1
|
Lin X, Zheng X, Liu R, Wen Y, Huang M, Gou R, Yan Y, Shi Y, Tang J. Extracellular Polymeric Substances Production by ZL-02 For Microbial Enhanced Oil Recovery. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaosha Lin
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Xuecheng Zheng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Liu
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yiping Wen
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Mengdie Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Rui Gou
- Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, People’s Republic of China
| | - Yuru Yan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Yaoming Shi
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| | - Jia Tang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
2
|
Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 2020; 17:247-260. [PMID: 30760902 DOI: 10.1038/s41579-019-0158-9] [Citation(s) in RCA: 734] [Impact Index Per Article: 183.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biofilms are a form of collective life with emergent properties that confer many advantages on their inhabitants, and they represent a much higher level of organization than single cells do. However, to date, no global analysis on biofilm abundance exists. We offer a critical discussion of the definition of biofilms and compile current estimates of global cell numbers in major microbial habitats, mindful of the associated uncertainty. Most bacteria and archaea on Earth (1.2 × 1030 cells) exist in the 'big five' habitats: deep oceanic subsurface (4 × 1029), upper oceanic sediment (5 × 1028), deep continental subsurface (3 × 1029), soil (3 × 1029) and oceans (1 × 1029). The remaining habitats, including groundwater, the atmosphere, the ocean surface microlayer, humans, animals and the phyllosphere, account for fewer cells by orders of magnitude. Biofilms dominate in all habitats on the surface of the Earth, except in the oceans, accounting for ~80% of bacterial and archaeal cells. In the deep subsurface, however, they cannot always be distinguished from single sessile cells; we estimate that 20-80% of cells in the subsurface exist as biofilms. Hence, overall, 40-80% of cells on Earth reside in biofilms. We conclude that biofilms drive all biogeochemical processes and represent the main way of active bacterial and archaeal life.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
3
|
Mei L, Zhu S, Yin W, Chen C, Nie G, Gu Z, Zhao Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics 2020; 10:757-781. [PMID: 31903149 PMCID: PMC6929992 DOI: 10.7150/thno.39701] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/21/2019] [Indexed: 12/12/2022] Open
Abstract
The marked augment of drug-resistance to traditional antibiotics underlines the crying need for novel replaceable antibacterials. Research advances have revealed the considerable sterilization potential of two-dimension graphene-based nanomaterials. Subsequently, two-dimensional nanomaterials beyond graphene (2D NBG) as novel antibacterials have also demonstrated their power for disinfection due to their unique physicochemical properties and good biocompatibility. Therefore, the exploration of antibacterial mechanisms of 2D NBG is vital to manipulate antibacterials for future applications. Herein, we summarize the recent research progress of 2D NBG-based antibacterial agents, starting with a detailed introduction of the relevant antibacterial mechanisms, including direct contact destruction, oxidative stress, photo-induced antibacterial, control drug/metallic ions releasing, and the multi-mode synergistic antibacterial. Then, the effect of the physicochemical properties of 2D NBG on their antibacterial activities is also discussed. Additionally, a summary of the different kinds of 2D NBG is given, such as transition-metal dichalcogenides/oxides, metal-based compounds, nitride-based nanomaterials, black phosphorus, transition metal carbides, and nitrides. Finally, we rationally analyze the current challenges and new perspectives for future study of more effective antibacterial agents. This review not only can help researchers grasp the current status of 2D NBG antibacterials, but also may catalyze breakthroughs in this fast-growing field.
