1
|
Zhou J, Wu H, Wang H, Wu Z, Shi L, Tian S, Hou LA. Metagenomics reveals the resistance patterns of electrochemically treated erythromycin fermentation residue. J Environ Sci (China) 2025; 148:567-578. [PMID: 39095189 DOI: 10.1016/j.jes.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 08/04/2024]
Abstract
Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- Inner Mongolia Autonomous Region Solid Waste and Soil Ecological Environment Technology Center, Hohhot 010020, China
| | - Zongru Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihu Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; High Tech. Inst. Beijing, Beijing 100085, China.
| |
Collapse
|
2
|
Zhang Z, Lv P, Zhen F, Li H, Yu H, Zhang L, Qu B. Multi layered porous nitrogen-rich biochar materials derived from soybean cellulose for lithium metal anode three-dimensional skeleton in lithium batteries. Int J Biol Macromol 2024; 293:139301. [PMID: 39743108 DOI: 10.1016/j.ijbiomac.2024.139301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Lithium metal, renowned for its ultra-high theoretical specific capacity and low electrochemical potential, is a promising anode material for high-energy-density batteries. However, its commercialization is impeded by issues such as uncontrolled Li dendrite growth and volumetric expansion during cycling. Herein, we report the synthesis of a nitrogen- and Si3N4-enriched porous based biochar derived from antibiotic mycelial residues rich in soybean cellulose, which serves as a three-dimensional skeleton for Li metal anodes. This biochar, characterized by a high specific surface area and a porous structure, along with its excellent electrical conductivity, facilitates uniform Li nucleation and growth, thereby mitigating dendrite formation. Results show that the biochar electrode after lithium deposition can achieve stable cycling for over 1200 h at a capacity of 2 mAh cm-2. When integrated with a NCM cathode in a coin cell configuration, the coin-type full cell demonstrates a capacity retention of 85.7 % after 300 cycles at a 0.3C rate. Additionally, pouch cell tests exhibit superior cycling stability with high-capacity retention. This study not only presents an innovative approach to the management of harmful biological waste high in soybean cellulose but also contributes to the advancement of Li metal anode materials for next-generation batteries.
Collapse
Affiliation(s)
- Zhongyang Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Lv
- Heihe Customs Technical Center, Heihe 161404, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongru Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hailong Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingling Zhang
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Yang G, Xu Y, Wang J. Antibiotic fermentation residue for biohydrogen production: Inhibitory mechanisms of the inherent antibiotic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173986. [PMID: 38876344 DOI: 10.1016/j.scitotenv.2024.173986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Youtong Xu
- China National Chemical Engineering International Corporation Ltd., Beijing 100020, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Zhao X, Zhu G, Liu J, Wang J, Zhang S, Wei C, Cao L, Zhao S, Zhang S. Efficient Removal of Tetracycline from Water by One-Step Pyrolytic Porous Biochar Derived from Antibiotic Fermentation Residue. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1377. [PMID: 39269039 PMCID: PMC11397281 DOI: 10.3390/nano14171377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The disposal and treatment of antibiotic residues is a recognized challenge due to the huge production, high moisture content, high processing costs, and residual antibiotics, which caused environmental pollution. Antibiotic residues contained valuable components and could be recycled. Using a one-step controllable pyrolysis technique in a tubular furnace, biochar (OSOBs) was produced without the preliminary carbonization step, which was innovative and time- and cost-saving compared to traditional methods. The main aim of this study was to explore the adsorption and removal efficiency of tetracycline (TC) in water using porous biochar prepared from oxytetracycline fermentation residues in one step. A series of characterizations were conducted on the prepared biochar materials, and the effects of biochar dosage, initial tetracycline concentration, reaction time, and reaction temperature on the adsorption capacity were studied. The experimental results showed that at 298 K, the maximum adsorption capacity of OSOB-3-700 calculated by the Langmuir model reached 1096.871 mg/g. The adsorption kinetics fitting results indicated that the adsorption of tetracycline on biochar was more consistent with the pseudo-second-order kinetic model, which was a chemical adsorption. The adsorption isotherm fitting results showed that the Langmuir model better described the adsorption process of tetracycline on biochar, indicating that tetracycline was adsorbed in a monolayer on specific homogeneous active sites through chemical adsorption, consistent with the kinetic conclusions. The adsorption process occurred on the surface of the biochar containing rich active sites, and the chemical actions such as electron exchange promoted the adsorption process.
Collapse
Affiliation(s)
- Xinyu Zhao
- Miami College, Henan University, Kaifeng 475004, China
| | - Guokai Zhu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jiangtao Liu
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuguang Zhao
- Huaxia Besince Environmental Technology Co., Ltd., Zhengzhou 450018, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Zhang M, Chen Q, Zhang Y, Zhang R, Chen Y, Mu J. Detoxification of vancomycin fermentation residue by hydrothermal treatment and pyrolysis: Chemical analysis and toxicity tests. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:132-142. [PMID: 38744165 DOI: 10.1016/j.wasman.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.70 % of the residual vancomycin and all ARGs were removed. The HMs contents in VFR followed the order of manganese (676.2 mg/kg) > zinc (148.6 mg/kg) > chromium (25.40 mg/kg) > copper (17.20 mg/kg), and they were highly bioavailable and easily leached. However, HT and pyrolysis (≥400 °C) substantially reduced the bioavailable fractions and leaching properties of the HMs. After HT and pyrolysis at ≥ 400 °C, the potential ecological risk of HMs in VFR was reduced from considerable to moderate/low levels. The elutriate acute toxicity test suggested that HT and pyrolysis at ≥ 400 °C effectively reduced the toxicity of VFR to an acceptable level (p < 0.05). This study demonstrates that HT and pyrolysis (≥400 °C) are promising methods for treating VFR and detoxifying it, and the treated products are safe for further reutilization.
Collapse
Affiliation(s)
- Mingdong Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China
| | - Qinpeng Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yuting Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Ruirui Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Yunchao Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Jingli Mu
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
6
|
Zhang MQ, Zhang XY, Zhang HC, Qiu HB, Li ZH, Xie DH, Yuan L, Sheng GP. Gamma-ray irradiation as an effective method for mitigating antibiotic resistant bacteria and antibiotic resistance genes in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133791. [PMID: 38367438 DOI: 10.1016/j.jhazmat.2024.133791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/26/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The prevalence of antibiotic resistance genes (ARGs) in municipal wastewater treatment plants (MWTPs) has emerged as a significant environmental concern. Despite advanced treatment processes, high levels of ARGs persist in the secondary effluent from MWTPs, posing ongoing environmental risks. This study explores the potential of gamma-ray irradiation as a novel approach for sterilizing antibiotic-resistant bacteria (ARB) and reducing ARGs in MWTP secondary effluent. Our findings reveal that gamma-ray irradiation at an absorbed dose of 1.6 kGy effectively deactivates all culturable bacteria, with no subsequent revival observed after exposure to 6.4 kGy and a 96-h incubation in darkness at room temperature. The removal efficiencies for a range of ARGs, including tetO, tetA, blaTEM-1, sulI, sulII, and tetW, were up to 90.5% with a 25.6 kGy absorbed dose. No resurgence of ARGs was detected after irradiation. Additionally, this study demonstrates a considerable reduction in the abundances of extracellular ARGs, with the transformation efficiencies of extracellular tetracycline and sulfadiazine resistance genes decreasing by 56.3-81.8% after 25.6 kGy irradiation. These results highlight the effectiveness of gamma-ray irradiation as an advanced and promising method for ARB sterilization and ARG reduction in the secondary effluent of MWTPs, offering a potential pathway to mitigate environmental risks associated with antibiotic resistance.
