1
|
Costa BSY, da Cunha HN, Draszewski CP, Martins-Vieira JC, Brondani M, Zabot GL, Tres MV, de Castilhos F, Abaide ER, Mayer FD, Hoffmann R. Sequential Process of Subcritical Water Hydrolysis and Hydrothermal Liquefaction of Butia Capitata Endocarp to Obtain Fermentable Sugars, Platform Chemicals, Bio-oil, and Biochar. Appl Biochem Biotechnol 2024; 196:4317-4336. [PMID: 37947949 DOI: 10.1007/s12010-023-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Butia capitata endocarp (BCE) is a biomass residue with the potential to produce a wide variety of bio-products. The processing of BCE in a sequential process of subcritical water hydrolysis (SWH) and hydrothermal liquefaction (HTL) was investigated to obtain fermentable sugars, platform chemicals, bio-oil, and biochar. The SWH was evaluated at 230 and 260 °C and solvent: feed mass ratios (R) of 10 and 20 for the production of fermentable sugars and platform chemicals. The solid residue from SWH was sequentially submitted to the HTL at 330 and 360 °C for bio-oil and biochar production. The results were analyzed by comparing the sequential (SWH/HTL) and individual (HTL only) processes. The highest yields of fermentable sugars (5.26 g/ 100 g BCE) were obtained for SWH at 260 °C and R-20 with higher contents of xylose (2.64 g/100 g BCE) and cellobiose (1.75 g/100 g BCE). The highest yields of platform chemicals (2.44 g/100 g BCE) were obtained for SWH at 260 °C and R-10 with higher contents of acetic acid (1.78 g/100 g BCE) and furfural (0.54 g/100 g BCE). The highest yield of bio-oil (25.30 g/100 g BCE) occurred in HTL individual process at 360 °C and R-20. Sequential process SWH/HTL showed a decrease in bio-oil yield but maintained a similar biochar yield compared to HTL, in addition to the production of fermentable sugars and platform chemicals.
Collapse
Affiliation(s)
- Beatriz S Y Costa
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Henrique N da Cunha
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Crisleine P Draszewski
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - João C Martins-Vieira
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Michel Brondani
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., Center DC (nº 1040), Cachoeira Do Sul, RS, 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Sete de Setembro St., Center DC (nº 1040), Cachoeira Do Sul, RS, 96508-010, Brazil
| | - Fernanda de Castilhos
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Flávio D Mayer
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ronaldo Hoffmann
- Department of Chemical Engineering, Federal University of Santa Maria, Roraima Avenue, nº 1000, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
2
|
Wei Y, Jiao Y, Chen H. Polydimethyldiallylammonium chloride inhibits dark fermentative hydrogen production from waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 393:130003. [PMID: 37977493 DOI: 10.1016/j.biortech.2023.130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Polydimethyldiallylammonium chloride (PDDA) is an excellent flocculant for wastewater purification and sludge dewatering, but whether it poses a threat to hydrogen production from waste activated sludge is not known. In this study, the effect and underlying mechanism of PDDA on the dark fermentation of sludge was investigated. The results showed that PDDA reduced cumulative hydrogen production from 3.8±0.1 to 2.4±0.1 mL/g volatile suspended solids at 40 g/kg total suspended solids. PDDA impeded the dark fermentation process by inhibiting the activity of key enzymes, presenting a stronger inhibitory effect on the hydrogen production process than the hydrogen consumption process. Additionally, PDDA inhibited Firmicutes by enriching other microorganisms, thereby impeding hydrogen production via the acetate pathway. This study deepens the understanding of the potential effects of PDDA on sludge treatment and provides a theoretical basis for alleviating the negative effects of quaternary ammonium-based cationic flocculants.