Collapse
Affiliation(s)
- Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang X, Liu B, Pan X, Gadd GM. Transport and retention of biogenic selenium nanoparticles in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1116-1124. [PMID: 31539943 DOI: 10.1016/j.scitotenv.2019.07.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms are structured cell communities embedded in a matrix of extracellular polymeric substances (EPS) and a ubiquitous growth form of bacteria in the environment. A wide range of interactions between biofilms and nanoparticles have been reported. In the present study, the influence of a mixed bacterial biofilm on retention of biogenic selenium nanoparticles (BioSeNPs) and consequences for immobilization of elemental mercury (Hg0) in a porous quartz sand system were examined. BioSeNPs were significantly retained in the presence of a biofilm through electrical double layer effects, hydrogen bonding, and hydrophobic, steric and bridging interactions. Moreover, enhanced surface roughness, pore clogging, sieving and entrapment effects mediated by the biofilm also contributed to deposition of BioSeNPs. Whereas, thiol groups associated with the biofilm is a little helpful for the capture of Hg0. It is proposed that oxidative complexation between Hg0 and thiol compounds or S containing organic matter in the biofilm may result in the formation of Hg2+-thiolate complexes and HgS during the binding of Hg0 with BioSeNPs. The formation of mercury selenide was also involved in Hg0 immobilization in the porous quartz sand system.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bingshen Liu
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
5
|
Larue AE, Swider P, Duru P, Daviaud D, Quintard M, Davit Y. Quantitative 3D comparison of biofilm imaged by X-ray micro-tomography and two-photon laser scanning microscopy. J Microsc 2018; 271:302-314. [PMID: 29926921 DOI: 10.1111/jmi.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/09/2018] [Indexed: 12/18/2022]
Abstract
Optical imaging techniques for biofilm observation, like laser scanning microscopy, are not applicable when investigating biofilm formation in opaque porous media. X-ray micro-tomography (X-ray CMT) might be an alternative but it finds limitations in similarity of X-ray absorption coefficients for the biofilm and aqueous phases. To overcome this difficulty, barium sulphate was used in Davit et al. (2011) to enable high-resolution 3D imaging of biofilm via X-ray CMT. However, this approach lacks comparison with well-established imaging methods, which are known to capture the fine structures of biofilms, as well as uncertainty quantification. Here, we compare two-photon laser scanning microscopy (TPLSM) images of Pseudomonas Aeruginosa biofilm grown in glass capillaries against X-ray CMT using an improved protocol where barium sulphate is combined with low-gelling temperature agarose to avoid sedimentation. Calibrated phantoms consisting of mono-dispersed fluorescent and X-ray absorbent beads were used to evaluate the uncertainty associated with our protocol along with three different segmentation techniques, namely hysteresis, watershed and region growing, to determine the bias relative to image binarization. Metrics such as volume, 3D surface area and thickness were measured and comparison of both imaging modalities shows that X-ray CMT of biofilm using our protocol yields an accuracy that is comparable and even better in certain respects than TPLSM, even in a nonporous system that is largely favourable to TPLSM.
Collapse
Affiliation(s)
- A E Larue
- Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - P Swider
- Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - P Duru
- Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - D Daviaud
- Centre de Physiopathologie de Toulouse Purpan (CPTP) - Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - M Quintard
- Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Y Davit
- Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
6
|
Sheikhi A, Hill RJ. Hydrogel-colloid interfacial interactions: a study of tailored adhesion using optical tweezers. SOFT MATTER 2016; 12:6575-6587. [PMID: 27425660 DOI: 10.1039/c6sm00903d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dynamics of colloidal particles adhering to soft, deformable substrates, such as tissues, biofilms, and hydrogels play a key role in many biological and biomimetic processes. These processes, including, but not limited to colloid-based delivery, stitching, and sorting, involve microspheres exploring the vicinity of soft, sticky materials in which the colloidal dynamics are affected by the fluid environment (e.g., viscous coupling), inter-molecular interactions between the colloids and substrates (e.g., Derjaguin-Landau-Verwey-Overbeek (DLVO) theory), and the viscoelastic properties of contact region. To better understand colloidal dynamics at soft interfaces, an optical tweezers back-focal-plane interferometry apparatus was developed to register the transverse Brownian motion of a silica microsphere in the vicinity of polyacrylamide (PA) hydrogel films. The time-dependent mean-squared displacements are well described by a single exponential relaxation, furnishing measures of the transverse interfacial diffusion coefficient and binding stiffness. Substrates with different elasticities were prepared by changing the PA crosslinking density, and the inter-molecular interactions were adjusted by coating the microspheres with fluid membranes. Stiffer PA hydrogels (with bulk Young's moduli ≈1-10 kPa) immobilize the microspheres more firmly (lower diffusion coefficient and position variance), and coating the particles with zwitterionic lipid bilayers (DOPC) completely eliminates adhesion, possibly by repulsive dispersion forces. Remarkably, embedding polyethylene glycol-grafted lipid bilayers (DSPE-PEG2k-Amine) in the zwitterionic fluid membranes produces stronger adhesion, possibly because of polymer-hydrogel attraction and entanglement. This study provides new insights to guide the design of nanoparticles and substrates with tunable adhesion, leading to smarter delivery, sorting, and screening of micro- and nano-systems.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada.
