1
|
Long Y, Zhu N, Zhu Y, Shan C, Jin H, Cao Y. Hydrochar drives reduction in bioavailability of heavy metals during composting via promoting humification and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 395:130335. [PMID: 38242237 DOI: 10.1016/j.biortech.2024.130335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
This study presented the effects of hydrochar on humification, heavy metals (HMs) bioavailability and bacterial community succession during composting. Results indicated that hydrochar addition led to elevated composting temperature, 7.3% increase in humic acid (HA), and 52.9% increase in ratio of humic acid to fulvic acid. The diethylene triamine pentacetic acid extractable Zn, Cu, Pb, and Ni were reduced by 19.2%, 36.3%, 37.8%, and 27.1%, respectively, in hydrochar-involved composting system. Furthermore, main mechanisms driving the reduced HMs bioavailability by hydrochar addition were revealed. The addition of hydrochar significantly modified the microbial community structure. Correlation analysis and microbial analysis demonstrated that relative abundance of bacterial groups connected with humification and HMs passivation were increased. Consequently, the HA formation was promoted and the HMs bioavailability were reduced through bacterial bioremediation and HA complexation. This study demonstrates the addition of hydrochar as a promising strategy to mitigate the HMs bioavailability during composting.
Collapse
Affiliation(s)
- Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| | - Yun Cao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| |
Collapse
|
2
|
Wang J, Wang B, Bian R, He W, Liu Y, Shen G, Xie H, Feng Y. Bibliometric analysis of biochar-based organic fertilizers in the past 15 years: Focus on ammonia volatilization and greenhouse gas emissions during composting. ENVIRONMENTAL RESEARCH 2024; 243:117853. [PMID: 38070856 DOI: 10.1016/j.envres.2023.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.
Collapse
Affiliation(s)
- Jixiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture and Center of Biomass and Biochar Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang Liu
- Research Center of IoT Agriculture Applications/Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Guangcai Shen
- Baoshan Branch of Yunnan Tobacco Company, Baoshan, 67800, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
3
|
Li Y, Zeng D, Jiang XL, He DC, Hu JW, Liang ZW, Wang JC, Liu WR. Effect comparisons of different conditioners and microbial agents on the degradation of estrogens during dairy manure composting. CHEMOSPHERE 2023; 345:140312. [PMID: 37863209 DOI: 10.1016/j.chemosphere.2023.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
To investigate the degradation efficiency of conditioners and commercial microbial agents on estrogens (E1, 17α-E2, 17β-E2, E3, EE2, and DES) in the composting process of dairy manure, seven different treatments (RHB-BF, OSP-BF, SD-BF, MR-BF, MR-FS, MR-EM, and MR-CK) under forced ventilation conditions were composted and monitored regularly for 30 days. The results indicated that the removal rates of estrogens in seven treatments ranged from 95.35% to 99.63%, meanwhile the degradation effect of the composting process on 17β-Estradiol equivalent (EEQ) was evaluated, and the removal rate of ΣEEQ ranged from 96.42% to 99.72%. With the combined addition of rice husk biochar (RHB) or oyster shell powder (OSP) and bio-bacterial fertilizer starter cultures (BF), namely RHB-BF and OSP-BF obviously promoted the rapid degradation of estrogens. 17β-E2 was completely degraded on the fifth day of composting in OSP-BF. Microbial agents have some promotional effect and enhances the microbial degradation of synthetic estrogen (EE2, DES). According to the results of RDA, pH and EC were the main environmental factors affecting on the composition and succession of estrogen-related degrading bacteria in composting system. As predominant estrogens-degrading genera, Acinetobacter, Bacillus, and Pseudomonas effected obviously on the change of estrogens contents. The research results provide a practical reference for effective composting of dairy manure to enhancing estrogens removal and decreasing ecological risk.
