1
|
Degradation of 1,4-dioxane by Newly Isolated Acinetobacter sp. M21 with Molasses as the Auxiliary Substrate. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Shi X, He C, Wang Y, Lu J, Guo H, Zhang B. Concurrent anaerobic chromate bio-reduction and pentachlorophenol bio-degradation in a synthetic aquifer. WATER RESEARCH 2022; 216:118326. [PMID: 35364351 DOI: 10.1016/j.watres.2022.118326] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Chromate [Cr(VI)] and pentachlorophenol (PCP) coexist widely in the environment and are highly toxic to public health. However, whether Cr(VI) bio-reduction is accompanied by PCP bio-degradation and how microbial communities can keep long-term stability to mediate these bioprocesses in aquifer remain elusive. Herein, we conducted a 365-day continuous column experiment, during which the concurrent removals of Cr(VI) and PCP were realized under anaerobic condition. This process allowed for complete Cr(VI) bio-reduction and PCP bio-degradation at an efficiency of 92.8 ± 4.2% using ethanol as a co-metabolic substrate. More specifically, Cr(VI) was reduced to insoluble chromium (III) and PCP was efficiently dechlorinated with chloride ion release. Collectively, Acinetobacter and Spirochaeta regulated Cr(VI) bio-reduction heterotrophically, while Pseudomonas mediated not only Cr(VI) bio-reduction but also PCP bio-dechlorination. The bio-dechlorinated products were further mineralized by Azospira and Longilinea. Genes encoding proteins for Cr(VI) bio-reduction (chrA and yieF) and PCP bio-degradation (pceA) were upregulated. Cytochrome c and intracellular nicotinamide adenine dinucleotide were involved in Cr(VI) and PCP detoxification by promoting electron transfer. Taken together, our findings provide a promising bioremediation strategy for concurrent removal of Cr(VI) and PCP in aquifers through bio-stimulation with supplementation of appropriate substrates.
Collapse
Affiliation(s)
- Xinyue Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ya'nan Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jianping Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
3
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Werheni Ammeri R, Kraiem K, Riahi K, Eturki S, Hassen W, Mehri I, Hassen A. Removal of pentachlorophenol from contaminated wastewater using phytoremediation and bioaugmentation processes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3091-3103. [PMID: 34850714 DOI: 10.2166/wst.2021.328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phytoremediation procedure was conducted by Lemna gibba (L) and Typha angustifolia (T) and the bioaugmentation procedure used P. putida HM627618. The ability of the selected P. putida HM627618 to tolerate and remove PCP (200 mg L-1) was measured by high performance liquid chromatography analysis and optical density at 600 nm. Five different experiments were conducted in secondary treated wastewater for PCP testing removal (100 mg L-1) including two phytoremediation assays (T + PCP; L + PCP), three bioaugmentation-phytoremediation assays (T + B + PCP; L + B + PCP; L + T + B + PCP) and a negative control assay with PCP. Various analytical parameters were determined in this study such as bacterial count, chlorophylls a and b, COD, pH and PCP content. The main results showed that the average PCP removal by P. putida HM627618 was around 87.5% after 7 days of incubation, and 88% of PCP removal was achieved by treatment (T + B) after 9 days. During these experiments, pH, COD and chloride content showed a net increase in all treatments. The chlorophylls a and b in case of (T) and (L) Chlorophylls a and b for T and L phytoremediation showed a decrease with a value less than 10 μg/mg of fresh material after 20 days of cultivation.
Collapse
Affiliation(s)
- Rim Werheni Ammeri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail: ; Eremology and Combating Desertification, Arid Regions Institute of Medenine, Mednine, Tunisia
| | - Khadija Kraiem
- Higher Institute of Applied Biological Sciences of Tunis, Tunisia
| | - Khalifa Riahi
- Department of Planning and Environment, UR-GDRES-17AGR03, Higher School of Engineers of Medjez El Bab, University of Jendouba, Tunisia
| | - Saiefeddine Eturki
- Eremology and Combating Desertification, Arid Regions Institute of Medenine, Mednine, Tunisia
| | - Wafa Hassen
- Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Ines Mehri
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail:
| | - Abdennaceur Hassen
- Center of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Techno Park of Borj-Cédria, BP. 273, 8020 Borj-Cédria, Tunisia E-mail:
| |
Collapse
|
5
|
Du XM, Zhao B, Yang Q, Wang JS, Xie FY, Yu HY, Li Y, Ma YX, Ruan WJ. Dual-emissive dye@MOF composite for ratiometric detection and discrimination of two isomers of tetrachlorobenzenediol. NEW J CHEM 2020. [DOI: 10.1039/d0nj04058d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dye@MOF composite was screened out for the ratiometric fluorescent detection and discrimination of the two isomers of tetrachlorobenzenediol.