| | | |
Collapse
|
7
|
Mitzel MR, Sand S, Whalen JK, Tufenkji N. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. WATER RESEARCH 2016; 92:113-120. [PMID: 26845456 DOI: 10.1016/j.watres.2016.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments.
Collapse
Affiliation(s)
- Michael R Mitzel
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Stefanie Sand
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada; Department of Water Science, Universität Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada.
| |
Collapse
|
8
|
Gerbersdorf SU, Cimatoribus C, Class H, Engesser KH, Helbich S, Hollert H, Lange C, Kranert M, Metzger J, Nowak W, Seiler TB, Steger K, Steinmetz H, Wieprecht S. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. ENVIRONMENT INTERNATIONAL 2015; 79:85-105. [PMID: 25801101 DOI: 10.1016/j.envint.2015.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.
Collapse
Affiliation(s)
- Sabine U Gerbersdorf
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Carla Cimatoribus
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Holger Class
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Karl-H Engesser
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Steffen Helbich
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Claudia Lange
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Jörg Metzger
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Wolfgang Nowak
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kristin Steger
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Heidrun Steinmetz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Silke Wieprecht
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Gerbersdorf SU, Wieprecht S. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture. GEOBIOLOGY 2015; 13:68-97. [PMID: 25345370 DOI: 10.1111/gbi.12115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
In aquatic habitats, micro-organisms successfully adhere to and mediate particles, thus changing the erosive response of fine sediments to hydrodynamic forcing by secreting glue-like extracellular polymeric substances (EPS). Because sediment dynamics is vital for many ecological and economic aspects of watersheds and coastal regions, biostabilization of cohesive sediments is one of the important ecosystem services provided by biofilms. Although the research on biostabilization has gained momentum over the last 20 years, we still have limited insights principally due to the complex nature of this topic, the varying spatial, temporal, and community scales examined, oversimplified ecohydraulic experiments with little natural relevance, and the often partial views of the disciplines involved. This review highlights the current state of our knowledge on biostabilization and identifies important areas for future research on: (A) the influence of abiotic conditions on initial colonization and subsequent biofilm growth, focusing on hydrodynamics, substratum, salinity, nutrition, and light climate; (B) the response of microbes in terms of physiological activity and species diversity to environmental settings as well as biotic conditions such as competition and grazing; and (C) the effects of the former on the EPS matrix, its main constituents, their composition, functional groups/substitutes, and structures/linkages. The review focuses specifically on how the numerous mutual feedback mechanisms between abiotic and biotic conditions influence microbial stabilization capacity, and thus cohesive sediment dynamics.