Collapse
Affiliation(s)
- Yan Li
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Chongqing Three Gorges University, Chongqing, Wanzhou 404100, China
| | - Dong Zeng
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Xiao-Lu Jiang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - De-Chun He
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Jia-Wu Hu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Zi-Wei Liang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510550, China
| | - Jia-Cheng Wang
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China
| | - Wang-Rong Liu
- Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the PR China, Guangzhou 510655, China.
| |
Collapse
|
4
|
Zhou Y, Kurade MB, Sirohi R, Zhang Z, Sindhu R, Binod P, Jeon BH, Syed A, Verma M, Awasthi MK. Biochar as functional amendment for antibiotic resistant microbial community survival during hen manure composting. BIORESOURCE TECHNOLOGY 2023; 385:129393. [PMID: 37364648 DOI: 10.1016/j.biortech.2023.129393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The study aim was to reveal the mechanism of impact of two type biochar on composting of hen manure (HM) and wheat straw (WS). Biochar derived from coconut shell and bamboo used as additives to reduce antibiotic resistant bacteria (ARB) in HM compost. The results manifested that effect of biochar amendment was significant to reduce ARB in HM composting. Compared with control, the microbial activity and abundance were increased in both biochar applied treatment, and bacterial community was changed. Additionally, network analysis revealed that biochar amendment increased the quantity of microorganisms related to organic matter degrading. Among them, coconut shell biochar (CSB) played a pioneering role to mitigate ARB to better exert its effects. Structural correlation analysis showed that CSB reduce ARB mobility and promote organic matter degradation via improving beneficial bacterial community structure. Overall, composting with participation of biochar amendment stimulated antibiotic resistance bacterial dynamics. These results evidence practical value for scientific research and lay the foundation for agricultural promotion of composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies Dehradun, 248007 Uttarakhand, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development, Department of Chemistry, Chandigarh University Gharuan, Mohali, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
5
|
Peng W, Lin S, Deng Z, Liang R. Bioaugmentation removal and microbiome analysis of the synthetic estrogen 17α-ethynylestradiol from hostile conditions and environmental samples by Pseudomonas citronellolis SJTE-3. CHEMOSPHERE 2023; 317:137893. [PMID: 36690257 DOI: 10.1016/j.chemosphere.2023.137893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Synthetic estrogens are emerging environmental contaminants with great estrogenic activities and stable structures that are widespread in various ecological systems and significantly threaten the health of organisms. Pseudomonas citronellolis SJTE-3 is reported to degrade the synthetic estrogen 17α-ethynylestradiol (EE2) efficiently in laboratory conditions. In this work, the environmental adaptability, the EE2-degrading properties, and the ecological effects of P. citronellolis SJTE-3 under different hostile conditions (heavy metals and surfactants) and various natural environment samples (solid soil, lake water, and pig manure) were studied. Strain SJTE-3 can tolerate high concentrations of Zn2+ and Cr3+, but is relatively sensitive to Cu2+. Tween 80 of low concentration can significantly promote EE2 degradation by strain SJTE-3, different from the repressing effect of Triton X-100. High concentration of Tween 80 prolonged the lagging phase of EE2-degrading process, while the final EE2 removal efficiency was improved. More importantly, strain SJTE-3 can grow normally and degrade estrogen stably in various environmental samples. Inoculation of strain SJTE-3 removed the intrinsic synthetic and natural estrogens (EE2 and estrone) in lake water samples in 4 days, and eliminated over 90% of the amended 1 mg/L EE2 in 2 days. Bioaugmentation of strain SJTE-3 in EE2-supplied solid soil and pig manure samples achieved a removal rate of over 55% and 70% of 1 mg/kg EE2 within 2 weeks. Notably, the bioaugmentation of extrinsic strain SJTE-3 had a slight influence on indigenous bacterial community in pig manure samples, and its relative abundance decreased significantly after EE2 removal. Amendment of EE2 or strain SJTE-3 in manure samples enhanced the abundance of Proteobacteria and Actinobacteria, implying their potential in utilizing EE2 or its metabolites. These findings not only shed a light on the environment adaptability and degradation efficiency of strain SJTE-3, but also provide insights for bioremediation application in complex and synthetic estrogen polluted environments.