Collapse
Affiliation(s)
- Ming-Qi Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission of the Ministry of Water Resources, Zhengzhou 450003, China
| | - Xiao-Yong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Chao Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Bin Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Zhou S, Yang F, Wang W, Yang Z, Song J, Jiang T, Huang Z, Gao Y, Wang Y. Impact of uranium on antibiotic resistance in activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170369. [PMID: 38278272 DOI: 10.1016/j.scitotenv.2024.170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The emergence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment is well established as a human health crisis. The impact of radioactive heavy metals on ecosystems and ultimately on human health has become a global issue, especially for the regions suffering various nuclear activities or accidents. However, whether the radionuclides can affect the fate of antibiotic resistance in bacteria remains poorly understood. Here, the dynamics of ARB, three forms of ARGs-intracellular ARGs (iARGs), adsorbed extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs)-and microbial communities were investigated following exposure to uranium (U), a representative radioactive heavy metal. The results showed that 90-d of U exposure at environmentally relevant concentrations of 0.05 mg/L or 5 mg/L significantly increased the ARB concentration in activated sludge (p < 0.05). Furthermore, 90-d of U exposure slightly elevated the absolute abundance of aeARGs (except tetO) and sulfonamide iARGs, but decreased tetracycline iARGs. Regarding feARGs, the abundance of tetC, tetO, and sul1 decreased after 90-d of U stress, whereas sul2 showed the opposite trend. Partial least-squares path model analysis revealed that the abundance of aeARGs and iARGs under U stress was predominantly driven by increased cell membrane permeability/intI1 abundance and cell membrane permeability/reactive oxygen species concentration, respectively. Conversely, the changes in feARGs abundance depended on the composition of the microbial community and the expression of efflux pumps. Our findings shed light on the variations of ARGs and ARB in activated sludge under U exposure, providing a more comprehensive understanding of antibiotic resistance risks aggravated by radioactive heavy metal-containing wastewater.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fengjuan Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Tianyun Jiang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China.
| |
Collapse
|
8
|
Wang D, Dong Y, Xin S, Li Y, Chen N, Liu Y, Wang Q, Liu G, Liu Y, Liu H, Xin Y. Safe utilization of bioresources in gentamicin mycelial residues by thermal treatment: Antibiotic degradation, resistance gene inactivation and available nutrients promotion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:245-253. [PMID: 38219462 DOI: 10.1016/j.wasman.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.
Collapse
Affiliation(s)
- Dong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Dong
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuefei Li
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningyi Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yulin Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Han Z, Luan X, Feng H, Deng Y, Yang M, Zhang Y. Metagenomic insights into microorganisms and antibiotic resistance genes of waste antibiotic fermentation residues along production, storage and treatment processes. J Environ Sci (China) 2024; 136:45-55. [PMID: 37923454 DOI: 10.1016/j.jes.2022.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023]
Abstract
Antibiotic fermentation residue (AFR) is nutrient-rich solid waste generated from fermentative antibiotic production process. It is demonstrated that AFR contains high-concentration of remaining antibiotics, and thus may promote antibiotic resistance development in receiving environment or feeding farmed animals. However, the dominate microorganisms and antibiotic resistance genes (ARGs) in AFRs have not been adequately explored, hampering understanding on the potential antibiotic resistance risk development caused by AFRs. Herein, seven kinds of representative AFRs along their production, storage, and treatment processes were collected, and multiple methods including amplicon sequencing, metagenomic sequencing, and bioinformatic approaches were adopted to explore the biological characteristics of AFRs. As expected, antibiotic fermentation producer was found as the predominant species in raw AFRs, which were collected at the outlet of fermentation tanks. However, except for producer species, more environment-derived species persisted in stored AFRs, which were temporarily stored at a semi-open space. Lactobacillus genus, classified as Firmicutes phylum and Bacilli class, became predominant bacterial taxa in stored AFRs, which might attribute to its tolerance to high concentration of antibiotics. Results from metagenomic sequencing together with assembly and binning approaches showed that these newly-colonizing species (e.g., Lactobacillus genus) tended to carry ARGs conferring resistance to the remaining antibiotic. However, after thermal treatment, remaining antibiotic could be efficiently removed from AFRs, and microorganisms together with DNA could be strongly destroyed. In sum, the main risk from the AFRs was the remaining antibiotic, while environment-derived bacteria which tolerate extreme environment, survived in ARFs with high content antibiotics, and may carry ARGs. Thus, hydrothermal or other harmless treatment technologies are recommended to remove antibiotic content and inactivate bacteria before recycling of AFRs in pharmaceutical industry.
Collapse
Affiliation(s)
- Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanqin Deng
- Wuhan Agricultural Inspection Center, Wuhan 430016, China
| | - Min Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Mu J, Chen Y, Wu X, Chen Q, Zhang M. Rapid and efficient removal of multiple heavy metals from diverse types of water using magnetic biochars derived from antibiotic fermentation residue. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119685. [PMID: 38042070 DOI: 10.1016/j.jenvman.2023.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Pyrolysis is a promising method to treat antibiotic fermentation residue (AFR), a hazardous waste in China, with the benefits of detoxification and resource recycling. However, the application of the AFR-derived biochar has been limited yet, restricting the use of pyrolysis to treat AFR. Herein, for the first time, we reported the use of magnetic biochars derived from vancomycin fermentation residue to rapidly and efficiently co-adsorb multiple heavy metals from diverse types of water with complex matrices. The biochar prepared at 700 °C (labeled as VBC700) exhibited high affinity and selectivity for multiple heavy metals, especially for Ag(I), Hg(II), Pb(II), and Cu(II). The kinetics for Ag(I), Hg(II), and Pb(II) were ultrafast with an equilibrium time of only 5 min, while those for Cu(II) were relatively slower. The maximum adsorption capacity calculated from the Langmuir model for Ag(I), Hg(II), Pb(II), and Cu(II) reached 177.4, 105.9, 387.1, 124.5 mg/g, respectively, which were superior to much previously reported adsorbents. Impressively, Na(I), K(I), Ca(II), Mg(II), and salinity did not affect the capture of these heavy metals, and thus >99% of Ag(I), Pb(II), and Cu(II) were concurrently removed from complex water matrices including seawater, which has rarely been reported before. Furthermore, VBC700 remained high adsorption performance at pH ≥ 3. The adsorption mechanisms included ion exchange, precipitation, and inner-sphere complexation. Overall, the results demonstrate that VBC700 would be an excellent adsorbent to co-capture multiple heavy metals from diverse types of water, highlighting the feasibility of using pyrolysis to achieve a win-win goal for AFR management and heavy metal pollution control.
Collapse
Affiliation(s)
- Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China
| | - Yunchao Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350028, PR China
| | - Xihui Wu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Qinpeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China
| | - Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, 350108, PR China.
| |
Collapse
|
11
|
Ni S, Li C, Zhang W, Niu D, Zhi J, Wang C, Jiang X, Ren J. Immobilization of purified enzyme EreB in metalorganic framework (MOF) mesopores for erythromycin degradation. ENVIRONMENTAL RESEARCH 2023; 237:117023. [PMID: 37657601 DOI: 10.1016/j.envres.2023.117023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Erythromycin, a commonly used macrolide antibiotic, plays a crucial role in both human medicine and animal husbandry. However, its abuse has led to residual presence in the environment, with problems such as the emergence of resistant bacteria and enrichment of resistance genes. These issues pose significant risks to human health. Thus far, there are no effective, environmentally friendly methods to manage this problem. Enzymes can specifically degrade erythromycin without causing other problems, but their unrecyclability and environmental vulnerability hinder large-scale application. Enzyme immobilization may help to solve these problems. This study used Cu-BTC, a synthetic metal-organic framework, to immobilize the erythromycin-degrading enzyme EreB. The loading temperature and enzyme quantity were optimized. The Cu-BTC and EreB@Cu-BTC were characterized by various methods to confirm the preparation of Cu-BTC and immobilization of EreB. The maximum enzyme loading capacity was 66.5 mg g-1. In terms of enzymatic properties, immobilized EreB had improved heat (25-45 °C) and alkaline (6.5-10) tolerance, along with greater affinity between the enzyme and its substrate; Km decreased from 438.49 to 372.30 mM. Recycling was also achieved; after 10 cycles, 57.12% of the enzyme activity was maintained. After composite degradation, the antibacterial activity of erythromycin-containing wastewater was examined; the results showed that the novel composite could completely inactivate erythromycin. In summary, Cu-BTC was an ideal carrier for immobilization of the enzyme EreB, and the EreB@Cu-BTC composite has good prospects for the treatment of erythromycin-containing wastewater.
