1
|
Moussa M, Pozzolini M, Ferrando S, Mannai A, Tassara E, Giovine M, Said K. Insight on thermal stress response of demosponge Chondrosia reniformis (Nardo, 1847). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169648. [PMID: 38159772 DOI: 10.1016/j.scitotenv.2023.169648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Global warming has led to an increase in extreme weather and climate phenomena, including floods and heatwaves. Marine heatwaves have frightening consequences for coastal benthic communities around the world. Each species exhibits a natural range of thermal tolerance and responds to temperature variations through behavioral, physiological, biochemical, and molecular adjustments. Physiological stress leading to disease and mass mortality appears when tolerance thresholds are exceeded. Sessile species are therefore particularly affected by these phenomena. Among these sessile species, marine sponges are important members of coral reef ecosystems. To better understand the sponge thermal stress response, we tested the response of demosponge Chondrosia reniformis (Nardo, 1847) to three different temperatures (8 °C, 24 °C and 30 °C) during two exposure periods of time (4 and 14 h). Histological studies of whole parts of the sponge, biochemical analyses (Defense enzymes) and gene expression levels of some target genes were undertaken in this study. The exposure to cold temperature (8 °C) resulted in inhibition of antioxidant enzymes and less modification in the gene expression level of the heat shock proteins (HSPs). These latter were strongly upregulated after exposure to a temperature of 24 °C for 4 h. However, exposure to 30 °C at both periods of time resulted in indication of HSP, antioxidant enzymes, the gene involved in the apoptosis process (Bcl-2: B-cell lymphoma 2), the gene involved in inflammation (TNF: Tumor Necrosis Factor), as well as the aquaporin gene, involved in H2O2 permeation. Moreover, the normal organization of the whole organism was disrupted by the extension and fusion of choanocyte chambers and alteration of the pinacoderm. Interestingly, exposure to sublethal temperatures may show that this sponge has an adaptation threshold temperature. These insights into the adaptation mechanisms of sponges contribute to better management and conservation of sponges and to the prediction of ecosystem trajectories with future climate change.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Asma Mannai
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| |
Collapse
|
2
|
Sankar MS, Dash P, Lu Y, Hu X, Mercer AE, Wickramarathna S, Beshah WT, Sanders SL, Arslan Z, Dyer J, Moorhead RJ. Seasonal changes of trace elements, nutrients, dissolved organic matter, and coastal acidification over the largest oyster reef in the Western Mississippi Sound, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:175. [PMID: 36469181 DOI: 10.1007/s10661-022-10719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Seasonal changes of trace elements, nutrients, dissolved organic matter (DOM), and carbonate system parameters were evaluated over the largest deteriorating oyster reef in the Western Mississippi Sound using data collected during spring, summer, and winter of 2018, and summer of 2019. Higher concentrations of Pb (224%), Cu (211%), Zn (2400%), and Ca (240%) were observed during winter of 2018 compared to summer 2019. Phosphate and ammonia concentrations were higher (> 800%) during both summers of 2018 and 2019 than winter of 2018. Among the three distinct DOM components identified, two terrestrial humic-like components were more abundant during both spring (12% and 36%) and summer (11% and 33%) of 2018 than winter of 2018, implying a relatively lesser supply of humic-like components from terrestrial sources during winter. On the other hand, the protein-like component was more abundant during summer of 2019 compared to rest of the study period, suggesting a higher rate of autochthonous production during summer 2019. In addition, to their significant depth-wise variation, ocean acidification parameters including pH, pCO2, CO32-, and carbonate saturation states were all higher during both summers of 2018 and 2019. The measured variables such as trace elements, organic carbon, suspended particulates, and acidification parameters exhibited conservative mixing behavior against salinity. These observations have strong implications for the health of the oyster reefs, which provides ecologically important habitats and supports the economy of the Gulf Coast.
Collapse
Affiliation(s)
- M S Sankar
- Geosystems Research Institute, Mississippi State University, Mississippi State, MS, 39762, USA
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Padmanava Dash
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - YueHan Lu
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Xinping Hu
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Andrew E Mercer
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Sudeera Wickramarathna
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wondimagegn T Beshah
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Scott L Sanders
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zikri Arslan
- MS 973, Federal Center, U.S. Geological Survey, Denver, CO, 80225, USA
| | - Jamie Dyer
- Department of Geosciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Robert J Moorhead
- Geosystems Research Institute, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
3
|
Buss JJ, Wiltshire KH, Harris JO, Tanner JE, Deveney MR. Infection dynamics of Bonamia exitiosa on intertidal Ostrea angasi farms. JOURNAL OF FISH DISEASES 2020; 43:359-369. [PMID: 31918456 DOI: 10.1111/jfd.13134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Bonamia spp. cause epizootics in oysters worldwide. In southern Australia, Bonamia exitiosa Hine, Cochennac and Berthe, 2001 threatens aquaculture of Ostrea angasi Sowerby, 1871. Bonamia spp. infections can display strong seasonality, but seasonal dynamics of B. exitiosa-O. angasi are unknown. Ostrea angasi naïve to B. exitiosa infection were stocked onto farms in three growing regions, and B. exitiosa was monitored seasonally for one year. Environmental parameters we measured did not correlate with B. exitiosa prevalence or infection intensities. Extreme temperatures suggest O. angasi culture systems need development. Bonamia exitiosa prevalence increased over time. After three months, O. angasi had B. exitiosa prevalence of 0.08-0.4, and after one year, the prevalence was 0.57-0.88. At some sites, O. angasi had >0.5 B. exitiosa prevalence in >6 months, but at other sites, >9 months passed before prevalence was >0.5. Bonamia exitiosa infection intensities were low with no seasonal pattern but were affected by the interaction of site, season and oyster meat:shell ratio. Understanding infection and initiating a breeding programme for resistance would provide benefits for O. angasi industry expansion.