Collapse
Affiliation(s)
- Wanli Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
6
|
Xu S, Zhan J, Li L, Zhu Y, Liu J, Guo X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120911. [PMID: 36549453 DOI: 10.1016/j.envpol.2022.120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Co-composting is an efficient strategy for collaborative disposal of multiple organic wastes in rural areas. In this study, we explored the co-composting of rural sewage sludge and other organic solid wastes (corn stalks and kitchen waste), with a focus on the variation of total petroleum hydrocarbons (TPH) during this process. 12% corn-derived biochar was applied in the composting (BC), with no additives applied as the control treatment (CK). The TPH contents of piles after composting ranged from 0.70 to 0.74 mg/g, with overall removal efficiencies of 35.6% and 61.1% for CK and BC, respectively. The results indicate that the addition of 12% biochar increased the rate of TPH degradation and accelerated the degradation process. 16s rDNA high-throughput sequencing was applied to investigate the biodiversity and bacterial community succession during the composting process. Diverse bacterial communities with TPH degradation functions were observed in the composting process, including Acinetobacter, Flavobacterium, Paenibacillus, Pseudomonas, and Bacillus spp. These functional bacteria synergistically degraded TPH, with cooperative behavior dominating during composting. Biochar amendment enhanced the microbial activity and effectively promoted the biodegradation of TPH. The physicochemical properties of the compost piles, including environmental factors (pH and temperature), nutrients (nitrogen, phosphorus, potassium), and humic substances produced in composting (humic acids and fulvic acids), directly and indirectly affected the variation in TPH contents. In conclusion, this work illustrates the variation in TPH content and associated influencing factors during co-composting of rural organic solid wastes, providing valuable guidance toward the further optimization of rural organic waste management.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Zhan
- POWERCHINA Group Environmental Engineering Co.,LTD, Hangzhou, Zhejiang, 310005, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
7
|
Qin X, Wu X, Teng Z, Lou X, Han X, Li Z, Han Y, Zhang F, Li G. Effects of adding biochar on the preservation of nitrogen and passivation of heavy metal during hyperthermophilic composting of sewage sludge. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:15-24. [PMID: 35759619 DOI: 10.1080/10962247.2022.2095055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
Hyperthermophilic composting (HTC) is regarded as an effective method for processing sewage sludge. The aim of the study was to investigate effects of using biochar as an amendment on the preservation of nitrogen and passivation of heavy metal during the HTC process of sewage sludge. Results showed that HTC improved the fermentation efficiency and the compost maturity by increases in the temperature and germination index (GI) value, and decreases in the moisture and C/N ratio compared to conventional thermophilic composting. HTC process and the biochar addition resulted in a decrease of the nitrogen loss compared with the control pile during composting by promoting transforming ammonium into nitrite nitrogen. Adding biochar to composting inhibited the transformation of Cu, Zn and Pb into more mobile speciation compared to the control pile although their contents increased during composting, which lead to reduction in availability of heavy metals. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.Implications: The treatment of sewage sludge is imminent due to its threat to general health and ecosystems. This work represents the effects of adding biochar on the preservation of nitrogen and passivation of heavy metal during hyperthermophilic composting of sewage sludge. Our results indicate that the additions of biochar and hyperthermophilic composting engendered the several of positive effects on the preservation of nitrogen and passivation of heavy metal. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.
