g), which was 3-fold higher than conventional bio-drying. Heat balance calculation indicated that externally supplying a small fraction (12.94%) of thermal energy triggered conventional bio-drying, thus greatly promoting water removal with high energy utilization efficiency as conventional bio-drying (Qevapo 60.30% vs. 64.62%). In addition, the increased air-flow rates greatly accelerated water removal with high bio-energy efficiencies, especially at 0.8 L·min-1·kg-1. The drying effect after 4 days was close to that of 20 days in conventional bio-drying. This research suggests that thermally assisted bio-drying is a promising approach to upgrade conventional bio-drying with high efficiency and low energy cost.
Collapse
Affiliation(s)
- Jiao Ma
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Lei Zhang
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China.
| | - Lan Mu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Kongyun Zhu
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China
| | - Aimin Li
- School of Environmental Science & Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian 116024, Liaoning, China.
| |
Collapse
|