Collapse
Affiliation(s)
- Yafei Wei
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yimeng Jiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Shabbirahmed AM, Joel J, Gomez A, Patel AK, Singhania RR, Haldar D. Environment friendly emerging techniques for the treatment of waste biomass: a focus on microwave and ultrasonication processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79706-79723. [PMID: 37336854 DOI: 10.1007/s11356-023-28271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
In the recent past, an increasing interest is mostly observed in using microwave and ultrasonic irradiation to aid the biological conversion of waste materials into value-added products. This study is focused on various individual impacts of microwaves and ultrasonic waves for the treatment of biomass before the synthesis of value-added products. Following, a comprehensive review of the mechanisms governing microwaves and ultrasonication as the treatment methods, their effects on biomass disruption, solubilization of organic matter, modification of the crystalline structure, enzymatic hydrolysis and production of reducing sugars was performed. However, based on the lab-scale experiments evaluated, microwaves and ultrasonication were studied to be economically and energetically ineffective despite their beneficial effects on the waste biomass. This article reviews some of the difficulties associated with using microwaves and ultrasonic irradiation for the efficient processing of waste biomasses and identified some potential directions for future study.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Jesse Joel
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| |
Collapse
|
4
|
Wang Z, Bao Y, Wang D, Wang M. Effective removal of phosphorus from high phosphorus steel slag using carbonized rice husk. J Environ Sci (China) 2023; 124:156-164. [PMID: 36182126 DOI: 10.1016/j.jes.2021.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/16/2023]
Abstract
High phosphorus steel slag and carbonized rice husk are two common wastes characterized by high generation and low secondary use values. Through the reduction of high phosphorus steel slag by biomass, both wastes were fully utilized, thus reducing the negative impact on the environment. In this study, variables such as temperature, time, and amount of reactants were changed to determine the optimal conditions for the reaction of steel slag with carbonized rice husk at high temperatures. The actual amount of reducing agent consumed during the reduction was significantly greater than that predicted by theoretical calculations. Adding three carbon equivalent of carbonized rice husk and maintaining at 1500°C for 30 min could remove 79.25% of P2O5 in the slag. By modeling the material cycle in which high phosphorus steel slag was treated with biomass, the product could be used for crop growth. Meanwhile, the reduced iron and residual steel slag can be used to make steel again, thereby leading to a sharp reduction in fossil fuel usage and greenhouse gas emissions in this process.
Collapse
Affiliation(s)
- Zhongliang Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanping Bao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China.
| | - Dazhi Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Esteban-Lustres R, Torres MD, Piñeiro B, Enjamio C, Domínguez H. Intensification and biorefinery approaches for the valorization of kitchen wastes - A review. BIORESOURCE TECHNOLOGY 2022; 360:127652. [PMID: 35872274 DOI: 10.1016/j.biortech.2022.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Kitchen wastes (KW) are post-consumption residues from household and food service sector, heterogenous in composition and highly variable depending on the particular origin, which are often treated as municipal. There is a need to improve the management of these continuously produced and worldwidely available resources and their valorization into novel and commercially interesting products will aid in the development of bioeconomy. The successful implementation of such approach requires cooperation between academia, industrial stakeholders, public and private institutions, based on the different dimensions, including social, economic, ecologic and technological involved. This review aims at presenting a survey of technological aspects, regarding current and potential management strategies of KW, following either a single or multiproduct processing according to the biorefineries scheme. Emphasis is given to intensification tools, designed to enhance process efficiency.
Collapse
Affiliation(s)
- Rebeca Esteban-Lustres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| | - María Dolores Torres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain.
| | - Beatriz Piñeiro
- Economic Resources, CHOU, SERGAS, Ramon Puga Noguerol, 54, 32005 Ourense, Spain
| | - Cristina Enjamio
- Galaria, SERGAS, Edificio Administrativo San Lázaro s/n, 15701 Santiago de Compostela, A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
6
|
Rehman A, Noor T, Hussain A, Iqbal N, Jahan Z. Role of Catalysis in Biofuels Production Process – A Review. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ayesha Rehman
- National University of Sciences and Technology (NUST) School of Chemical and Materials Engineering (SCME) Islamabad Pakistan
| | - Tayyaba Noor
- National University of Sciences and Technology (NUST) School of Chemical and Materials Engineering (SCME) Islamabad Pakistan
| | - Arshad Hussain
- National University of Sciences and Technology (NUST) School of Chemical and Materials Engineering (SCME) Islamabad Pakistan
| | - Naseem Iqbal
- National University of Sciences and Technology U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) Islamabad Pakistan
| | - Zaib Jahan
- National University of Sciences and Technology (NUST) School of Chemical and Materials Engineering (SCME) Islamabad Pakistan
| |
Collapse
|
7
|
CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme. ENERGIES 2020. [DOI: 10.3390/en13205358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pyrolysis of biomass in a fluidized-bed reactor is studied by a combination of a CFD-DEM algorithm and a multistep kinetic scheme, where fluid dynamics, heat and mass transfer, particle collisions, and the detailed thermochemical conversion of biomass are all resolved. The integrated method is validated by experimental results available in literature and a considerable improvement in predicting the pyrolysis product yields is obtained as compared to previous works using a two-fluid model, especially the relative error in the predicted tar yield is reduced by more than 50%. Furthermore, the evolution of light gas, char and tar, as well as the particle conversion, which cannot easily be measured in experiments, are also revealed. Based on the proposed model, the influences of pyrolysis temperature and biomass particle size on the pyrolysis behavior in a fluidized-bed reactor are comprehensively studied. Numerical results show that the new algorithm clearly captures the dependence of char yield on pyrolysis temperature and the influence of heating rate on light gas and tar yields, which is not possible in simulations based on a simplified global pyrolysis model. It is found that, as the temperature rises from 500 to 700 °C, the light gas yield increases from 17% to 25% and char yield decreases from 22% to 14%. In addition, within the tested range of particle sizes (<1 mm), the impact on pyrolysis products from particle size is relatively small compared with that of the operating temperature. The simulations demonstrate the ability of a combined Lagrangian description of biomass particles and a multistep kinetic scheme to improve the prediction accuracy of fluidized-bed pyrolysis.