Collapse
Affiliation(s)
- Xue Qin
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaosha Wu
- Hebei Haoyuan Environmental Engineering Co.Ltd., Shijiazhuang, People's Republic of China
| | - Zhinan Teng
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Xiaoyue Lou
- Tianjin Redsun Water Industry Co., Ltd., Tianjin, People's Republic of China
| | - Xuebin Han
- Hebei Haoyuan Environmental Engineering Co.Ltd., Shijiazhuang, People's Republic of China
| | - Zaixing Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Yonghui Han
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, People's Republic of China
| | - Fan Zhang
- Hebei Haoyuan Environmental Engineering Co.Ltd., Shijiazhuang, People's Republic of China
| | - Gong Li
- Tianjin Redsun Water Industry Co., Ltd., Tianjin, People's Republic of China
| |
Collapse
|
8
|
Guo J, Zhang M, Fang Z. Valorization of mushroom by-products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5593-5605. [PMID: 35460088 DOI: 10.1002/jsfa.11946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
With the rapid growth of the global economy and the global population, the production of solid waste has increased remarkably. Mushrooms are gaining popularity among researchers for their ability to turn waste into nutrients. However, a large number of by-products are produced during the industrial processing of mushrooms. Traditional waste management, focusing on the utilization and disposal of mushroom by-products, has attracted the attention of researchers. Meanwhile, the circular economy has become a multidisciplinary research field, and the valorization of mushroom by-products is a very important part of circular economy research. Various mushroom by-products of mushroom are reviewed in this paper. By-products are used in food as raw materials or functional components, in livestock and poultry feed after grinding/fermentation, and as electrochemical materials and papermaking materials. The by-products can also be used to produce ethanol and other biological sources of energy, as absorbing substances in sewage treatment, and as fertilizer in soil amendment. Mushroom processing by-products can be applied in various fields. To improve production efficiency, new extraction technology (including supercritical fluid technology and microwave extraction technology) can be adopted to increase the bioactive substance content in the by-products. Choosing appropriate processing temperature, time, and other processing conditions can also enhance product quality. Finally, more research is needed on the cost-effective utilization of the by-products and the feasibility of industrialization. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, Australia
| |
Collapse
|
9
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
10
|
Sun Y, Shaheen SM, Ali EF, Abdelrahman H, Sarkar B, Song H, Rinklebe J, Ren X, Zhang Z, Wang Q. Enhancing microplastics biodegradation during composting using livestock manure biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119339. [PMID: 35461884 DOI: 10.1016/j.envpol.2022.119339] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 05/06/2023]
Abstract
Biodegradation of microplastics (MPs) in contaminated biowastes has received big scientific attention during the past few years. The aim here is to study the impacts of livestock manure biochar (LMBC) on the biodegradation of polyhydroxyalkanoate microplastics (PHA-MPs) during composting, which have not yet been verified. LMBC (10% wt/wt) and PHA-MPs (0.5% wt/wt) were added to a mixture of pristine cow manure and sawdust for composting, whereas a mixture without LMBC served as the control (CK). The maximum degradation rate of PHA-MPs (22-31%) was observed in the thermophilic composting stage in both mixtures. LMBC addition significantly (P < 0.05) promoted PHA-MPs degradation and increased the carbon loss and oxygen loading of PHA-MPs compared to CK. Adding LMBC accelerated the cleavage of C-H bonds and oxidation of PHA-MPs, and increased the O-H, CO and C-O functional groups on MPs. Also, LMBC addition increased the relative abundance of dominant microorganisms (Firmicutes, Proteobacteria, Deinococcus-Thermus, Bacteroidetes, Ascomycota and Basidiomycota) and promoted the enrichment of MP-degrading microbial biomarkers (e.g., Bacillus, Thermobacillus, Luteimonas, Chryseolinea, Aspergillus and Mycothermus). LMBC addition further increased the complexity and connectivity between dominant microbial biomarkers and PHA-MPs degradation characteristics, strengthened their positive relationship, thereby accelerated PHA-MPs biodegradation, and mitigated the potential environmental and human health risk. These findings provide a reference point for reducing PHA-MPs in compost and safe recycling of MPs contaminated organic wastes. However, these results should be validated with other composting matrices and conditions.
Collapse
Affiliation(s)
- Yue Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613, Egypt
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hocheol Song
- Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Guangjin-Gu, Seoul, 05006, Republic of Korea
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
11
|
Zhan J, Han Y, Xu S, Wang X, Guo X. Succession and change of potential pathogens in the co-composting of rural sewage sludge and food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:248-258. [PMID: 35760013 DOI: 10.1016/j.wasman.2022.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Composting is an effective way to prevent and control the spread of pathogenic microorganisms which could put potential risk to humans and environment, from rural solid waste, especially sewage sludge and food waste. In the study, we aim to analyze the changes of pathogenic bacteria during the co-composting of rural sewage sludge and food waste. The results showed that only 27 pathogenic bacteria were detected after composting, compared to 50 pathogenic bacteria in the raw mixed pile. About 74% of pathogen concentrations dropped below 1000 copies/g after composting. Lactobacillus, Bacillus, Paenibacillus and Comamonas were the core pathogenic bacteria in the compost, of which concentrations were all significantly lower than that in the raw mixed pile at the end of composting. The concentration of Lactobacillus decreased to 3.03 × 103 copies/g compared to 0 d with 1.25 × 109 copies/g by the end of the composting, while that of Bacillus, Paenibacillus and Comamonas decreased to 2.77 × 104 copies/g, 2.13 × 104 copies/g and 3.38 × 102 copies/g, respectively, with 1.26 × 107 copies/g, 4.71 × 106 copies/g, 1.69 × 108 copies/g on 0 d. Redundancy analysis (RDA) indicated that physicochemical factors and substances could affect the changes of pathogenic bacteria during composting, while temperature was the key influencing factor. In addition, certain potential pathogenic bacteria, such as Bacteroides-Bifidobacterium, show statistically strong and significant co-occurrence during composting, which may increase the risk of multiple infections and also influence their distribution. These findings provide a theoretical reference for biosafety prevention and control in the treatment and disposal of rural solid waste.