Collapse
Affiliation(s)
- Shensheng Ni
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China
| | - Chunyu Li
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China
| | - Wenfan Zhang
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China
| | - Dongze Niu
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China
| | - Junqiang Zhi
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Chongqing Wang
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Sciences, De Gou Ma Jia Yuan, Qixingguan District, Bijie, 551700, China
| | - Jianjun Ren
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou, 213164, China.
| |
Collapse
|
12
|
Jia W, Song J, Wang J, Li J, Li X, Wang Q, Chen X, Liu G, Yan Q, Zhou C, Xin S, Xin Y. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. CHEMOSPHERE 2023:139201. [PMID: 37348618 DOI: 10.1016/j.chemosphere.2023.139201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.
Collapse
Affiliation(s)
- Wenqiang Jia
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
13
|
Jin Y, Huang P, Chen X, Li LP, Lin CY, Chen X, Ding R, Liu J, Chen R. Ciprofloxacin degradation performances and mechanisms by the heterogeneous electro-Fenton with flocculated fermentation biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121425. [PMID: 36898645 DOI: 10.1016/j.envpol.2023.121425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic fermentation residue flocculated by polymeric ferric sulfate (PFS) has been classified as a "hazardous waste" in China. In this study, it was recycled into antibiotic fermentation residue biochar (AFRB) by pyrolysis and used as a heterogeneous electro-Fenton (EF) catalyst for ciprofloxacin (CIP) degradation. The results show that PFS was reduced to Fe0 and FeS during pyrolysis, which was beneficial for the EF process. The AFRB with mesoporous structures exhibited soft magnetic features, which were convenient for separation. CIP was completely degraded within 10 min by the AFRB-EF process at an initial concentration of 20 mg/L. Increasing the working current and catalyst dosage within a certain range could improve the degradation rate. ·OH and O2·- were the dominant reactive oxygen species that played critical roles for CIP degradation. The antibacterial groups of CIP have been destroyed by the heterogeneous electro-Fenton process and its toxicity was negligible. The AFRB showed satisfactory performance, even though it was recycled five times. This study provide new insights into the resourceful treatment of antibiotic fermentation residues.
Collapse
Affiliation(s)
- Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Peiwen Huang
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Xiongjian Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Li-Ping Li
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chun-Yan Lin
- School of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Xiao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Rui Ding
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Jianxi Liu
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China
| | - Riyao Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, 350007, China.
| |
Collapse
|
14
|
Zhang M, Chen Q, Zhang R, Zhang Y, Wang F, He M, Guo X, Yang J, Zhang X, Mu J. Pyrolysis of Ca/Fe-rich antibiotic fermentation residues into biochars for efficient phosphate removal/recovery from wastewater: Turning hazardous waste to phosphorous fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161732. [PMID: 36682552 DOI: 10.1016/j.scitotenv.2023.161732] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Ca/Fe-rich antibiotic fermentation residues (AFRs), a type of hazardous waste, can be regarded as recyclable biomass and metal resources. However, concurrent detoxification and reutilization of biomass and metals resources from AFRs have never been reported before. In this study, Ca/Fe-rich vancomycin fermentation residues were pyrolyzed into biochar to adsorb phosphate for the first time. The residual vancomycin and antibiotic resistance genes were completely decomposed during pyrolysis. The resultant Ca/Fe-rich biochar exhibited excellent performance at adsorbing phosphate without further modifications. The process had rapid kinetics and a maximum adsorption capacity of 102 mg P/g. Ca and Fe were the active sites, whereas different mechanisms were observed under acidic and alkaline conditions. Surprisingly, HCO3- enhanced phosphate adsorption with an increase of adsorption capacity from 43.9 to 71.0 mg/g when HCO3- concentration increased from 1 to 10 mM. Furthermore, actual wastewater could be effectively treated by the biochar. The phosphate-rich spent biochar significantly promoted seed germination (germination rate: 96.7 % vs. 80.0 % in control group, p < 0.01) and seedling growth (shoot length was increased by 57.9 %, p < 0.01) due to the slow release of bioavailable phosphate, and thus could be potentially used as a phosphorous fertilizer. Consequently, the hazardous waste was turned into phosphorous fertilizer, with the additional benefits of detoxifying AFRs, reutilizing biomass and metal resources from AFRs, controlling phosphate pollution, and recovering phosphate from wastewater.
Collapse
Affiliation(s)
- Mingdong Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Qinpeng Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Ruirui Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Yuting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Feipeng Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Minzhen He
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Xiumei Guo
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Jian Yang
- Fuzhou Fuxing Pharmaceutical Co., Ltd. of Lizhu Group, Fuzhou 350309, PR China
| | - Xiaoyuan Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
15
|
Zhou J, Wu H, Shi L, Wang X, Shen Y, Tian S, Hou LA. Sustainable on-farm strategy for the disposal of antibiotic fermentation residue: Co-benefits for resource recovery and resistance mitigation. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130705. [PMID: 36587600 DOI: 10.1016/j.jhazmat.2022.130705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic fermentation residue is a key issue for the sustainable operation of pharmaceutical companies, and its improper disposal may cause antibiotic resistance transfer in the environment. However, little is known about the resource recycling strategy of this pharmaceutical waste. Herein, we used hydrothermal spray-dried (HT+SD) and multi-plate dryer (MD) methods to produce bio-organic fertilizers and applied them to an internal recycling model of a field trial. The concentrations of antibiotics (penicillin, cephalosporin, and erythromycin) in the bio-fertilizer, wastewater, and exhaust gas were in the range of 0.002-0.68 mg/kg, ≤ 0.35 ng/mL, and 0.03-0.89 ng/mL, respectively. The organic matter and total nitrogen, phosphorus, and potassium contents were approximately 80% and 10%, respectively. The soil bacterial community was similar among the fertilizer treatments in the same crop cultivation. A total of 233 antibiotic resistance genes (ARGs) and 43 mobile genetic elements (MGEs) were detected, including seven Rank I ARGs and five Rank II ARGs. Random forest analysis showed that gene acc(3)-Via and plasmid trb-C were biomarkers, for which the resistance and the transfer mechanisms were antibiotic inactivation and conjugation, respectively. The results imply that AFR recycling disposal mode is a promising prospect for pharmaceutical waste management.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihu Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuming Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; High Tech Inst Beijing, Beijing 100085, China.