Collapse
|
8
|
Ebrahimian F, Karimi K, Kumar R. Sustainable biofuels and bioplastic production from the organic fraction of municipal solid waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 116:40-48. [PMID: 32784120 DOI: 10.1016/j.wasman.2020.07.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Municipal solid waste is an environmental threat worldwide; however, the organic fraction of municipal solid waste (OF-MSW) has a great potential for the generation of fuels and high-value products. In the current study, OF-MSW was utilized for the production of ethanol, hydrogen, as well as 2,3-butanediol, an octane booster, by using Enterobacter aerogenes. Furthermore, a promising alternative to non-biodegradable petrochemical-based polymers, polyhydroxyalkanoates (PHAs), was produced. The OF-MSW was first pretreated by an acetic acid catalyzed ethanol organosolv pretreatment at 120 and 160 °C followed by enzymatic hydrolysis of the residual solids. The residual unhydrolyzed solids resulting from enzymatic hydrolysis were further anaerobically digested for methane production. The enzymatic hydrolysis of the solids prepared at 120 °C for 60 min led to the production of hydrolysate with the highest glucose production yield of 498.5 g/kg dry untreated OF-MSW, which was fermented to 139.1 g 2,3-butanediol, 98.3 g ethanol, 28.6 g acetic acid, 71.4 L biohydrogen, and 40 g PHAs. Moreover, 23.1 L biomethane was produced through the anaerobic digestion of the enzymatic hydrolysis residue solids. Thus, appreciable amounts of energy (8236.9 kJ) and an eco-friendly bioplastic were produced by the valorization of carbon sources available in OF-MSW.
Collapse
Affiliation(s)
- Farinaz Ebrahimian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rajeev Kumar
- Center of Environmental and Research Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, CA 92507, USA.
| |
Collapse
|
9
|
Yu L, Liu Y, Wei H, Chen L, An L. Developing a high-quality catalyst from the pyrolysis of anaerobic granular sludge: Its application for m-cresol degradation. CHEMOSPHERE 2020; 255:126939. [PMID: 32402883 DOI: 10.1016/j.chemosphere.2020.126939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This study proposes a novel approach for utilizing granular sludge discharged from anaerobic reactors to prepare an effective and stable catalyst for the removal of refractory contaminants in catalytic wet peroxide oxidation (CWPO). By implementing the response surface methodology, the experimental conditions for m-cresol degradation in CWPO with a HNO3-modified sludge carbon (GSC-M) as catalyst were explored. The removal efficiencies for m-cresol and total organic carbon (TOC) were 100% and 91.4%, respectively, at the optimal conditions of 60 °C for 120 min with a pH of 3, H2O2 dosage of 1.85 g/L, and catalyst dosage of 0.75 g/L. A continuous experiment was conducted for 6 d to investigate the durability and catalytic performance of GSC-M, resulting in a TOC removal above 90% with the catalyst maintaining its original morphology. GSC-M catalyst exhibited excellent stability and low iron leaching (0.34%). The high catalytic degradation could be attributed to a high content of iron species, various types of surface functional groups, porous structures, and the π-π interaction between aromatic clusters in sludge carbon and the benzene ring of m-cresol. Interestingly, GSC-M catalyst exhibited magnetic properties which are beneficial for recycling. Based on the identified intermediates, a possible degradation pathway of m-cresol was proposed.
Collapse
Affiliation(s)
- Li Yu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; China Institute for Radiation Protection, Taiyuan, 030024, China.