Collapse
Affiliation(s)
- Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
12
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
13
|
Ma JJ, Jiang CL, Tao XH, Sheng JL, Sun XZ, Zhang TZ, Zhang ZJ. Insights on dissolved organic matter and bacterial community succession during secondary composting in residue after black soldier fly larvae (Hermetia illucens L.) bioconversion for food waste treatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:55-64. [PMID: 35176599 DOI: 10.1016/j.wasman.2022.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly larvae (Hermetia illucens L. BSFL) bioconversion is a promising biotechnology for food waste treatment. However, the separated residues still do not meet criteria for use as land application biofertilizers. In this work, we investigated a full-scale BSFL bioconversion project to explore features of dissolved organic matter (DOM) and its associated responses of bacterial community succession in residue during secondary composting. Data showed that the concentrations of total nitrogen and ammonium nitrogen decreased by 11.8% and 22.6% during the secondary composting, respectively, while the nitrate nitrogen concentration increased 18.7 times. The DOM concentration decreased by 69.1%, in which protein-like, alcohol-phenol, and biodegradable aliphatic substances were metabolized by bacteria during the thermophilic phase together with the accumulation of humus-like substances, resulting in an increase in the relative concentration of aromatic compounds. The structure of the bacterial community varied at different stages of the bioprocess, in which Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes were the dominant bacterial phyla. Lysinibacillus, Pusillimonas, and Caldicoprobacter were found to be key contributors in the degradation and formation of DOM. The DOM concentration (33.4%) and temperature (17.7%) were the prime environmental factors that promoted succession of the bacterial community. Through bacterial metabolism, the structural stability of DOM components was improved during the composting process, and the degrees of humification and aromaticity were also increased. This study depicted the dynamic features of DOM and the associated bacterial community succession in residue during secondary composting, which is conducive with the reuse of BSFL residue as biofertilizer for agriculture.
Collapse
Affiliation(s)
- Jing-Jin Ma
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Cheng-Liang Jiang
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xing-Hua Tao
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Jian-Lin Sheng
- HangZhou GuSheng Technology Company Limited, XiangWang Ave 1118, HangZhou 311121, PR China; ZheJiang FuMei Biotechnology Company Limited, PingYao Future Complex Park, PingYao Ave, HangZhou 311115, PR China
| | - Xin-Zhao Sun
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China
| | - Ting-Zhou Zhang
- ZheJiang Cofine Biotechnology Company Limited, HaiNing 314400, PR China
| | - Zhi-Jian Zhang
- College of Natural Research and Environmental Sciences, ZheJiang University, YuHangTang Ave 688, HangZhou, ZheJiang Province 310058, PR China; China Academy of West Region Development, ZheJiang University, YuHangTang Ave 866, HangZhou 310058, PR China.