| |
Collapse
|
16
|
Tang J, Wang Y, Peng Y, Sun Z, Liu R, Ran F. Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2739-2750. [PMID: 36762610 DOI: 10.1021/acs.langmuir.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The attapulgite@carbon/NiCo layered double hydroxide nanocomposites based on waste adsorbents are manufactured via simple and eco-friendly calcination and hydrothermal methods, by which they would be considerable electrode materials for advanced supercapacitors. To achieve sustainable development, the spent tetracycline-loaded attapulgite can act as a cost-effective available carbon source as well as a matrix material for carbon species and NiCo layered double hydroxide simultaneously. A controlled amount of attapulgite@carbon could be used to regulate the electrochemical properties of nanocomposites. The generated electrodes possess superior electrochemical properties with a specific capacitance of 2013.8 F g-1 at 0.5 A g-1, a retention rate of 87.7% at 5 A g-1, and a cyclic stability of 64.9% for 4000 cycles at 5 A g-1. Thus, the asymmetric supercapacitor device assembled with attapulgite@carbon/NiCo layered double hydroxide nanocomposites||active carbon shows a maximum capacitance of 231.3 F g-1 at 0.5 A g-1, with a preeminent energy density of 82.2 Wh kg-1 when its power density is 4318 W kg-1. This approach would contribute to the development of supercapacitors in an efficient and effective manner, as well as provide a feasible strategy for solving tetracycline pollution and recycling waste adsorbents to achieve sustainable development.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yuanyou Peng
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zhijiang Sun
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
17
|
Wang J, Wang S, Chen C, Hu J, He S, Zhou Y, Zhu H, Wang X, Hu D, Lin J. Treatment of hospital wastewater by electron beam technology: Removal of COD, pathogenic bacteria and viruses. CHEMOSPHERE 2022; 308:136265. [PMID: 36055595 PMCID: PMC9424868 DOI: 10.1016/j.chemosphere.2022.136265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/10/2023]
Abstract
The effective treatment of hospital sewage is crucial to human health and eco-environment, especially during the pandemic of COVID-19. In this study, a demonstration project of actual hospital sewage using electron beam technology was established as advanced treatment process during the outbreak of COVID-19 pandemic in Hubei, China in July 2020. The results indicated that electron beam radiation could effectively remove COD, pathogenic bacteria and viruses in hospital sewage. The continuous monitoring date showed that the effluent COD concentration after electron beam treatment was stably below 30 mg/L, and the concentration of fecal Escherichia coli was below 50 MPN/L, when the absorbed dose was 4 kGy. Electron beam radiation was also an effective method for inactivating viruses. Compared to the inactivation of fecal Escherichia coli, higher absorbed dose was required for the inactivation of virus. Absorbed dose had different effect on the removal of virus. When the absorbed dose ranged from 30 to 50 kGy, Hepatitis A virus (HAV) and Astrovirus (ASV) could be completely removed by electron beam treatment. For Rotavirus (RV) and Enterovirus (EV) virus, the removal efficiency firstly increased and then decreased. The maximum removal efficiency of RV and EV was 98.90% and 88.49%, respectively. For the Norovirus (NVLII) virus, the maximum removal efficiency was 81.58%. This study firstly reported the performance of electron beam in the removal of COD, fecal Escherichia coli and virus in the actual hospital sewage, which would provide useful information for the application of electron beam technology in the treatment of hospital sewage.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chuanhong Chen
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shijun He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Yuedong Zhou
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Huanzheng Zhu
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Xipo Wang
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Dongming Hu
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| | - Jian Lin
- Dasheng Electron Accelerator Technology Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu, 215214, PR China
| |
Collapse
|
18
|
Sun J, Wang G, Liu H, Zhang Y, Sun H, Dai X. Influence of thermally activated peroxodisulfate pretreatment on gaseous emission, dissolved organic matter and maturity evolution during spiramycin fermentation residue composting. BIORESOURCE TECHNOLOGY 2022; 363:127964. [PMID: 36113819 DOI: 10.1016/j.biortech.2022.127964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Aerobic composting combined with appropriate pretreatment is promising to achieve the utilization of antibiotics fermentation residues (AFRs). This research studied the effect of thermally activated peroxodisulfate (TAP) pretreatment on greenhouse gas (GHGs) emission, dissolved organic matter (DOM) and maturity evaluation during spiramycin fermentation residue (SFR) composting. Three treatments were conducted from co-composting of SFR and wheat straw, while 90% and 99.9% residual spirmycin removal pretreatment SFR by TAP were provided and compared with raw SFR. The cumulative CO2 and NH3 emissions increased by 17.2% and 30.8% after TAP pretreatment removed 99.9% residual spiramycin in SFR, while the cumulative CH4 and N2O emission decreased by 34.0% and 5.27%, respectively. The DOM, humic acid (HA)/fulvic acid (FA) and NH4+/NO3- analysis confirmed that the composting maturity was improved with the increasing of HA and NO3- content by TAP pretreatment.
Collapse
Affiliation(s)
- Jinzhi Sun
- School of Life Science and Technology, Micro- and Nanotechnology Research Center, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yanxiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hongwei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiaohu Dai
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Yin Y, Wang J. Enhanced medium-chain fatty acids production from Cephalosporin C antibiotic fermentation residues by ionizing radiation pretreatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129714. [PMID: 35944433 DOI: 10.1016/j.jhazmat.2022.129714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic fermentation residues (AFRs) have been classified as hazardous waste in China. Anaerobic fermentation may be a good approach for AFRs treatment, through which value-added chemicals could be obtained simultaneously. This study firstly explored medium-chain fatty acids (MCFAs) production from AFRs through two-stage anaerobic fermentation, and gamma radiation was adopted for AFRs pretreatment. The results showed that both antibiotics removal and MCFAs production from AFRs were significantly promoted by gamma radiation pretreatment. No residual Cephalosporin C (CEP-C) was detected in gamma radiation treated groups after fermentation. Highest MCFAs concentration of 90.55 mmol C/L was obtained in 50 kGy treated group, which was 2.22 times of the control group. Genera that were positively correlated with MCFAs production were enriched in gamma radiation treated groups, like genus Paraclostridium, Terrisporobacter, Caproiciproducens and Sporanaerobacter, while genera that were negatively correlated with MCFAs production were diminished during the chain elongation process, like genus Bacteroides and NK4A214_group. Enzymes analysis suggested that the promoted MCFAs production was induced by the enrichment of functional enzymes involved in Acetyl-CoA formation and RBO pathway. This work suggested that gamma radiation pretreatment and two-stage anaerobic fermentation could achieve the dual benefits of AFRs treatment and value-added chemicals recovery.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
20
|
Yin Y, Wang J. Production of medium-chain fatty acids by co-fermentation of antibiotic fermentation residue with fallen Ginkgo leaves. BIORESOURCE TECHNOLOGY 2022; 360:127607. [PMID: 35835417 DOI: 10.1016/j.biortech.2022.127607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The co-fermentation of antibiotic fermentation residues (AFRs) and fallen Ginkgo leaves at C/N ratios of 10-60 was conducted for medium-chain fatty acids (MCFA) production. It was found that a proper C/N ratio could largely promote the MCFA accumulation. Group with C/N ratio of 50 exhibited highest MCFA production of 133.14 mmol C/L, which was 42 %-121 % higher than the other groups. Through the co-fermentation, substrate condition was optimized with rich micro-nutrients in AFRs and abundant polysaccharides in Ginkgo leaves, the hydrolysis of leaves was promoted by the active microbes in AFRs, and the predominance of CE microbes was also stimulated with the dilution of AFRs. The increased C/N ratio significantly affected the SCFA producers like genus Escherichia Shigella and Proteiniphilum, and enriched CE microbes like genus Romboutsia, Eubacterium and Clostridium_sensu_stricto_12. Functional enzymes analysis showed that both reverse β oxidation and fatty acid biosynthesis pathways were strengthened with the increased C/N ratio.