Collapse
Affiliation(s)
- Xiao-Meng Du
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Bo Zhao
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Qi Yang
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jia-Si Wang
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Feng-Yang Xie
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hong-Yi Yu
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yue Li
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Yu-Xin Ma
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wen-Juan Ruan
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|
6
|
El-Bialy HA, Khalil OAA, Gomaa OM. Bacterial-mediated biodegradation of pentachlorophenol via electron shuttling. ENVIRONMENTAL TECHNOLOGY 2019; 40:2416-2424. [PMID: 29455620 DOI: 10.1080/09593330.2018.1442501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Pentachlorophenol (PCP) degradation by soil indigenous bacteria represents a practical and cost-effective solution. In the present study, bacteria isolated from paddy soil was investigated and the role of electron shuttling (ES) in the PCP degradation process was assessed. Two strains demonstrated the highest PCP degradation of 93.5% and 94.88% in the presence of citrate and were identified using 16S rRNA phylogenetic analysis as Pseudomonas chengduensis and Pseudomonas plecoglossicida, respectively. Both strains showed higher PCP degradation in free form as opposed to a reduced activity in immobilized and respiratory impaired form. The addition of pyruvate resulted in about 80% PCP degradation in 5 days for P. chengduensis, on the other hand, P. plecoglossicida showed the same result under anaerobic conditions whether pyruvate was added or not. Phenazine and the outer membrane c-type cytochrome were reported only for P. chengduensis as opposed to P. plecoglossicida. The results indicate that despite following different approaches in PCP degradation, both strains are useful in PCP clean-up under aerobic and anaerobic conditions and in free direct contact. The degradation is enhanced via ES. This is considered both an effective and feasible technology for in situ clean-up of contaminated sites or on-site bioreactors.
Collapse
Affiliation(s)
- Heba A El-Bialy
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola A A Khalil
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Ola M Gomaa
- a Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| |
Collapse
|
7
|
Rani R, Kumar V, Usmani Z, Gupta P, Chandra A. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil. CHEMOSPHERE 2019; 225:479-489. [PMID: 30897471 DOI: 10.1016/j.chemosphere.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Endosulfan is a broad spectrum insecticide used in agriculture for protection of various food and non-food crops. It is persistent in nature and hence found in soil, air and water. The potential use of plants and microorganisms for the removal of endosulfan from soil was studied. Helianthus annuus plant was grown in soil spiked with 5, 10, 25 and 50 mg kg-1 concentrations of endosulfan and inoculated with plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 for 40, 80 and 120 days. Potential of plant for endosulfan uptake was evaluated by investigating the endosulfan levels in plant tissues (root and shoot). The results indicated that endosulfan accumulation followed the pattern of root > shoot as well as decrease in uptake of endosulfan in root and shoot of a plant grown in bacterial inoculated soil as compared to un-inoculated soil. Bacterial inoculation had a positive effect on endosulfan degradation. Maximum degradation of 92% at 5 mg kg-1 of endosulfan in soil was observed on inoculation with PRB101 after 120 days of inoculation. The results showed that plant growth promoting bacteria enhances plant biomass production. Lipid peroxidation was also estimated by determining the malondialdehyde (MDA) production, which is a biomarker of oxidative damage. Decrease in MDA formation by root and leaves of plants grown in the bacteria inoculated plant was also observed. The results suggested the effectiveness of plant growth promoting rhizobacteria to boost accumulation potential, biomass production and enhance remediation of endosulfan contaminated soil.
Collapse
Affiliation(s)
- Rupa Rani
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826 004, Jharkhand, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826 004, Jharkhand, India.
| | - Zeba Usmani
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826 004, Jharkhand, India
| | - Pratishtha Gupta
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826 004, Jharkhand, India
| | - Avantika Chandra
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Dhanbad, 826 004, Jharkhand, India
| |
Collapse
|
8
|
Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticide-contaminated artichoke farm soils. 3 Biotech 2018; 8:263. [PMID: 29805953 DOI: 10.1007/s13205-018-1256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
A total of 68 dimethoate and pentachlorophenol-tolerant rhizobacteria, isolated from a pesticide-contaminated agricultural soil, have been identified and typed by means of 16S-23S rRNA internal transcribed spacers analysis (ITS-PCR), 16S rRNA gene sequencing and by repetitive extragenic palindromic (BOX-PCR). The majority of bacterial isolates (84.31%) belonged to Proteobacteria (with a predominance of Gammaproteobacteria, 72.54%), while the remaining isolates were affiliated with Firmicutes (9.80%), Bacteroidetes (1.96%) and Actinobacteria (3.92%). The pesticide-tolerant bacterial isolates belonged to 11 genera, namely Pseudomonas, Bacillus, Acinetobacter, Flavobacterium, Comamonas, Achromobacter, Rhodococcus, Ochrobactrum, Aquamicrobium, Bordetella and Microbacterium. Within the well-represented genus Pseudomonas (n = 36), the most common species was Pseudomonas putida (n = 32). The efficacy of the selected strain, Pseudomonas putida S148, was further investigated for biodegradation of pentachlorophenol (PCP) in minimal medium, when used as a sole carbon and energy source. At an initial concentration of 100 mg/L, P. putida S148 degraded 91% of PCP after 7 days. GC-MS analyses revealed the formation of tetrachlorohydroquinone, tri- and di-chlorophenols as biodechlorination products in PCP remediation experiments. The toxicity estimation showed that 50% lethal concentration (LC50) and 50% growth inhibition concentration (IGC50) obtained values for the major identified compounds (2,3,4,6 tetrachlorophenol, 2,3,5,6 tetrachlorophenol and tetrachlorohydroquinone) were higher than those estimated for the PCP indicating that the metabolites are less toxic than the original compound for those specific organisms. S148 strain could be added to pesticide-contaminated agricultural soils as a bacterial inoculant for its potential to improve soil quality.