| |
Collapse
|
14
|
Xu S, Li L, Zhan J, Guo X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114418. [PMID: 34999283 DOI: 10.1016/j.jenvman.2021.114418] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, a co-composting of rural organic solid waste (rural sewage sludge, kitchen waste and corn stalks) was conducted to analyze the variation of heavy metals (As, Cu, Cr, Ni, Pb, Hg, and Zn) and their major influencing factors. During composting, significant changes were observed in the total contents of heavy metals (p < 0.01): the total concentrations of As, Cu, Hg, Pb and Zn increased by 7.5%, 54.1%, 26.3%, 15.8%, and 34.2%, whereas that of Cr and Ni decreased by 71.3% and 33.4%, respectively. Heavy metals were mainly bound to the oxidizable and residual fractions. Spearman and Redundancy analysis (RDA) indicated that substances were significantly correlated with the changes in speciation of heavy metals, among all the factors, while pH and temperature were the dominating environmental influencing parameters. Several metal-resistant bacterial genera (Pseudomonas, Paenibacillus, Bacillus, Acinetobacter, Desulfovibrio, and Ochrobactrum, etc) were observed, with significant explanatory capacity for the changes in heavy metals. Composting showed a poor effect on heavy metal passivation, except for that of As. After composting, the heavy metal contents were consistent with the application standards. The evaluation of potential ecological risk showed a high cumulative ecological risk (336.9) of heavy metals. This study provides technical support and practical information for the disposal and safe recycling for rural organic solid waste.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Cucina M, Castro L, Escalante H, Ferrer I, Garfí M. Benefits and risks of agricultural reuse of digestates from plastic tubular digesters in Colombia. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:220-228. [PMID: 34536680 DOI: 10.1016/j.wasman.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to characterize the digestates from three plastic tubular digesters implemented in Colombia fed with: i) cattle manure; ii) cattle manure mixed with cheese whey; iii) pig manure. All the digesters worked under psychrophilic conditions. Physico-chemical characteristics, heavy metals, pathogens, and agronomic quality were investigated. All the digestates were characterized by physico-chemical characteristics and nutrients concentration suitable for their reuse as biofertilizer. However, these digestates may only partially replace a mineral fertilizer due to the high nutrients dilution. Heavy metals were under the detection limit of the analytical method (Pb, Hg, Ni, Mo, Cd, Chromium VI) or present at low concentration (Cu, Zn, As, Se) in all the digestates. Biodegradable organic matter and pathogens (coliform, helminths and Salmonella spp.) analysis proved that all the digestates should be post-treated before soil application in order to prevent environmental and health risks, and also to reduce residual phytotoxicity effects. The digestate from pig manure had a higher nutrient percentage (0.2, 0.6 and 0.05 % w/w of total N, P2O5 and K2O, respectively), but also higher residual phytotoxicity than the other digestates. Co-digestion seemed not to significantly improve the digestate fertilizing potential. Finally, further studies should address how to improve fertilizing potential of digestates from plastic tubular digesters, avoiding environmental and health risks.
Collapse
Affiliation(s)
- Mirko Cucina
- Gruppo Ricicla labs. - Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Liliana Castro
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia.
| | - Humberto Escalante
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Carrera 27, Calle 9 Ciudad Universitaria, Bucaramanga, Colombia
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech (UPC), c/ Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech (UPC), c/ Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain
| |
Collapse
|
16
|
Zhou Y, Qin S, Verma S, Sar T, Sarsaiya S, Ravindran B, Liu T, Sindhu R, Patel AK, Binod P, Varjani S, Rani Singhnia R, Zhang Z, Awasthi MK. Production and beneficial impact of biochar for environmental application: A comprehensive review. BIORESOURCE TECHNOLOGY 2021; 337:125451. [PMID: 34186328 DOI: 10.1016/j.biortech.2021.125451] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This review focuses on a holistic view of biochar, production from feedstock's, engineering production strategies, its applications and future prospects. This article reveals a systematic emphasis on the continuation and development of biochar and its production methods such as Physical engineering, chemical and bio-engineering techniques. In addition, biochar alternatives such as nutrient formations and surface area made it a promising cheap source of carbon-based products such as anaerobic digestion, gasification, and pyrolysis, commercially available wastewater treatment, carbons, energy storage, microbial fuel cell electrodes, and super-capacitors repair have been reviewed. This paper also covers the knowledge blanks of strategies and ideas for the future in the field of engineering biochar production techniques and application as well as expand the technology used in the circular bio-economy.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Shivpal Verma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Reeta Rani Singhnia
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden.
| |
Collapse
|