Collapse
Affiliation(s)
- Yanan Yin
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Manoharan RK, Ishaque F, Ahn YH. Fate of antibiotic resistant genes in wastewater environments and treatment strategies - A review. CHEMOSPHERE 2022; 298:134671. [PMID: 35460672 DOI: 10.1016/j.chemosphere.2022.134671] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) have emerged in aquatic environments through the discharge of large amounts of antibiotics into wastewater. Well-designed wastewater treatment plants (WWTPs) with effective treatment processes are essential to prevent the release of ARGs directly into the environment. Although some systematic sequential treatment methods are used to remove ARGs, considerable gaps in removal mechanisms will be discussed. Therefore, deep analysis and discussion of various treatment methods are required to understand the ARGs removal mechanisms. In this manuscript, the role of antibiotics and the resistance mechanism of ARB are discussed in depth. In addition, the fate of ARGs in an aquatic environment and detection methods are compared comprehensively and discussed. In particular, the advantages and disadvantages of various methods are summarized and reviewed critically. Finally, combined technologies, such as advanced oxidation process (AOP) with biochemical systems, membrane separation with electrochemical AOP, ultrafiltration (UF) membrane coupled with photocatalytic treatment, and UF membrane separation coupled with sonication, are introduced. Overall, low-energy anaerobic treatment reactors with any of the above combined treatments might reduce the discharge of large quantities of ARGs into the environment. Finally, this review provides valuable insights for better ARG removal technologies by introducing combined effective treatment strategies used in real WWTPs.
Collapse
Affiliation(s)
| | - Fahmida Ishaque
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
22
|
Zhou S, Xiong C, Su Y, Wang Y, Gao Y, Tang Z, Liu B, Wu Y, Duan Y. Antibiotic-resistant bacteria and antibiotic resistance genes in uranium mine: Distribution and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119158. [PMID: 35304179 DOI: 10.1016/j.envpol.2022.119158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Both heavy metals and radiation could affect the proliferation and dissemination of emerging antibiotic resistance pollutants. As an environmental medium rich in radioactive metals, the profile of antibiotic resistance in uranium mine remains largely unknown. A uranium mine in Guangdong province, China was selected to investigate the distribution and influencing factors of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) including intracellular ARGs (iARGs), adsorbed-extracellular ARGs (aeARGs), and free extracellular ARGs (feARGs). The result indicated that sulfonamide and tetracycline ARB could be generally detected in mining area with the absolute concentrations of 7.70 × 102-5.18 × 105 colony forming unit/g. The abundances of aeARGs in mine soil were significantly higher than those of iARGs (p < 0.05), highlighting the critical contribution of aeARGs to ARGs spread. The feARGs in mine drainage and its receiving river were abundant (3.38 × 104-1.86 × 107 copies/mL). ARB, aeARGs, and iARGs may correlate with nitrogen species and heavy metals (e.g., U and Mn), and feARGs presented a significant correlation with chemical oxygen demand (p < 0.05). These findings demonstrate the occurrence of ARB and ARGs in uranium mine for the first time, thereby contributing to the assessment and control of the ecological risk of antibiotic resistance in radioactive environments.
Collapse
Affiliation(s)
- Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China; Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Cong Xiong
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, University of South China, Hengyang, 421001, China
| | - Boyang Liu
- School of Civil Engineering, University of South China, Hengyang, 421001, China
| | - Yueyue Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; School of Civil Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
23
|
Gao T, Shi W, Zhao M, Huang Z, Liu X, Ruan W. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater. CHEMOSPHERE 2022; 296:133902. [PMID: 35143862 DOI: 10.1016/j.chemosphere.2022.133902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Spiramycin (SPI) fermentation residue (SFR) is classified as hazardous waste in China because of the residual antibiotics in it. SFR disposal in the traditional way is costly and wasteful of resources. In this study, pyrolysis method was adopted to covert SFR to biochar for SPI removal from wastewater, and the SPI adsorption performance was investigated. The results showed that the optimal pyrolysis temperature was 700 °C as the prepared biochar BC700 exhibited the highest SPI removal efficiency. The specific surface area of BC700 was 451.68 m2/g, and the maximum adsorption capacity was 147.28 mg/g. The adsorption mechanism involved electrostatic interaction, pore filling, π-π interaction, hydrogen bonding, and the participation of C-C and O-CO functional groups in the adsorption. No residual SPI was detected in BC700 indicating the detoxification of SFR was achieved. Moreover, after recycling for 5 times, the SPI removal efficiency was still higher than 80.0%. Therefore, this study could provide a promising method for SFR disposal.
Collapse
Affiliation(s)
- Tong Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoling Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
24
|
Tian Y, Tian Z, He Y, Sun G, Zhang Y, Yang M. Removal of denatured protein particles enhanced UASB treatment of oxytetracycline production wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151549. [PMID: 34774634 DOI: 10.1016/j.scitotenv.2021.151549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Enhanced hydrolysis, which can selectively destroy antibiotic potency, has been previously demonstrated to be an effective pretreatment technology for the biological treatment of antibiotic production wastewater. However, full-scale application of enhanced hydrolysis to the treatment of real oxytetracycline production wastewater showed that the up-flow anaerobic sludge blanket (UASB) reactors treating the pretreated wastewater could only be stable under a low organic loading rate (OLR) of 1.8 ± 0.4 g·COD/L/d. Deterioration of UASB was also confirmed in treating the same wastewater using a bench-scale reactor (R1) at an OLR of 4.4 ± 0.3 g·COD/L/d. Assuming that the particles formed due to the denaturation of soluble proteins under the hydrolysis temperature (110 °C), resulting in the significant increase of suspended solids (SS) in oxytetracycline production wastewater from less than 200 mg/L to 1200 ± 500 mg/L, were responsible for the deterioration of UASB, the pretreated wastewater was filtered using polypropylene cotton fiber and ultrafiltration membrane, and then fed into two parallel bench-scale UASB reactors (R2 and R3). Both reactors maintained a stable COD removal (53.2% ~ 61.1%) even at an OLR as high as 8.0 g·COD/L/d. When the feed of R3 was switched to unfiltered wastewater, however, deterioration of the reactor occurred again. Microscopic observation showed that the granules in R3 were fully covered by protein particles after the switch of the feed. It was possible that the tight layer of the denatured protein particles blocked the inner pores of the granules, resulting in the obstruction of substrate transfer and biogas emission, while removing the protein particles could abate such blockage problem. This study provides a scientific basis for the efficient treatment of antibiotic production wastewater.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yupeng He
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxi Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Post Office Box 2871, Beijing 100085, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Li Y, Chen H, Wang Y, Yang Z, Zhang H. Efficient biodegradation of chlortetracycline in high concentration from strong-acidity pharmaceutical residue with degrading fungi. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127671. [PMID: 34799176 DOI: 10.1016/j.jhazmat.2021.127671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chlortetracycline (CTC) pharmaceutical residue with strong acidity and in high CTC concentration is a hazardous solid waste. There is a huge attention but few studies on whether and how the CTC raw residue (CRR) can be degraded in microbiological way. In this study, three self-screened fungi, LJ245, LJ302 and LJ318, were used and thoroughly investigated to remove CTC, strong acidity and biotoxicity in CRR. The result disclosed that the concentration of CTC decreased rapidly in the first seven days and declined slowly subsequently, and the decreasing curve was similar to "L" shape. the corresponding degradation ratios of three strains were 95.73%, 98.53% and 98.07%, respectively. Meanwhile, numerous intermediates in degradation appeared in early days and gradually reduced, and eventually disappeared once the degradation time was long enough, among which eleven intermediates from CTC were identified. Moreover, the strong acidity of CRR declined dramatically using this biological method along with the CTC being metabolized, the pH value increased from 2.30 to 8.32 in the first 7 days. The toxicity of CRR was significantly reduced by LJ302 with inhibition rate from 96.02% to no inhibition effect to Micrococcus luteus. Therefore, CTC, strong acidity and biotoxicity of CRR could be effectively removed simultaneously through a biodegradation process driven with proposed strains.