Collapse
|
9
|
Chen HM, Lee YH, Wang YJ. ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of pentachlorophenol and tetrachlorohydroquinone. Chem Res Toxicol 2015; 28:339-50. [PMID: 25608107 DOI: 10.1021/tx500487w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free radical-triggered tissue damage is believed to play an essential role in a variety of human diseases. Pentachlorophenol (PCP) is applied as a pesticide worldwide in both industries and homes. It is used extensively as a biocide and wood preservative. Tetrachlorohydroquinone (TCHQ) was proved as a major toxic metabolite of PCP, contributing the release of free radicals during PCP metabolism. PCP has been proposed as a tumor promoter; however, only limited knowledge is available regarding the mechanisms of tumor promotion induced by PCP and its metabolite, TCHQ. A growing amount of literature suggests that a link between reactive oxygen species (ROS) and tumor promotion could exist. Herein, we summarize the findings regarding the ROS-triggered signaling pathways involved in the cytotoxicity and tumor promotion effects of PCP and TCHQ. Some of the notable findings demonstrated that TCHQ can induce DNA lesions and glutathione depletion in mammalian cells; meanwhile, oxidative stress and apoptosis/necrosis can be found both in vivo and in vitro. Interestingly, PCP and TCHQ were proved as mild tumor promoters in two-stage tumorigenesis models, in which the possible mechanism could be through ROS generation and changed Bcl-2 gene expression. We also found significant effects of antioxidants in attenuating the oxidative stress, cyto- and genotoxicity, and apoptosis/necrosis induced by PCP and/or TCHQ. In addition, mitogen-activated protein kinase (MAPK) activation is involved in PCP/TCHQ-triggered cytotoxicity, as evidenced by the finding that higher doses of TCHQ could lead to necrosis of freshly isolated splenocytes through the production of a large amount of ROS and sustained ERK activation. These results could explain partly the underlying molecular mechanisms contributing to the tumorigenesis induced by PCP. However, the detailed mechanisms of free radicals in triggering PCP/TCHQ-mediated tumor promotion and toxicity are still not completely resolved and need to be investigated further.
Collapse
Affiliation(s)
- Hsiu-Min Chen
- Department of Environmental and Occupational Health, National Cheng Kung University , Tainan, Taiwan
| | | | | |
Collapse
|
10
|
Postigo C, Barceló D. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:32-47. [PMID: 24974362 DOI: 10.1016/j.scitotenv.2014.06.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided.
Collapse
Affiliation(s)
- Cristina Postigo
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
11
|
Witońska IA, Walock MJ, Binczarski M, Lesiak M, Stanishevsky AV, Karski S. Pd–Fe/SiO2 and Pd–Fe/Al2O3 catalysts for selective hydrodechlorination of 2,4-dichlorophenol into phenol. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.06.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Khessairi A, Fhoula I, Jaouani A, Turki Y, Cherif A, Boudabous A, Hassen A, Ouzari H. Pentachlorophenol degradation by Janibacter sp., a new actinobacterium isolated from saline sediment of arid land. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296472. [PMID: 25313357 PMCID: PMC4182692 DOI: 10.1155/2014/296472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/17/2014] [Indexed: 11/17/2022]
Abstract
Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy. Based on 16S rRNA coding gene sequence analysis, the strain FAS23 was identified as Janibacter sp. As revealed by high performance liquid chromatography (HPLC) analysis, FAS23 strain was found to be efficient for PCP removal in the presence of 1% of glucose. The conditions of growth and PCP removal by FAS23 strain were found to be optimal in neutral pH and at a temperature of 30 °C. Moreover, this strain was found to be halotolerant at a range of 1-10% of NaCl and able to degrade PCP at a concentration up to 300 mg/L, while the addition of nonionic surfactant (Tween 80) enhanced the PCP removal capacity.
Collapse
Affiliation(s)
- Amel Khessairi
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Imene Fhoula
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Atef Jaouani
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Yousra Turki
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Ameur Cherif
- Université de Manouba, Institut Supérieur de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia
| | - Abdellatif Boudabous
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Hadda Ouzari
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
13
|
Lv Y, Chen Y, Song W, Hu Y. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge. JOURNAL OF HAZARDOUS MATERIALS 2014; 280:134-142. [PMID: 25151236 DOI: 10.1016/j.jhazmat.2014.07.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1-0.2 mgL(-1)) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/hg VSS) and aerobic activity (SOUR: 2.21 mMO2/hg VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on microbial community. Furthermore, nucleotide sequencing indicated that the main microorganisms for PCP degradation might be related to Actinobacterium and Sphingomonas. These results provided insights into situ bioremediation of environments contaminated by PCP and had practical implications for the strategies of PCP degradation.
Collapse
Affiliation(s)
- Yuancai Lv
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China.
| | - Yuancai Chen
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Wenzhe Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Yongyou Hu
- State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640, China; Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Lin WC, Chang-Chien GP, Kao CM, Newman L, Wong TY, Liu JK. Biodegradation of Polychlorinated Dibenzo--Dioxins by Strain NSYSU. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:349-357. [PMID: 25602569 DOI: 10.2134/jeq2013.06.0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The dioxin-degrading bacterium strain NSYSU (NSYSU strain) has been isolated from dioxin-contaminated soil by selective enrichment techniques. In the present study, the NSYSU strain was investigated for its capability to biodegrade polychlorinated dibenzo--dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) under aerobic and anaerobic conditions. High-resolution gas chromatography-mass spectrometry and a chemically activated luciferase gene expression bioassay were performed to determine the presence of dioxin compounds. The results indicate that the NSYSU strain could degrade PCDDs and PCDFs under anaerobic conditions in liquid cultures. The main intermediates of the dechlorination process were identified. The results of the bioreactor test indicate that the NSYSU strain could also degrade PCDDs and PCDFs effectively in soil slurries under aerobic conditions. Results from the bioreactor experiment show that approximately 98 and 97% of octachlorodibenzofuran and OCDD were degraded, respectively. The dioxin concentrations in soil slurry decreased from 5823 to 1198 pg toxic equivalency g, resulting in total dioxin removal of 79%. These first findings suggest that the NSYSU strain has the potential to be an effective tool for the bioremediation of soils contaminated with highly recalcitrant organic compounds.