| | - Yunkang Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lili Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Luyang An
- Engineering Research Center for Iron and Steel Industry Wastewater Advanced Treatment Technology of Liaoning Province, Sinosteel Anshan Research Institute of Thermo-energy Co. Ltd, Anshan, 114044, China
| |
Collapse
|
10
|
Yaroslavtsev AB, Stenina IA, Golubenko DV. Membrane materials for energy production and storage. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ion exchange membranes are widely used in chemical power sources, including fuel cells, redox batteries, reverse electrodialysis devices and lithium-ion batteries. The general requirements for them are high ionic conductivity and selectivity of transport processes. Heterogeneous membranes are much cheaper but less selective due to the secondary porosity with large pore size. The composition of grafted membranes is almost identical to heterogeneous ones. But they are more selective due to the lack of secondary porosity. The conductivity of ion exchange membranes can be improved by their modification via nanoparticle incorporation. Hybrid membranes exhibit suppressed transport of co-ions and fuel gases. Highly selective composite membranes can be synthesized by incorporating nanoparticles with modified surface. Furthermore, the increase in the conductivity of hybrid membranes at low humidity is a significant advantage for fuel cell application. Proton-conducting membranes in the lithium form intercalated with aprotic solvents can be used in lithium-ion batteries and make them more safe. In this review, we summarize recent progress in the synthesis, and modification and transport properties of ion exchange membranes, their transport properties, methods of preparation and modification. Their application in fuel cells, reverse electrodialysis devices and lithium-ion batteries is also reviewed.
Collapse
Affiliation(s)
- A. B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- National Research University “Higher School of Economics” , Myasnitskaya Street 20 , 101000 Moscow , Russian Federation
| | - I. A. Stenina
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- Institute of Problems of Chemical Physics of RAS , Academician Semenov Avenue 1 , 142432 Chernogolovka, Moscow Region , Russian Federation
| | - D. V. Golubenko
- Kurnakov Institute of General and Inorganic Chemistry of RAS , Leninsky Prospekt 31 , 119991 Moscow , Russian Federation
- National Research University “Higher School of Economics” , Myasnitskaya Street 20 , 101000 Moscow , Russian Federation
| |
Collapse
|
11
|
Park JH, Park JH, Sim YB, Kim SH, Park HD. Formation of a dynamic membrane altered the microbial community and metabolic flux in fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2019; 282:63-68. [PMID: 30851575 DOI: 10.1016/j.biortech.2019.02.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the relationship among dynamic membrane (DM) formation, metabolic flux, and microbial community population in dark fermentative hydrogen production. A continuously stirred tank reactor was equipped with an external submerged polyester screen mesh and inoculated with heat-treated anaerobic sludge without immobilization. DM was successfully developed on the polyester mesh and provided high-rate hydrogen production at 60.5 L H2/L.d and 2.39 mol H2/mol glucoseadded. DM formation was along with tightly bound extracellular polymeric substances. Flux balance analysis revealed that formation of DM altered the metabolic pathways for acetic acid production from homoacetogenesis to hydrogenesis. Bacterial community analysis suggested that Sporolactobacillaceae would contributed to this metabolic pathway shift. Nevertheless, lactic acid was not accumulated and assumed to be consumed by hydrogen producers including Clostridia.
Collapse
Affiliation(s)
- Jong-Hun Park
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Jeong-Hoon Park
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hee-Deung Park
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
12
|
Elreedy A, Fujii M, Koyama M, Nakasaki K, Tawfik A. Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. WATER RESEARCH 2019; 151:349-361. [PMID: 30616047 DOI: 10.1016/j.watres.2018.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
The present study assessed the efficiency of utilizing mixed culture bacteria (MCB) incorporated with individual nanoparticles (NPs), i.e., hematite (α-Fe2O3), nickel oxide (NiO), and zinc oxide (ZnO), dual NPs (α-Fe2O3 + NiO, α-Fe2O3 + ZnO, and NiO + ZnO), and multi-NPs (α-Fe2O3 + NiO + ZnO) for hydrogen production (HP) from industrial wastewater containing mono-ethylene glycol (MEG). When MCB was individually supplemented with α-Fe2O3 (200 mg/L), NiO (20 mg/L), and ZnO NPs (10 mg/L), HP improved significantly by 41, 30, and 29%, respectively. Further, key enzymes associated with MEG metabolism, such as alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and hydrogenase (hyd), were rapidly and substantially enhanced in the medium. NiO and ZnO NPs notably promoted ADH and ALDH activities, respectively, while α-Fe2O3 exhibited superior impact on hyd activity. Maximum hydrogen production rate was concomitant with higher acetic acid production and lower residual acetaldehyde and ethanol. HP using MCB supplemented with individual NiO (20 mg/L) and ZnO NPs (10 mg/L) further improved by 8.0%-14% when dual and multi-NPs were used; the highest HP was recorded when multi-NPs were used. In addition, NPs incorporation resulted in substantial increase in the relative abundance of Clostridiales (belonging to family Clostridiaceae; > 83%). Overall, this study provides significant insights into the impact of NPs on hydrogen production from MEG-contaminated wastewater.
Collapse
Affiliation(s)
- Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan.
| | - Mitsuhiko Koyama
- School of Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kiyohiko Nakasaki
- School of Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|