Collapse
Affiliation(s)
- Yanju Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Haibo Chen
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Université Paris Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Yuzhou Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengli Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiyan Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
26
|
Zhou J, Ping R, Wu H, Liu H, Wang X, Ren A, Tian S, Ma Y. Recycling of neomycin fermentation residue using SEA-CBS technology: Growth performance and antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150860. [PMID: 34626630 DOI: 10.1016/j.scitotenv.2021.150860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic fermentation residue (AFR) is a form of bioavailable matter, that represents a typical category of hazardous waste associated with drug production in China. The disposal of these residues seriously restricts the sustainable development of the pharmaceutical industry. In this study, the steam explosion and aerobic composting (SEA-CBS) system was developed to thoroughly convert neomycin fermentation residue to organic fertilizer. The results implied that the ultimate removal rate of antibiotics was as high as 99.9% in all cases, including macrolide (kitasamycin and spiramycin), lincosamide (lincomycin), and beta-lactam (cephalosporin and penicillin) antibiotic biowastes. Pot experiments were also conducted to study the attenuation rule of antibiotic residues in the soil, and the distribution of antibiotic resistant genes from trace antibiotics. The produced fertilizer presented the better performance on mustard growth than conventional fertilizers. The average plant height and biomass were increased by 14.33%-55.83% and 136.71%-326.83%, respectively, after SEA-CBS pretreatment. Moreover, neomycin was the primary selective pressure, and six antibiotic resistance genes (ARGs) correlated with neomycin were screened. The acc(6')ib gene was identified as the target ARGs, the main resistance mechanism was antibiotic inactivation, and the absolute and relative abundances were 1.06 × 105 ± 3.80 × 104 copies/g and 6.23 × 10-4 ± 1.75 × 10-4 copies/16 s in the NFR-amended soils. The microbial community analysis showed that the variation of the soil microbial community was not dominated by neomycin fermentation residue (NFR) at initial concentrations below 0.42 μg/kg soil. This work demonstrated that the SEA-CBS system not only functioned as an efficient technology for concurrent neomycin sulfate removal and NFR composting, but also applied to a wide range of other antibiotic bio-wastes, which may benefit the recycling of AFR, as well as the data provide a theoretical basis for future agricultural utilization and safe evaluation.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Ran Ping
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuming Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - AiLing Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.
| |
Collapse
|
27
|
Tang Z, Huang C, Tian Y, Xi B, Guo W, Tan W. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118155. [PMID: 34530239 DOI: 10.1016/j.envpol.2021.118155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Collapse
Affiliation(s)
- Zhurui Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Beidou Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Wei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Innovation Base of Ground Water & Environmental System Engineering, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
28
|
Zhou J, Liu H, Wu H, Wang X, Shen Y, Ren A, Tian S, Ma Y. Field tests of crop growth using hydrothermal and spray-dried cephalosporin mycelia dregs as amendments: Utilization of nutrient and soil antibiotic resistome. ENVIRONMENTAL RESEARCH 2021; 202:111638. [PMID: 34273368 DOI: 10.1016/j.envres.2021.111638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The disposal and reuse of cephalosporin mycelia dregs (CMDs) pose a great challenge to the biopharma industry, but it acts as the new source of antibiotic resistome, although agriculture intensification remains uncertain. Herein, two common cash crops (maize and soybean) were planted in the actual field, and the effects of the application of treated CMDs, chicken manure and chemical fertilizer served as control groups were both investigated according to comparison experiment. Amplicon-targeted 16S rRNA and high-throughput sequencing was analyzed for rhizosphere antibiotic resistome. Results showed that hydrothermal and spray-dried (HT + SD) CMDs could promote nutrients uptake and stabilize soil fertility indicator, and finally improved the crop yield (maximum, 119.68%). The numbers and relative abundances of total ARGs in soils were not significantly different from that of conventional fertilizer (p > 0.05), but crop type marked the differences in distribution. The overall economic benefits are predicted to be around $373-745 million annually, considering its application to the whole country. HT + SD-treated CMDs can be therefore used as a high-quality and safe alternative fertilizer for agriculture use. These findings are expected to offer a fresh perspective on the application of antibiotic fermentation residue (AFR) in the future.
Collapse
Affiliation(s)
- Jieya Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050080, China
| | - Hongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xuming Wang
- Beijing Agro-biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos, 835007, China
| | - AiLing Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050080, China
| | - Shulei Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingqun Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China.
| |
Collapse
|
29
|
Chen X, Wang J. Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148253. [PMID: 34118661 DOI: 10.1016/j.scitotenv.2021.148253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10-200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42-, NO3-, and HCO3-, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy-1 respectively in the presence of SO42-, NO3-, and HCO3-. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater.
Collapse
Affiliation(s)
- Xiaoying Chen
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
30
|
Yang G, Wang J. Biohydrogen production by co-fermentation of antibiotic fermentation residue and fallen leaves: Insights into the microbial community and functional genes. BIORESOURCE TECHNOLOGY 2021; 337:125380. [PMID: 34120061 DOI: 10.1016/j.biortech.2021.125380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
This investigation explored the co-fermentation of antibiotic fermentation residue (AFR) and fallen leaves for enhancing biohydrogen production, and analyzed the mechanism from the aspects of microbial activity, microbial community and functional genes. The results showed that the optimal mixing ratio of AFR to leaves was 25:75 (VS basis), which balanced the substrate condition and synergistically enhanced the biohydrogen productivity, and the hydrogen yield was 37.45 mL/g-VSadded, which was 438.8% and 9.2% higher compared to the sole AFR fermentation and the sole leaves fermentation, respectively. The co-fermentation also improved the organics utilization and induced a more effective metabolic pathway. Further microbiology analysis found that the co-fermentation promoted the microbial activity, enriched more hydrogen-producing bacteria (Clostridium sensu stricto 1), and enhanced the expression of hydrogen-producing functional genes (e.g. genes encoding ferredoxin hydrogenase (EC 1.12.7.2) and pyruvate-ferredoxin oxidoreductase (EC 1.2.7.1)), which were fundamentally responsible for the synergistic biohydrogen fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
31
|
Luan X, Han Z, Shen Y, Yang M, Zhang Y. Assessing the effect of treated erythromycin fermentation residue on antibiotic resistome in soybean planting soil: In situ field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146329. [PMID: 34030225 DOI: 10.1016/j.scitotenv.2021.146329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a by-product in the pharmaceutical industry, antibiotic fermentation residue is expected to be able to be utilized after effectively removing the antibiotics. However, evaluation of the effect of fermentation residue application on soil, especially the in situ environmental consequences considering not only the antibiotic resistance gene (ARG) abundance but also the resistome risk, has still not been sufficiently evaluated. Herein, the impact of treated erythromycin fermentation residue (EFR) on the resistome and risk score in soybean planting soil was investigated. Treated EFR application with dosages of 3750 kg (EFR250) and 7500 kg (EFR500) per hm2 soil did not increase the diversity (Shannon index, 2.84-3.38) or relative abundance (0.086-0.142 copies/16S rRNA gene) of the soil resistome compared with the Control (CK: 2.92-3.2, 0.088-0.096 copies/16S rRNA gene). Soil resistome risk scores calculated by metagenomic assembly, showing the dissemination potential of ARGs, ranged from 22.9 to 25.0, and were also not significantly different between treated EFR amended soil and the Control. Notably, the diversity of the resistome increased at the sprout stage (Mann-Whitney U test, P < 0.05) and the abundance of some ARG types (macrolide-lincosamide-streptogramin, aminoglycoside and tetracycline, etc.) shifted along the course of soybean growth (Kruskal-Wallis test, P < 0.05). Structural equation model analysis showed that the soybean growth period affected the composition of ARGs by affecting the microbial community, which was further supported by Procrustes analysis (P < 0.05) and metagenomic binning. Our findings emphasized that soil ARG abundance and resistome risk did not increase during one-time field application of treated EFR at the studied dosage. Comprehensive consideration including resistome risk and multiple influencing factors also should be given for further assessment of fermentation residue application.