Collapse
|
15
|
The immunotoxic effects of dual exposure to PCP and TCDD. Chem Biol Interact 2013; 206:166-74. [PMID: 24051191 DOI: 10.1016/j.cbi.2013.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/22/2013] [Accepted: 09/09/2013] [Indexed: 01/06/2023]
Abstract
Pentachlorophenol (PCP) was a commonly used fungicide, herbicide, insecticide, and bactericide in industrial, agricultural, and domestic settings; however, it was also contaminated with polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). It has been reported that technical grade PCP had immunosuppressive effects and that the immune system was the major target of PCDD/PCDFs toxicity. Although the immune response after exposure to PCP or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been studied, the toxic effects of exposure to both PCP and TCDD have not yet been reported. The aim of this study was to evaluate the effects on immune cells from mice intraperitoneally immunized with OVA and subsequently treated with PCP or TCDD alone or in combination by gavage. The animals were terminated on day 7 and 14, and the spleen and plasma samples were collected for immunotoxicity evaluation. The numbers and populations of splenocytes, T cell-derived cytokines produced by splenocytes, splenocyte-generated cytotoxicity and OVA-specific antibodies in plasma were investigated. Our results indicate that the spleen/body weight ratio and splenocyte number was reduced by TCDD alone; in addition, this reduction was enhanced when TCDD was combined with PCP. Exposure to TCDD alone or in conjunction with PCP suppressed many ovalbumin (OVA)-stimulated cytokines, including IL-2, IFN-γ, IL-4, IL-5, and IL-10. Furthermore, the immunoglobulins IgG and IgM were suppressed in mice administered by PCP alone, but the suppressive effects were greater in mice treated with TCDD alone or in combination with PCP. Co-exposure to PCP and TCDD resulted in an antagonistic effect on TCDD-induced suppression of IFN-γ and IL-10. Our results demonstrate that PCP alone is immunotoxic, regardless of the presence of TCDD. PCP led to mild changes in cytokine secretion, and it compromised splenocyte-generated cytotoxicity and IgM and IgG antibody production on day 7. The finding that PCP antagonizes TCDD-induced IFN-γ suppression could be due to the competitive binding of PCP to AhR (aryl hydrocarbon receptor).
Collapse
|
16
|
Comparative assessment of growth and biodegradation potential of soil isolate in the presence of pesticides. Saudi J Biol Sci 2013; 20:257-64. [PMID: 23961243 DOI: 10.1016/j.sjbs.2013.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/15/2013] [Indexed: 11/20/2022] Open
Abstract
In Pakistan, to increase agricultural production, higher amounts of fertilizers and pesticides are being used. The residues of the applied pesticides stay in the environment and therefore causing contamination of air, water and land. Moreover, agricultural industries are also contributing relatively high quantities of toxic pesticides into the environment. Since most of them have no treatment facilities. These pesticides may be toxic, mutagenic or carcinogenic. They may be bioaccumulated or biomagnified by the biota. Therefore its removal from environmental systems needs special attention. In this study, bacterial isolate, Pseudomonas, designated as IES-Ps-1, was used to assess its potential for pesticide removal from industrial wastewater using the biosimulator (activated sludge process). During experimental studies conducted in the flask as well as in biosimulator, it was observed that IES-Ps-1 grows normally at low concentrations of added insecticides when compared with the control test (without pesticide). However, at high concentrations the microbial count decreased but no death occurred and the culture remained in lag phase. In many cases, the growth of organisms in the presence of the particular substrate serves as an indication about its metabolic potential. However, to confirm these results, chemical oxygen demand (COD) and HPLC analysis were performed. Under aerobic culture conditions using mechanical aerators in biosimulator, almost complete removal of Cypermethrin at 20 mg/L dose occurred during 48 h. The study findings indicate that IES-Ps-1 strain, can be used for the treatment of the pesticide contaminated environment. Such study may be valuable to scientist and engineers, who are trying to develop methods for the treatment of toxic organic waste using the biological treatment process.
Collapse
|
17
|
Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BIOMED RESEARCH INTERNATIONAL 2013; 2013:392573. [PMID: 23865051 PMCID: PMC3705853 DOI: 10.1155/2013/392573] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/07/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022]
Abstract
Pesticides are normally used to control specific pests and to increase the productivity in crops; as a result, soils are contaminated with mixtures of pesticides. In this work, the ability of Streptomyces strains (either as pure or mixed cultures) to remove pentachlorophenol and chlorpyrifos was studied. The antagonism among the strains and their tolerance to the toxic mixture was evaluated. Results revealed that the strains did not have any antagonistic effects and showed tolerance against the pesticides mixture. In fact, the growth of mixed cultures was significantly higher than in pure cultures. Moreover, a pure culture (Streptomyces sp. A5) and a quadruple culture had the highest pentachlorophenol removal percentages (10.6% and 10.1%, resp.), while Streptomyces sp. M7 presented the best chlorpyrifos removal (99.2%). Mixed culture of all Streptomyces spp. when assayed either as free or immobilized cells showed chlorpyrifos removal percentages of 40.17% and 71.05%, respectively, and for pentachlorophenol 5.24% and 14.72%, respectively, suggesting better removal of both pesticides by using immobilized cells. These results reveal that environments contaminated with mixtures of xenobiotics could be successfully cleaned up by using either free or immobilized cultures of Streptomyces, through in situ or ex situ remediation techniques.