Collapse
Affiliation(s)
- S U Gerbersdorf
- Department of Hydraulic Engineering and Water Resources Management, Institute for Modelling Hydraulic and Environmental Systems, University Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
10
|
Kwon KS, Kim SB, Choi NC, Kim DJ, Lee S, Lee SH, Choi JW. Deposition and transport of Pseudomonas aeruginosa in porous media: lab-scale experiments and model analysis. ENVIRONMENTAL TECHNOLOGY 2013; 34:2757-2764. [PMID: 24527639 DOI: 10.1080/09593330.2013.788070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, the deposition and transport of Pseudomonas aeruginosa on sandy porous materials have been investigated under static and dynamic flow conditions. For the static experiments, both equilibrium and kinetic batch tests were performed at a 1:3 and 3:1 soil:solution ratio. The batch data were analysed to quantify the deposition parameters under static conditions. Column tests were performed for dynamic flow experiments with KCl solution and bacteria suspended in (1) deionized water, (2) mineral salt medium (MSM) and (3) surfactant + MSM. The equilibrium distribution coefficient (K(d)) was larger at a 1:3 (2.43 mL g(-1)) than that at a 3:1 (0.28 mL g(-1)) soil:solution ratio. Kinetic batch experiments showed that the reversible deposition rate coefficient (k(att)) and the release rate coefficient (k(det)) at a soil:solution ratio of 3:1 were larger than those at a 1:3 ratio. Column experiments showed that an increase in ionic strength resulted in a decrease in peak concentration of bacteria, mass recovery and tailing of the bacterial breakthrough curve (BTC) and that the presence of surfactant enhanced the movement of bacteria through quartz sand, giving increased mass recovery and tailing. Deposition parameters under dynamic condition were determined by fitting BTCs to four different transport models, (1) kinetic reversible, (2) two-site, (3) kinetic irreversible and (4) kinetic reversible and irreversible models. Among these models, Model 4 was more suitable than the others since it includes the irreversible sorption term directly related to the mass loss of bacteria observed in the column experiment. Applicability of the parameters obtained from the batch experiments to simulate the column breakthrough data is evaluated.
Collapse
Affiliation(s)
- Kyu-Sang Kwon
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Song-Bae Kim
- Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Nag-Choul Choi
- Environmental Biocolloid Engineering Laboratory, Program in Rural System Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dong-Ju Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Soonjae Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Sang-Hyup Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul 136-701, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
11
|
Xiao Y, Wiesner MR. Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2246-2253. [PMID: 23346937 DOI: 10.1021/es304501n] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Column experiments were conducted to investigate the transport of aqueous C60 (aqu-nC60), fullerol, silver nanoparticles (NPs) coated with polyvinylpyrrolidone (Ag-PVP) and stabilized by citrate (Ag-CIT) in biofilm-laden porous media. Gram-negative Pseudomonas aeruginosa (PA) and Gram-positive Bacillus cereus (BC) biofilm-laden glass beads were selected to represent the bacterial interfaces NPs might encounter in the natural aquatic environment. The biomass distribution, extracellular polymeric substances (EPS) components, electrokinetic property, and hydrophobicity of these interfaces were characterized, and the hydrophobicity was found to correlate with the quantity of proteins in EPS. The retention of NPs on glass beads coated with bovine serum albumin (BSA) and alginate were also studied. Except for Ag-PVP, the affinity of NPs for porous medium, indicated by attachment efficiency α, increased in the presence of biofilms, BSA and alginate. For hydrophobic aqu-nC60, the larger the proteins/polysaccharides ratio, the larger the α, suggesting the hydrophobic interaction determines the attachment of aqu-nC60 to the collector surface. Uncharged PVP stabilized Ag-PVP by steric repulsion, and the attachment to glass beads was not enhanced by biofilm. The presence of divalent ion Ca(2+) significantly hydrophobized biofilm, BSA, and alginate-coated glass beads and further retarded the mobility of aqu-nC60, fullerol, and Ag-CIT; while Ag-PVP was again sterically stabilized.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Civil and Environmental Engineering, Pratt School of Engineering, Duke University , Durham, North Carolina 27708, United States
| | | |
Collapse
|
12
|