Collapse
Affiliation(s)
- Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
32
|
Ren J, Deng L, Niu D, Wang Z, Fan B, Taoli H, Li Z, Zhang J, Li C. Isolation and identification of a novel erythromycin-degrading fungus, Curvularia sp. RJJ-5, and its degradation pathway. FEMS Microbiol Lett 2020; 368:6041717. [PMID: 33338238 DOI: 10.1093/femsle/fnaa215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Erythromycin pollution is an important risk to the ecosystem and human health worldwide. Thus, it is urgent to develop effective approaches to decontaminate erythromycin. In this study, we successfully isolated a novel erythromycin-degrading fungus from an erythromycin-contaminated site. The erythromycin biodegradation characteristics were investigated in mineral salt medium with erythromycin as the sole carbon and energy source. The metabolites of erythromycin degraded by fungus were identified and used to derive the degradation pathway. Based on morphological and phylogenetic analyses, the isolated strain was named Curvularia sp. RJJ-5 (MN759651). Optimal degradation conditions for strain RJJ-5 were 30°C, and pH 6.0 with 100 mg L-1 erythromycin substrate. The strain could degrade 75.69% erythromycin under this condition. The following metabolites were detected: 3-depyranosyloxy erythromycin A, 7,12-dyhydroxy-6-deoxyerythronolide B, 2,4,6,8,10,12-hexamethyl-3,5,6,11,12,13-hexahydroxy-9-ketopentadecanoic acid and cladinose. It was deduced that the erythromycin A was degraded to 3-depyranosyloxy erythromycin A by glycoside hydrolase in the initial reaction. These results imply that Curvularia sp. RJJ-5 is a novel erythromycin-degrading fungus that can hydrolyze erythromycin using a glycoside hydrolase and has great potential for removing erythromycin from mycelial dreg and the contaminated environment.
Collapse
Affiliation(s)
- Jianjun Ren
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Liujie Deng
- State Environmental Protection Antibiotic Mycelial Dreg Harmless Treatment and Resource Utilization Engineering Technology Center, Yili Chuanning Biotechnology Co., Ltd. No. 156 Alamutuya Country, Yining District, Yili 835000, China
| | - Dongze Niu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Zhenzhu Wang
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Bo Fan
- School of Pharmaceutical Engineering and Life Science, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Huhe Taoli
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Zhijie Li
- State Environmental Protection Antibiotic Mycelial Dreg Harmless Treatment and Resource Utilization Engineering Technology Center, Yili Chuanning Biotechnology Co., Ltd. No. 156 Alamutuya Country, Yining District, Yili 835000, China
| | - Jin Zhang
- Lab of Agricultural and Environmental Microbiology, Hebei Cixin Environmental Technology Co., Ltd. No. 69 Nanhuan Road, Yongqing County, Langfang 065600, China
| | - Chunyu Li
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou 213164, China
| |
Collapse
|
33
|
Ren J, Wang Z, Deng L, Niu D, Fan B, Huhe T, Li Z, Zhang J, Li C. Biodegradation of erythromycin by Delftia lacustris RJJ-61 and characterization of its erythromycin esterase. J Basic Microbiol 2020; 61:55-62. [PMID: 33332633 DOI: 10.1002/jobm.202000613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/06/2022]
Abstract
The residual erythromycin in fermentation waste can pollute the environment and threaten human health. However, there are no effective approaches to remedy this issue. In this study, an erythromycin-degrading bacterium named RJJ-61 was isolated and identified as a strain of Delftia lacustris based on morphological and phylogenetic analyses. The degradation ability of this strain was also evaluated; it could degrade 45.18% of erythromycin at 35°C in 120 h. Furthermore, the key degradation gene ereA was cloned from strain RJJ-61 and expressed in Escherichia coli BL21; the molecular weight of the expressed protein was ~45 kDa. The enzyme activity of EreA was 108.0 mU ml-1 at 35°C and pH 7.0. Finally, the EreA protein was used to degrade erythromycin from mycelial dregs and 50% diluted solution, and the removal rates in them were 41.42% and 69.78%, respectively. In summary, D. lacustris RJJ-61 is a novel erythromycin-degrading strain that has great potential to remove erythromycin pollutants from the environment.
Collapse
Affiliation(s)
- Jianjun Ren
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.,National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China
| | - Zhenzhu Wang
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.,National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China
| | - Liujie Deng
- Yili Chuanning Biotechnology Co., Yili, China
| | - Dongze Niu
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.,National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China
| | - Bo Fan
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Wujin District, Changzhou, China
| | - Taoli Huhe
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.,National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China
| | - Zhenzhen Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Wujin District, Changzhou, China
| | - Jin Zhang
- Hebei Cixin Environmental Technology Co., Langfang, China
| | - Chunyu Li
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China.,National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, China
| |
Collapse
|
34
|
Varaprasad K, López M, Núñez D, Jayaramudu T, Sadiku ER, Karthikeyan C, Oyarzúnc P. Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112353] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Chu L, Chen D, Wang J, Yang Z, Yang Q, Shen Y. Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121058. [PMID: 31450213 DOI: 10.1016/j.jhazmat.2019.121058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
In present work, the degradation of antibiotic and inactivation of antibiotic resistance genes (ARGs) in cephalosporin C fermentation (CEPF) residues were performed using ionizing radiation, ozonation and thermal treatment. The results showed that the three treatment methods could degrade cephalosporin C effectively, with the removal efficiency of 85.5% for radiation at dose of 100 kGy, 79.9% for ozonation at dosage of 5.2 g O3/L, and 71.9% and 87.3% for thermal treatment at 60 °C and 90 °C for 4 h. The cephalosporin resistance gene tolC was detected in the raw CEPF residues, and its abundance was decrease 74.2% by radiation, 64.6% by ozonation and 26.9%-37.1% by thermal treatment respectively. The presence of protein, glucose and acetate in the CEPF residues had inhibitive influence on the degradation of cephalosporin C by ionizing radiation, and the effect was more significant when the antibiotic concentration was lower. The total content of COD, polysaccharides and protein changed slightly after radiation and thermal treatment, while they were decreased greatly by ozonation. The primary techno-economic analysis showed that the operational cost of ionizing radiation by electron beam at 50 kGy ($5.2/m3) was comparable to thermal treatment ($4.3-7.9/m3), which was more economical than ozonation ($14.6/m3).
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhilin Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Qi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
36
|
Zhang X, Yan S, Chen J, Tyagi R, Li J. Physical, chemical, and biological impact (hazard) of hospital wastewater on environment: presence of pharmaceuticals, pathogens, and antibiotic-resistance genes. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020. [PMCID: PMC7252251 DOI: 10.1016/b978-0-12-819722-6.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hospital wastewater contains various pharmaceuticals and pathogens. Improper management of the wastewater has caused the leakage of these harmful materials to the environment. The presence of pathogens, pharmaceuticals, and their derivatives such as antibiotic resistance genes as the most typical one in the environment leads to physical, chemical, and biological harmful impact. This chapter has reviewed the pharmaceuticals and pathogens in the hospital; discussed the development of antibiotic resistance genes; and revealed the possible impact of these harmful materials in microorganisms, organism, and human being. In addition, the measures that can be taken to prevent the transportation of pharmaceuticals and pathogens into environment have been stated in this chapter.