Collapse
|
18
|
Yoshida N, Ye L, Liu F, Li Z, Katayama A. Evaluation of biodegradable plastics as solid hydrogen donors for the reductive dechlorination of fthalide by Dehalobacter species. BIORESOURCE TECHNOLOGY 2013; 130:478-485. [PMID: 23313696 DOI: 10.1016/j.biortech.2012.11.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Biodegradable plastics (BPs) were evaluated for their applicability as sustainable and solid H(2) donors for microbial reductive dechlorination of 4,5,6,7-tetrachlorophthalide (fthalide). After a screening test of several BPs, the starch-based plastic (SP) that produced the highest levels of H(2) was selected for its use as the sole H(2) donor in this reaction. Fthalide dechlorination was successfully accomplished by combining an H(2)-producing SP culture and a KFL culture containing Dehalobacter species, supplemented with 0.13% and 0.5% SP, respectively. The efficiency of H(2) use in dechlorination was evaluated in a combined culture containing the KFL culture and strain Clostridium sp. Ma13, a new isolate that produces H(2) from SP. Results obtained with this culture indicated increased H(2)-fraction for fthalide dechlorination much more in this culture than in compared with a KFL culture supplemented with 20mM lactate, which are 0.75 H(2)·glucose(-1) and 0.015 H(2)·lactate(-1) in mol ratio, respectively.
Collapse
Affiliation(s)
- Naoko Yoshida
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan.
| | | | | | | | | |
Collapse
|
19
|
Sharma S, Mukhopadhyay M, Murthy ZVP. Treatment of Chlorophenols from Wastewaters by Advanced Oxidation Processes. SEPARATION AND PURIFICATION REVIEWS 2013. [DOI: 10.1080/15422119.2012.669804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, Khan QM. Enhanced remediation of chlorpyrifos from soil using ryegrass (Lollium multiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. JOURNAL OF HAZARDOUS MATERIALS 2012; 237-238:110-115. [PMID: 22959266 DOI: 10.1016/j.jhazmat.2012.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/16/2012] [Accepted: 08/02/2012] [Indexed: 05/28/2023]
Abstract
The combined use of plants and associated microorganisms has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to determine whether the bacterial inoculation influences plant growth promotion and chlorpyrifos (CP) degradation and accumulation in different parts of the plant. Ryegrass was grown in soil spiked with CP and inoculated with a pesticide degrading bacterial strain Bacillus pumilus C2A1. Inoculation generally had a beneficial effect on CP degradation and plant biomass production, highest CP degradation (97%) was observed after 45 days of inoculation. Furthermore, inoculated strain efficiently colonized in the rhizosphere of inoculated plant and enhanced CP and its primary metabolite 3,5,6-trichloro-2-pyridinol (TCP) degradation. There was significantly less CP accumulation in roots and shoots of inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated exogenous bacteria to boost the remediation of CP contaminated sites and decrease levels of toxic pesticide residues in crop plants.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road Faisalabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu J, Zhou XH, Shi HC. Inhibitory effects of pentachlorophenol on wastewater biofilms as determined by phospholipid analysis and microelectrode. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Pileggi M, Pileggi SAV, Olchanheski LR, da Silva PAG, Munoz Gonzalez AM, Koskinen WC, Barber B, Sadowsky MJ. Isolation of mesotrione-degrading bacteria from aquatic environments in Brazil. CHEMOSPHERE 2012; 86:1127-1132. [PMID: 22245060 DOI: 10.1016/j.chemosphere.2011.12.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 05/28/2023]
Abstract
Mesotrione is a benzoylcyclohexane-1,3-dione herbicide that inhibits 4-hydroxyphenyl pyruvate dioxygenase in target plants. Although it has been used since 2000, only a limited number of degrading microorganisms have been reported. Mesotrione-degrading bacteria were selected among strains isolated from Brazilian aquatic environments, located near corn fields treated with this herbicide. Pantoea ananatis was found to rapidly and completely degrade mesotrione. Mesotrione did not serve as a sole C, N, or S source for growth of P. ananatis, and mesotrione catabolism required glucose supplementation to minimal media. LC-MS/MS analyses indicated that mesotrione degradation produced intermediates other than 2-amino-4-methylsulfonyl benzoic acid or 4-methylsulfonyl-2-nitrobenzoic acid, two metabolites previously identified in a mesotrione-degrading Bacillus strain. Since P. ananatis rapidly degraded mesotrione, this strain might be useful for bioremediation purposes.
Collapse
Affiliation(s)
- Marcos Pileggi
- Department of Structural Biology, Molecular Biology and Genetics, Microbiology Laboratory, Ponta Grossa State University, 84030-900 Ponta Grossa, PR, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Solanki JN, Murthy ZVP. Reduction of 4-Chlorophenol by Mg and Mg–Ag Bimetallic Nanocatalysts. Ind Eng Chem Res 2011. [DOI: 10.1021/ie2022338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jignasa N. Solanki
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India
| | | |
Collapse
|
24
|
Frische K, Schwarzbauer J, Ricking M. Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. CHEMOSPHERE 2010; 81:500-508. [PMID: 20810145 DOI: 10.1016/j.chemosphere.2010.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/17/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
Groundwater samples contaminated by an industrial point source were analysed in order to reveal the structural diversity of halogenated organic contaminants. Particular focus was laid on the metabolites and derivatives related to the pesticides DDT (2,2-bis(chlorophenyl)-1,1,1-trichlorethane) and lindane (γ-hexachlorocyclohexane). Additionally, a wide range of chlorinated and brominated xenobiotics were identified. These results represent a high degree of contamination with organochlorine compounds illustrating a considerable structural diversity in groundwater in the vicinity of the industrial plant. The polar DDT-metabolite DDA (2,2-bis(chlorophenyl)acetic acid), which has been neglected in water studies widely, represents the main DDT metabolite analysed in the water samples. Besides DDA, some unknown substances with structural relation to DDA and DDT were detected and identified, in detail 2,2-bis(4-chlorophenyl)acetic acid N-methyl amide (DDAMA) and 2,2-bis(4-chlorophenyl)acetic acid n-butyl ester (DDABE). As an overall implication of this study it has to be demanded that analysis of industrially affected ground waters have to be based on screening analysis for a comprehensive view on the state of pollution.