Tripathi S, Champagne D, Tufenkji N. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6942-6949. [PMID: 22148225 DOI: 10.1021/es202833k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Well-controlled laboratory column experiments were conducted to understand the influence of Pseudomonas aeruginosa (P. aeruginosa) biofilms on the transport of selected engineered nanoparticles (ENPs) in granular porous media representative of groundwater aquifers or riverbank filtration settings. To understand the importance of particle size on retention in the biofilm-coated granular (quartz sand) matrix, column experiments were carried out using nanosized (20 nm) and micrometer-sized (1 μm) sulfate-functionalized polystyrene latex particles (designated as 20 nSL and 1 mSL, respectively). Additional experiments conducted with nanosized (20 nm) carboxyl-modified latex particles (20nCL) and carboxyl-modified CdSe/ZnS quantum dots (QDs) provide information on the influence of particle surface chemistry on retention. Biofilm grown on the surface of the sand was characterized by total biomass quantification, confocal laser scanning microscopy (CLSM), and electrokinetic analysis. All four particles exhibit increased retention in the biofilm-coated packed bed: e.g., the attachment efficiency (α) of the 1 mSL particle increases from 0.40 to 1.7, whereas α for the 20 nSL particle increases from 0.04 to 0.10 in the biofilm-coated system. Particle surface chemistry can also influence the affinity of the ENPs for the biofilm coating as revealed by the greater attachment of the 20 nSL particle onto the biofilm-coated sand (α = 0.10) than its carboxylated counterpart (α = 0.04). Column experiments conducted using sand coated with growth medium (LB) or extracellular polymeric substances (EPS) extracted from P. aeruginosa biofilms further reveal that particle surface chemistry influences the interaction between the different ENPs and these coated sand surfaces. Namely, coating of sand surfaces with LB medium or bacterial EPS does not affect the transport of the sulfonated nanoparticle, but the LB coating leads to decreased retention of the carboxylated latex nanoparticle. Furthermore, our results show that EPS coatings are not necessarily good surrogates for biofilm-coated sand. Electrokinetic characterization of the clean and coated sand surfaces also reveals that the extent of particle retention is not controlled by electrical double layer interactions. Future studies should thus be aimed at improving our understanding of the fundamental mechanisms (both colloidal and noncolloidal) governing nanoparticle transport and fate in biofilm-laden granular aquatic environments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | |
Collapse
|
13
|
Ho L, Sawade E, Newcombe G. Biological treatment options for cyanobacteria metabolite removal--a review. WATER RESEARCH 2012; 46:1536-1548. [PMID: 22133838 DOI: 10.1016/j.watres.2011.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
The treatment of cyanobacterial metabolites can consume many resources for water authorities which can be problematic especially with the recent shift away from chemical- and energy-intensive processes towards carbon and climate neutrality. In recent times, there has been a renaissance in biological treatment, in particular, biological filtration processes, for cyanobacteria metabolite removal. This in part, is due to the advances in molecular microbiology which has assisted in further understanding the biodegradation processes of specific cyanobacteria metabolites. However, there is currently no concise portfolio which captures all the pertinent information for the biological treatment of a range of cyanobacterial metabolites. This review encapsulates all the relevant information to date in one document and provides insights into how biological treatment options can be implemented in treatment plants for optimum cyanobacterial metabolite removal.
Collapse
Affiliation(s)
- Lionel Ho
- Australian Water Quality Centre, South Australian Water Corporation, 250 Victoria Square, Adelaide, SA 5000, Australia.
| | | | | |
Collapse
|
14
|
Vasiliadou IA, Papoulis D, Chrysikopoulos CV, Panagiotaras D, Karakosta E, Fardis M, Papavassiliou G. Attachment of Pseudomonas putida onto differently structured kaolinite minerals: A combined ATR-FTIR and 1H NMR study. Colloids Surf B Biointerfaces 2011; 84:354-9. [DOI: 10.1016/j.colsurfb.2011.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 01/15/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
15
|
Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3367-3373. [PMID: 21434601 DOI: 10.1021/es103450g] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In order to evaluate the risk of engineered nanomaterials in the natural environment, one must determine their mobility, among other factors. Such determinations are difficult given that natural systems are heterogeneous and biofilms are ubiquitous in soils and waters. The interaction and diffusion of several model nanoparticles (dextrans, fluorescent microspheres, Ag nanoparticles) were studied in situ using confocal microscopy and fluorescence correlation spectroscopy in a biofilm composed of Pseudomonas fluorescens. For the most part, relative self-diffusion coefficients decreased exponentially with the square of the radius of the nanoparticle. The precise growth conditions of the biofilm resulted in a variable density of both exopolymers and microbes, which was also shown to be an important parameter controlling the diffusion of the nanoparticles. Finally, the charge of the nanoparticles appeared to be important; for a dense bacterial biofilm, a greater than predicted decrease in the self-diffusion coefficient was observed for the negatively charged nano Ag.