Collapse
|
37
|
Yuan R, He H. State of the art methods and challenges of luminescent metal–organic frameworks for antibiotic detection. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00955e] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on recent developments in the design and synthesis of luminescence MOFs for monitoring antibiotics.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering
- Jilin Jianzhu University
- Changchun 130118
- P. R. China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
38
|
Yang G, Wang J, Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: Performance evaluation and microbial community analysis. BIORESOURCE TECHNOLOGY 2019; 292:122012. [PMID: 31442834 DOI: 10.1016/j.biortech.2019.122012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic fermentation residue produced from pharmaceutical plants has been listed as a "Hazardous Waste", however it contains various substrates which can be used for biofuel production. In this study, the possibility of biohydrogen production from antibiotic fermentation residue was evaluated, the process efficiency and microbial community dynamics with five different inoculum pretreatments (alkaline, γ-radiation, heat-shock, aeration and acid) were assessed. Results showed that alkaline pretreatment was most efficient for hydrogen fermentation, and the hydrogen yield, volatile solids (VS) removal and maximal hydrogen production rate reached 17.8 mL/g-VSadded, 17.8% and 3.79 mL/h, respectively. Different inoculum pretreatments led to a obvious variation in the fermentation pathway and microbial community structure. The highest content of hydrogen-producing bacteria, especially Clostridium, essentially contributed to the highest hydrogen fermentation efficiency for the system with alkaline pretreatment. This investigation suggested that antibiotic fermentation residue is a potential feedstock for hydrogen production through dark fermentation.
Collapse
Affiliation(s)
- Guang Yang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University-Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China.
| | - Yunpeng Shen
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Yili Chuanning Biotechnology Company, Ltd., Xinjiang, 835007, PR China
| |
Collapse
|
39
|
Zhuan R, Wang J. Enhanced mineralization of sulfamethoxazole by gamma radiation in the presence of Fe 3O 4 as Fenton-like catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27712-27725. [PMID: 31338762 DOI: 10.1007/s11356-019-05925-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics are becoming ubiquitous emerging contaminants in the aquatic environments due to their large amount of production and extensive application, which have received increasing public concern. In this paper, the degradation and mineralization of sulfamethoxazole (SMX) by ionizing radiation in the presence of Fe3O4 as Fenton-like catalyst were evaluated, the influencing factors, such as the initial SMX concentration, initial pH, water matrix, and radical scavenger, etc. were examined. The results demonstrated that SMX could be efficiently degraded. The addition of Fe3O4 could improve the degradation efficiency of SMX and increased the dose constant at various SMX initial concentrations. More than 98% of SMX was degraded in Fe3O4/gamma radiation system at a wide range of pH (about 3.0-11.0). The mineralization of SMX in the presence of Fe3O4 was increased by 200%. Adding free radical scavenger (tert-butyl alcohol) inhibited the degradation of SMX. The addition of Fe3O4 enhanced the dose constant of ·OH, indicating that Fe3O4 promoted the formation of hydroxyl radicals (·OH) and then improved SMX degradation and mineralization. The degradation efficiency of SMX in secondary effluent of WWTP decreased from 100 to 84% in secondary effluent compared with that in deionized water. The intermediate products during the degradation of SMX by ionizing radiation were identified by high-performance liquid chromatography, and a possible pathway of SMX degradation in such a system was tentatively proposed. Graphical abstract Schema illustration of SMX degradation by irradiation in the presence of Fe3O4.
Collapse
Affiliation(s)
- Run Zhuan
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, People's Republic of China.
- Energy Science Building, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
40
|
Chu L, Chen D, Wang J, Yang Z, Shen Y. Degradation of antibiotics and antibiotic resistance genes in erythromycin fermentation residues using radiation coupled with peroxymonosulfate oxidation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 96:190-197. [PMID: 31376964 DOI: 10.1016/j.wasman.2019.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Ionizing radiation coupled with peroxymonosulfate (PMS) oxidation was developed to degrade antibiotics and antibiotic resistance genes (ARGs) from the erythromycin fermentation (EryF) residual wastes. The experimental results showed that the ERY content and ARGs abundance decreased with increase of the absorbed dose and PMS dosage and gamma irradiation was more effective to abate ARGs from the EryF wastes. The removal efficiency of ERY reached 49-55% and more than 96-99% of ARGs (1.32-2.55 log) was eliminated with the absorbed dose of 25-50 kGy and PMS dosage of 50-100 mM. Illumina pyrosequencing revealed that 3 bacterial phyla, Proteobacteria, Firmicutes and Fusobacteria were highly enriched and the ARGs-linked hosts were affiliated to the genera Aeromonas, Enterobacteriaceae and Enterobacter in the phylum Proteobacteria. The abundance of the ARGs-linked bacteria decreased by gamma/PMS treatment. Ionizing radiation/PMS treatment with the doses of 25 kGy and 50 mM PMS is proposed for potential practical application.
Collapse
Affiliation(s)
- Libing Chu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Dan Chen
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| | - Zhiling Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yunpeng Shen
- Yili Chuanning Biotechnology Company, Ltd., Xinjiang 835007, PR China; School of Economics and Management, Center for Innovation Management Research, Xinjiang University, Xinjiang 830047, PR China
| |
Collapse
|
41
|
Varaprasad K, Yallapu MM, Núñez D, Oyarzún P, López M, Jayaramudu T, Karthikeyan C. Generation of engineered core-shell antibiotic nanoparticles. RSC Adv 2019; 9:8326-8332. [PMID: 31131098 PMCID: PMC6472438 DOI: 10.1039/c9ra00536f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/06/2019] [Indexed: 01/17/2023] Open
Abstract
Well-defined nanocomposite structures have received significant attention due to their superior combinatorial properties. Rational tuning of the core and shell of the nanostructure(s) can offer potent antibacterial activity. Such advanced core–shell nanocomposite methodologies allow not only the incorporation of antibacterial agents on the shell but also provide its stability and nurture antibacterial activity. Herein, antibiotic zinc oxide–curcumin (ZnO–Cum) core–shell nanoparticles for antibacterial application were synthesised. The ZnO–Cum core–shell nanoparticles were prepared by curcumin nanolayer deposition on zinc oxide nanoparticles via a sonication process. The resulting ZnO–Cum core–shell nanoparticles were spiracle in shape with a ∼45 nm ZnO core and ∼12 nm curcumin shell layer size, respectively, determined by transmission electron microscopy. X-ray diffraction analysis confirmed the formation of a core–shell crystal structure. Additionally, UV-DRS and ATR-FTIR spectral analysis support the existence of ZnO and curcumin in a core–shell nanocomposite. The antibacterial activities of nanoparticles developed were studied against Staphylococcus aureus and Streptococcus pneumoniae and Escherichia coli and Shigella dysenteriae bacterial stains using the diffusion method. A greater inhibition of the growth of Gram positive and negative bacteria was noticed upon treatment with core–shell ZnO and curcumin nanoparticles than the commercial antibiotic amoxicillin which indicates their antibacterial property. The findings of this study provide evidence that the zinc oxide–curcumin core–shell nanoparticles may be highly promising for antibacterial and biomedical applications. Antibiotic ZnO–curcumin core–shell nanoparticles were prepared via an ultra-sonication process. ZnO–curcumin exhibited excellent antibacterial capacity compared to the commercial antibiotic amoxicillin.![]()
Collapse
Affiliation(s)
- Kokkarachedu Varaprasad
- Centro de Investigación de Polímeros Avanzados, CIPA, Edificio de Laboratorios, Avenida Collao 1202, Concepción, Bio-Bio, Chile. ;
| | - Murali Mohan Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Dariela Núñez
- Centro de Investigación de Polímeros Avanzados, CIPA, Edificio de Laboratorios, Avenida Collao 1202, Concepción, Bio-Bio, Chile. ;
| | - Patricio Oyarzún
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Matias López
- Centro de Investigación de Polímeros Avanzados, CIPA, Edificio de Laboratorios, Avenida Collao 1202, Concepción, Bio-Bio, Chile. ; .,Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - Tippabattini Jayaramudu
- Laboratory of Material Sciences, Instituto de Quimica de Recursos Naturales, Universidad de Talca, Talca, Chile
| | | |
Collapse
|