Collapse
Affiliation(s)
- Kerstin Frische
- RWTH Aachen University, Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | | | | |
Collapse
|
25
|
Sinha A, Bose P. Interaction of 2,4,6-trichlorophenol with high carbon iron filings: Reaction and sorption mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2009; 164:301-309. [PMID: 18838219 DOI: 10.1016/j.jhazmat.2008.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 07/08/2008] [Accepted: 08/04/2008] [Indexed: 05/26/2023]
Abstract
Reductive dehalogenation of 2,4,6-trichlorophenol (2,4,6-TCP) by two types of high carbon iron filings (HCIF), HCIF-1 and HCIF-2 was studied in batch reactors. While the iron, copper, manganese and carbon content of the two types of HCIF was similar, the specific surface area of HCIF-1 and HCIF-2 were 1.944 and 3.418m(2)g(-1), respectively. During interaction with HCIF-1, 2,4,6-TCP adsorbed on HCIF-1 surface resulting in rapid reduction of aqueous phase 2,4,6-TCP concentration. However, reductive dehalogenation of 2,4,6-TCP was negligible. During interaction between 2,4,6-TCP and HCIF-2, both 2,4,6-TCP adsorption on HCIF-2, and 2,4,6,-TCP dechlorination was observed. 2,4,6-TCP partitioning between solid and aqueous phase could be described by a Freundlich isotherm, while 2,4,6-TCP dechlorination could be described by an appropriate rate expression. A mathematical model was developed for describing the overall interaction of 2,4,6-TCP with HCIF-2, incorporating simultaneous adsorption/desorption and dechlorination reactions of 2,4,6-TCP with the HCIF surface. 2,4-Dichlorophenol (2,4-DCP), 2-chlorophenol (2-CP) and minor amounts of 4-chlorophenol (4-CP) evolved as 2,4,6-TCP dechlorination by-products. The evolved 2,4-DCP partitioned strongly to the HCIF surface. 4-CP and 2-CP accumulated in the aqueous phase. No transformation of 2-CP or 4-CP to phenol was observed.
Collapse
Affiliation(s)
- Alok Sinha
- Environmental Engineering and Management Programme, Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
26
|
Sharma A, Thakur IS, Dureja P. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site. Biodegradation 2009; 20:643-50. [DOI: 10.1007/s10532-009-9251-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/28/2009] [Indexed: 11/30/2022]
|
27
|
Sharma A, Thakur IS. Identification and characterization of integron mediated antibiotic resistance in pentachlorophenol degrading bacterium isolated from the chemostat. J Environ Sci (China) 2009; 21:858-864. [PMID: 19803095 DOI: 10.1016/s1001-0742(08)62353-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A bacterial consortium was developed by continuous enrichment of microbial population isolated from sediment core of pulp and paper mill effluent in mineral salts medium (MSM) supplemented with pentachlorophenol (PCP) as sole source of carbon and energy in the chemostat. The consortia contained three bacterial strains. They were identified as Escherichia coli, Pseudomonas aeruginosa and Acinetobacter sp. by 16S rRNA gene sequence analysis. Acinetobacter sp. readily degraded PCP through the formation of tetrachloro-p-hydroquinone (TecH), 2-chloro-1,4-benzenediol and products of ortho ring cleavage detected by gas chromatograph/mass spectrometer (GC-MS). Out of the three acclimated PCP degrading bacterial strains only one strain, Acinetobacter sp. showed the presence of integron gene cassette as a marker of its stability and antibiotic resistance. The strain possessed a 4.17 kb amplicon with 22 ORF's. The plasmid isolated from the Acinetobacter sp. was subjected to shotgun cloning through restriction digestion by BamHI, HindIII and SalI, ligated to pUC19 vector and transformed into E. coli XLBlue1alpha, and finally selected on MSM containing PCP as sole source of carbon and energy with ampicillin as antibiotic marker. DNA sequence analysis of recombinant clones indicated homology with integron gene cassette and multiple antibiotic resistance genes.
Collapse
Affiliation(s)
- Ashwani Sharma
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| | | |
Collapse
|
28
|
Liu XW, He R, Shen DS. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2008; 88:939-46. [PMID: 17590499 DOI: 10.1016/j.jenvman.2007.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 04/04/2007] [Accepted: 04/30/2007] [Indexed: 05/16/2023]
Abstract
In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.