Collapse
Affiliation(s)
- Thomas-Otavio Peulen
- Department of Chemistry, University of Montreal , P.O. Box 6128, succursale Centre-ville, Montreal, Quebec, Canada, H3C 3J7
| | | |
Collapse
|
16
|
Morrow JB, Arango CP, Holbrook RD. Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm. JOURNAL OF ENVIRONMENTAL QUALITY 2010; 39:1934-1941. [PMID: 21284290 DOI: 10.2134/jeq2009.0455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Quantum dots (QDs) of two different surface chemistries (carboxyl [COOH] and polyethylene glycol [PEG] modified) were utilized to determine the impact of surface functionality on QD mobility and distribution in Pseudomonas aeruginosa PAO1 biofilms. Confocal laser scanning microscopy was utilized to evaluate QD association with biofilm components (proteins, cells, and polysaccharides). Quantum dots did not preferentially associate with cell surfaces compared but did colocalize with extracellular proteins in the biofilm matrix. Neither PEG nor COOH QDs were found to be internalized by individual bacterial cells. Neither QD functionality nor flow rate of QD application (0.3 mL min(-1) or 3.0 mL min(-1)) resulted in a marked difference in QD association with P. aeruginosa biofilms. However, center of density determinations indicated COOH QDs could more easily penetrate the biofilm matrix by diffusion than PEG QDs. Biofilms with PEG QDs associated had rougher polysaccharide layers and rougher cell distribution than biofilms with COOH QDs. This work suggests natural biofilms may serve as deposition locations in natural and engineered environmental systems, and biofilm structural parameters may change based on exposure to nanomaterials of varied physical characteristics.
Collapse
Affiliation(s)
- Jayne B Morrow
- Biochemical Science Division, National Institute of Standards and Technology, 100 Bureau Dr., MS 8312, Gaithersburg, MD 20878, USA.
| | | | | |
Collapse
|
17
|
McDowall B, Hoefel D, Newcombe G, Saint CP, Ho L. Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria. WATER RESEARCH 2009; 43:433-440. [PMID: 19010510 DOI: 10.1016/j.watres.2008.10.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 10/22/2008] [Accepted: 10/27/2008] [Indexed: 05/27/2023]
Abstract
Geosmin is a secondary metabolite that can be produced by many species of cyanobacteria and Actinomycetes. It imparts a musty/earthy taste and odour to drinking water which can result in consumer complaints and a general perception that there is a problem with the water quality. As geosmin is recalcitrant to conventional water treatment, processes are sought to ensure effective removal of this compound from potable water. Biological filtration (biofiltration) is an attractive option for geosmin removal as this compound has been shown to be biodegradable. However, effective biofiltration of geosmin can be site specific as it is highly dependent upon the types of organism present and there is often an extended acclimation period before efficient removals are achieved. We report here, a novel approach to enhance the biofiltration of geosmin by seeding sand filter columns with a bacterial consortium previously shown to be capable of effectively degrading geosmin. Geosmin removals of up to 75% were evident through sand columns which had been inoculated with the geosmin-degrading bacteria, when compared with non-inoculated sand columns where geosmin removals were as low as 25%. These low geosmin removals through the non-inoculated sand columns are consistent with previous studies and were attributed to physical/abiotic losses. The presence of an existing biofilm was shown to influence geosmin removal, as the biofilm allowed for greater attachment of the geosmin-degrading consortium (as determined by an ATP assay), and enhanced removals of geosmin. Minimal difference in geosmin removal was observed when the geosmin-degrading bacteria were inoculated into the sand columns containing either an active or inactive biofilm.