Collapse
Affiliation(s)
- Xin-Wen Liu
- Department of Chemical Engineering, Ningbo University of Technology, 20 Cuibai Road, NingBo 315016, PR China
| | | | | |
Collapse
|
29
|
Patel UD, Suresh S. Effects of solvent, pH, salts and resin fatty acids on the dechlorination of pentachlorophenol using magnesium-silver and magnesium-palladium bimetallic systems. JOURNAL OF HAZARDOUS MATERIALS 2008; 156:308-316. [PMID: 18221836 DOI: 10.1016/j.jhazmat.2007.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 05/25/2023]
Abstract
The effects of pH, organic co-solvent, salts such as sodium chloride, sodium sulfate, and co-pollutants, resin and fatty acids (RFAs) on the dechlorination of pentachlorophenol (PCP) by magnesium/silver (Mg/Ag) and magnesium/palladium (Mg/Pd) systems were examined in the present investigations. Such studies provide relevant information about the applicability of bimetallic systems for remediation of raw wastewaters (such as pulp bleaching effluents) or groundwater. Removal efficiencies of 10 mg L(-1) PCP by Mg/Pd and Mg/Ag systems at the end of 1 h reaction were 93% and 78%, respectively, in the presence of acetone (1% v/v). On the other hand, the removal efficiencies were 86% and 70% for reactions conducted in alcoholic solvents (1% v/v) using Mg/Pd and Mg/Ag systems, respectively. The efficiencies of PCP removal by the two bimetallic systems could be correlated to the dipole moments of co-solvents used. The second order reaction rate constant for PCP removal by Mg/Ag system was highest (0.03 L mg(-1) min(-1)) in the absence of any pH-control mechanism. Optimum pH for the dechlorination of PCP by Mg/Pd system was found to be approximately 5.5 and >92% of the compound was removed within 15 min of reaction. Presence of chlorinated and non-chlorinated resin fatty acids (RFAs) resulted in substantial reduction in the rate and extent of PCP removal by Mg/Ag system whereas dechlorination by Mg/Pd remained unaffected. Presence of sodium sulfate or sodium chloride in the reaction phase reduced the rate and extent of PCP removal by Mg/Ag system. PCP dechlorination by Mg/Pd system was adversely impacted by the addition of sodium chloride and unaffected by the presence of sodium sulfate.
Collapse
Affiliation(s)
- Upendra D Patel
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | | |
Collapse
|
30
|
Sharma A, Thakur IS. Characterization of pentachlorophenol degrading bacterial consortium from chemostat. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 81:12-18. [PMID: 18500664 DOI: 10.1007/s00128-008-9437-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 04/14/2008] [Indexed: 05/26/2023]
Abstract
A microbial consortium was developed by continuous enrichment of bacterial population isolated from sediment core of pulp and paper mill effluent in mineral salts medium (MSM) supplemented with pentachlorophenol (PCP) as sole source of carbon and energy in the chemostat. The enriched consortium contained three bacterial strains identified as Escherichia coli (PCP1), Pseudomonas aeruginosa (PCP2) and Acinetobacter sp. (PCP3) by morphological and biochemical tests, further confirmation was done using 16S rDNA sequence analysis. The potency of bacterial isolates in degradation of PCP was monitored in terms of growth and utilization of PCP as substrate with spectrophotometer and gas chromatograph-mass spectrometer (GC-MS) analysis. The strains were tested for their utilization of various organic compounds. The strain PCP3, showed higher potency to utilize PCP as sole source of carbon and energy than PCP1 and PCP2. The bacterial strain were able to utilize PCP through an oxidative and reductive route as indicated with the formation of tetrachloro-p-hydroquinone (TeCH), 2-chloro-1,4-benzenediol and 2,3,4,6-tetrachlorophenol, respectively.
Collapse
Affiliation(s)
- Ashwani Sharma
- Environmental Biotechnology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110 067, India.
| | | |
Collapse
|
31
|
Patel UD, Suresh S. Complete dechlorination of pentachlorophenol using palladized bacterial cellulose in a rotating catalyst contact reactor. J Colloid Interface Sci 2008; 319:462-9. [DOI: 10.1016/j.jcis.2007.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/21/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
|
32
|
Budziak D, Martendal E, Carasek E. Application of NiTi alloy coated with ZrO2 as a new fiber for solid-phase microextraction for determination of halophenols in water samples. Anal Chim Acta 2007; 598:254-60. [PMID: 17719900 DOI: 10.1016/j.aca.2007.07.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/15/2022]
Abstract
A new fiber for solid-phase microextraction (SPME) employing a metallic support coated with an inorganic material is proposed. A nitinol alloy (NiTi) was used as the support material due to its super elasticity and shape memory properties. Zirconium oxide (ZrO2) was electrodeposited onto NiTi using chronoamperometry. The surface characteristics and morphology of the coated and uncoated support were evaluated through scanning electronic microscopy and dispersive energy microanalysis. This assembly was applied in the extraction of three halophenols from aqueous samples. A multivariate approach was used for optimization of the variables involved in the system. The Doehlert matrix was used for evaluation of the best derivatization conditions and a Box-Behnken design to obtain the best extraction conditions. In order to investigate the repeatability, one fiber was used for six extraction tests under similar conditions and the relative standard deviations (R.S.D.) were lower than 12.5%. Detection limits were lower than 0.30 ng mL(-1). Correlation coefficients were higher than 0.997. Extraction efficiency of the NiTi-ZrO2 fiber was similar to a PDMS 7 microm commercial fiber, even though it had a lower coating thickness of 1.35 microm. Considering the amount extracted per unit volume, the NiTi-ZrO2 fiber had a better extraction profile when compared to commercial fibers. The new SPME fiber has a lifetime of over 500 extractions. Thus, it is a promising alternative for low-cost analysis, as the proposed fiber is robust, and easily and inexpensively prepared.
Collapse
Affiliation(s)
- Dilma Budziak
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | |
Collapse
|
33
|
Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci U S A 2007; 104:10282-7. [PMID: 17548832 PMCID: PMC1885820 DOI: 10.1073/pnas.0611710104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 11/18/2022] Open
Abstract
Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the "Green Revolution," this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields.