Collapse
Affiliation(s)
- Bridget McDowall
- CRC for Water Quality and Treatment, Australian Water Quality Centre, SA Water Corporation, PMB 3, Salisbury, SA 5108, Australia
| | | | | | | | | |
Collapse
|
18
|
Liu Y, Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:443-9. [PMID: 18284144 DOI: 10.1021/es071861b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study systematically investigated the impact of Pseudomonas aeruginosa biofilm on the initial adhesion, growth, and detachment of indicator bacteria Escherichia coli JM109 in porous media. Two P. aeruginosa strains, the mucoid PD0300 and wide type PA01 with different extracellular polymeric substance (EPS) composition and secretion capability, were used to grow biofilm in packed beds. Results from the column breakthrough curves and retained JM109 profiles show that the amount and composition of P. aeruginosa biofilm EPS have a profound impact on the deposition and retention of E. coli in porous media. PAO1 biofilm coating improved E. coli retention in the column, whereas PDO300 biofilm coating had only a small impact on E. coli removal. Biofilm surface hydrophobicity and polymeric interactions between the biofilm and E. coli cell surfaces were found to play important roles in controlling the distribution of E. coli along the columns. After initial attachment, E. coli bacteria were able to survive and grow at similar growth rates in columns coated with either PAO1 or PDO300 biofilms with a relatively low nutrient supply. Biofilm detachment was the major mechanism that introduced E. coli bacteria to the bulk fluid long after the contamination event when E. coli cells became an integral part of the biofilm. Findings of this study suggest that biofilm plays a significant role in controlling the initial attachment, growth, and survival of bacteria in porous media, and that the interaction between bacteria and biofilm surfaces should be considered when predicting bacterial and pathogen migration in the environment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
19
|
Liu Y, Yang CH, Li J. Adhesion and retention of a bacterial phytopathogen Erwinia chrysanthemi in biofilm-coated porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:159-165. [PMID: 18350891 DOI: 10.1021/es071698k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The goal of this study is to investigate the impact of biofilm physical and biological properties on bacterial transport and deposition in porous media. Experiments were performed in packed columns to examine the removal of Erwinia chrysanthemi (Ech3937), a phytopathogen, from the bulk fluid due to its attachmentto glass beads coated with Pseudomonas aeruginosa biofilms. Two isogenic P. aeruginosa strains, PAO1 and PD0300, with different EPS secretion capabilities and EPS compositions, were used to culture biofilms. The Ech3937 transport and distribution in packed columns were studied in both upflow and downflow cell injection modes over a range of solution ionic strengths. The results show that the presence of biofilm strongly interferes with the deposition behavior of Ech3937 in porous media. The spatial variation of deposited Ech3937 cells contradicts the log-linear pattern predicted by the classic filtration theory, indicating that the biofilm physical structure and polymeric interactions between the biofilm EPS and Ech3937 cell surface are the main mechanisms that control bacterial deposition. When the biofilm accumulation is relatively small, bacterial adhesion onto biofilm-coated porous media is mainly inhibited by steric forces. By contrast, cell deposition is enhanced by the reduced porous media porosity when biofilm is more abundant.