Collapse
Affiliation(s)
- Jennifer E. Fox
- *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| | - Jay Gulledge
- Department of Biology, University of Louisville, Louisville, KY 40292
| | | | - Matthew E. Burow
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
- Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| | - John A. McLachlan
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| |
Collapse
|
34
|
Crawford RL, Jung CM, Strap JL. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 2006; 18:525-39. [PMID: 17123025 DOI: 10.1007/s10532-006-9090-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.
Collapse
Affiliation(s)
- Ronald L Crawford
- Environmental Biotechnology Institute, Food Research Center 202, University of Idaho, Moscow, ID 83844-1052, USA.
| | | | | |
Collapse
|
35
|
Patel U, Suresh S. Dechlorination of chlorophenols by magnesium–silver bimetallic system. J Colloid Interface Sci 2006; 299:249-59. [PMID: 16571354 DOI: 10.1016/j.jcis.2006.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 11/23/2022]
Abstract
More than 85% of 10 mg L(-1) of pentachlorophenol (PCP) was removed by magnesium/silver (206/1.47 mM) bimetal system in the presence of acetic acid. Dechlorination was found to be sequential and phenol was identified as the ultimate hydrocarbon skeleton along with some accumulation of tetra-, tri-, and dichlorophenols. The dechlorination reaction was found to follow second-order kinetics. Lower PCP removal efficiency (35%) was observed when the reaction was carried out in the absence of acid using Mg(0)/Ag system. When the reaction was conducted using Mg(0) alone in the presence of acid, substantial sorption of PCP occurred with very low efficiency of PCP dechlorination. Dechlorination studies on 10 mg L(-1) initial concentrations of 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and 2,4,5-trichlorophenol (2,4,5-TCP), under identical conditions as to PCP, revealed that dechlorination efficiency and reaction rate constants decrease with decreasing number of chlorine atoms on the target compound. A correlation (R(2)>0.9) between the dechlorination rate constants and E(LUMO) for chlorophenols was obtained.
Collapse
Affiliation(s)
- Upendra Patel
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | | |
Collapse
|
36
|
Shen DS, Liu XW, He YH. Studies on adsorption, desorption and biodegradation of pentachlorophenol by the anaerobic granular sludge in an upflow anaerobic sludge blanket (UASB) reactor. JOURNAL OF HAZARDOUS MATERIALS 2005; 125:231-6. [PMID: 15996816 DOI: 10.1016/j.jhazmat.2005.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/22/2005] [Accepted: 05/24/2005] [Indexed: 05/03/2023]
Abstract
PCP-degrading anaerobic granular sludge could be formed in an upflow anaerobic sludge blanket (UASB) reactor that was seeded with anaerobic sludge acclimated to chlorophenol. When hydraulic retention time (HRT) was 20-22 h and PCP loading rate was 200-220 mgL(-1)d(-1), the wastewater containing 170-180 mgL(-1) PCP could be treated effectively in UASB reactor, and PCP removal rate reached up to 99.5%. PCP adsorption and desorption by anaerobic granular sludge follow Freundlich isothermal equation and part of adsorption capacity was not reversible. And the isothermal equation could well describe the variation law of PCP adsorption and desorption by anaerobic granular sludge. The results indicated that the principal removal mechanism of PCP was biodegradation by anaerobic granular sludge, but not adsorption or volatilization.
Collapse
Affiliation(s)
- Dong-Sheng Shen
- Department of Environmental engineering, Zhejiang University, 268 Kaixuan Road, HangZhou 310029, PR China.
| | | | | |
Collapse
|
37
|
Mahmood S, Paton GI, Prosser JI. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 2005; 7:1349-60. [PMID: 16104858 DOI: 10.1111/j.1462-2920.2005.00822.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central aim of this study was to determine which components of an indigenous bacterial community in pristine grassland soil were capable of degrading pentachlorophenol (PCP) using two cultivation-independent, in situ, molecular techniques. The first involved polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) amplification of 16S rRNA genes from DNA and RNA, respectively, extracted from PCP-amended soil. The second involved stable isotope probing (SIP), with incubation of soil with 13C-PCP and molecular analysis of 13C-labelled RNA, derived from cells incorporating PCP or its breakdown products, after separation from 12C-RNA by ultracentrifugation. Bacterial communities were characterized by denaturing gradient gel electrophoresis (DGGE) analysis of amplification products. PCP was degraded at an approximate rate of 1.18+/-0.25 (SEM) mg kg-1 day-1 and 39% of the measurable PCP fraction was degraded after incubation for 63 days. PCP degradation was associated with significant changes in bacterial community structure, leading to the appearance of seven bands in both DNA- and RNA-based DGGE profiles, the latter providing clearer evidence of qualitative shifts in community structure. The majority of novel bands increased in relative intensity during the first 35 days and subsequently decreased in relative intensity as incubation continued. Sequence and phylogenetic analysis of six of these bands indicated most to have closest database relatives that were uncultured bacteria with sequence homologies to reported hydrocarbon degraders. No band could be detected in RNA-SIP-DGGE profiles derived from 13C-RNA fractions at day 0 but several faint bands appeared in these fractions after incubation of soil for 4 days, indicating assimilation of PCP or its degradation products. These bands increased in intensity during subsequent incubation for 21 days and decreased with further incubation. With one exception, RNA-SIP-DGGE and RNA-DGGE profiles were similar, indicating that RNA-targeted DGGE, in this case, provided a good indication of the metabolically active microbial community.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
38
|
Chen KF, Huang WY, Yeh TY, Kao CM, Hou F. Biodegradability of 2,4-Dichlorophenol under Different Redox Conditions. ACTA ACUST UNITED AC 2005. [DOI: 10.1061/(asce)1090-025x(2005)9:3(141)] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|