Collapse
Affiliation(s)
- Yang Liu
- Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
20
|
De Lisi R, Lazzara G, Milioto S, Muratore N. Adsorption of a dye on clay and sand. Use of cyclodextrins as solubility-enhancement agents. CHEMOSPHERE 2007; 69:1703-12. [PMID: 17644152 DOI: 10.1016/j.chemosphere.2007.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 05/16/2023]
Abstract
Laboratory-scale studies were aimed at elucidating the physico-chemical aspects on the removal process of crystal violet (CV) from waters and solid substrates. The laponite clay (RD) and sand were chosen for the double aim at investigating them as CV adsorbents for water treatment and as substrates which mime the soil components. Sand is very effective in removing CV from waters. The cyclodextrins (CDs) were exploited as solubility-enhancement agents to remove CV from the solid substrates. They are powerful solvent media because they extract the CV from sand forming water-soluble CV/CD inclusion complexes and do not show affinity for sand. Optimum performance was shown by the modified CDs (i.e. hydroxypropyl-beta-cyclodextrin and methyl-beta-cyclodextrin). A linear correlation between the logarithm of the equilibrium constant for the CV/CD inclusion complexes formation (K(cpx)) and the maximum amount of CV extracted from sand in the columns experiments at a flow rate of 1.5 ml min(-1) was drawn. This relationship predicts that CDs with K(cpx)<180 M(-1) are not suitable for CV removal from sand. CDs failed to displace CV from RD because they generate the formation of RD clusters where CV remains entrapped.
Collapse
Affiliation(s)
- Rosario De Lisi
- Dipartimento di Chimica Fisica F. Accascina, Università degli Studi di Palermo, Viale delle Scienze, Parco D'Orleans II, Palermo, Italy.
| | | | | | | |
Collapse
|
21
|
Leon Morales CF, Strathmann M, Flemming HC. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments. WATER RESEARCH 2007; 41:2059-68. [PMID: 17416399 DOI: 10.1016/j.watres.2007.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 01/11/2007] [Accepted: 02/20/2007] [Indexed: 05/14/2023]
Abstract
Colloid transport through porous media can be influenced by the presence of biofilms. Sterile and non-sterile sand columns were investigated using Laponite RD as model colloid and a highly mucoid strain of Pseudomonas aeruginosa as model biofilm former. Laponite RD was marked specifically by fluorescent complexes with rhodamine 6G. Breakthrough curves (BTCs) were used as parameters for determination of colloid transport characteristics. In the sterile columns, the colloid was mobile (collision efficiencies from 0.05 to 0.08) both after the presence of Na(+) and Ca(2+) ions followed by deionised water influent. In the biofilm-grown column, the same treatment did not result in colloid retention in the case of Na(+) exposure, but in altered or enhanced colloid transport. In the case of Ca(2+) ions exposure, colloid retention increased with biofilm age. After 3 weeks, almost complete retention was observed. Similar observations were made in columns packed with material from slow sand filtration units. These data reveal the complex interactions between biofilms, cations and colloid transport. Changes in the electrolyte composition of water percolating the subsurface can frequently occur and will result in different colloid transport characteristics with regard to the dominating species of ions and the relative abundance of microbial biofilms. This has to be considered when modelling colloid transport through the subsurface.
Collapse
|
22
|
Leis AP, Schlicher S, Franke H, Strathmann M. Optically transparent porous medium for nondestructive studies of microbial biofilm architecture and transport dynamics. Appl Environ Microbiol 2005; 71:4801-8. [PMID: 16085878 PMCID: PMC1183365 DOI: 10.1128/aem.71.8.4801-4808.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel and noninvasive, microscopy-based method for visualizing the structure and dynamics of microbial biofilms, individual fluorescent microbial cells, and inorganic colloids within a model porous medium. Biofilms growing in flow cells packed with granules of an amorphous fluoropolymer could be visualized as a consequence of refractive index matching between the solid fluoropolymer grains and the aqueous immersion medium. In conjunction with the capabilities of confocal microscopy for nondestructive optical sectioning, the use of amorphous fluoropolymers as a solid matrix permits observation of organisms and dynamic processes to a depth of 2 to 3 mm, whereas sediment biofilms growing in sand-filled flow cells can only be visualized in the region adjacent to the flow cell wall. This method differs fundamentally from other refractive index-matching applications in that optical transparency was achieved by matching a solid phase to water (and not vice versa), thereby permitting real-time microscopic studies of particulate-containing, low-refractive-index media such as biological and chromatographic systems.
Collapse
Affiliation(s)
- Andrew P Leis
- Max Planck Institute for Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|