Collapse
Affiliation(s)
- Jessica Jamuna Buss
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Kathryn Helen Wiltshire
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - James Owen Harris
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Jason Elliot Tanner
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| | - Marty Robert Deveney
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- South Australian Research and Development Institute (SARDI), Aquatic Sciences Centre and Marine Innovation Southern Australia, West Beach, SA, Australia
| |
Collapse
|
4
|
Ghaffari H, Wang W, Li A, Zhang G, Li L. Thermotolerance Divergence Revealed by the Physiological and Molecular Responses in Two Oyster Subspecies of Crassostrea gigas in China. Front Physiol 2019; 10:1137. [PMID: 31551813 PMCID: PMC6746976 DOI: 10.3389/fphys.2019.01137] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Investigating the physiological mechanisms of closely related species that exhibit distinct geographic distributions and thermal niches is essential for understanding their thermal tolerance capacities and local adaptations in view of climate warming. The variations in upper thermal limits (LT50) under acute heat shock and cardiac activity, standard metabolic rate (SMR), anaerobic metabolite production and molecular responses (expression of molecular chaperones and glycolysis metabolism genes) under increasing temperatures in two oyster subspecies were studied. The populations of two oyster subspecies, Crassostrea gigas gigas and C. gigas angulata, exhibit different latitudinal distributions along the northern and southern coastlines of China, respectively, which experience different environmental conditions. The LT50 was significantly higher, by ∼1°C, in the southern than in the northern oysters. In both subspecies, temperature increases had powerful effects on heart rate, SMR and gene expression. The southern oysters had the highest Arrhenius breakpoint temperatures for heart rate (31.4 ± 0.17°C) and SMR (33.09°C), whereas the heart rate (28.86 ± 0.3°C) and SMR (29.22°C) of the northern oysters were lower. The same patterns were observed for the Q 10 coefficients. More thermal sensitivity was observed in the northern oysters than in their southern counterparts, as the heat-shock proteins (HSPs) in the northern oysters were expressed first and had a higher induction at a lower temperature than those of southern oysters. Furthermore, different expression patterns of energetic metabolism genes (HK, PK, and PEPCK) were observed. In the northern oysters, increasing anaerobic glycolysis genes (PEPCK) and end products (succinate) were found at 36-43°C, indicating a transition from aerobic to anaerobic metabolism and a lower aerobic scope compared with the southern oysters. These two subspecies experience different environmental conditions, and their physiological performances suggested species-specific thermal tolerance windows in which the southern oysters, with mild physiological flexibility, had a higher potential capability to withstand heat stress. Overall, our results indicate that comparing and unifying physiological and molecular mechanisms can provide a framework for understanding the likely effects of global warming on marine ectotherms in intertidal regions.
Collapse
Affiliation(s)
- Hamze Ghaffari
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Bible JM, Evans TG, Sanford E. Differences in induced thermotolerance among populations of Olympia oysters. Comp Biochem Physiol A Mol Integr Physiol 2019; 239:110563. [PMID: 31493552 DOI: 10.1016/j.cbpa.2019.110563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023]
Abstract
An organism's ability to cope with thermal stress is an important predictor of survival in a changing climate. One way in which organisms may acclimatize to thermal stress in the short-term is through induced thermotolerance, whereby exposure to a sublethal heat shock enables the organism to subsequently survive what might otherwise be a lethal event. Whether induced thermotolerance is related to basal thermotolerance is not well understood for marine organisms. Furthermore, whether populations often differ in their capacity for induced thermotolerance is also unclear. Here, we tested for differences in basal thermotolerance and induced thermotolerance among six populations of Olympia oysters (Ostrea lurida) from three California estuaries. Oysters were raised under common-garden laboratory conditions for a generation and then exposed to two treatments (control or sublethal heat shock) followed by a spectrum of temperatures that bound the upper critical temperature in order to determine LT50 (temperature at which 50% of the population dies). All populations exhibited induced thermotolerance by increasing their LT50 to a similar maximum temperature when extreme thermal stress was preceded by a sublethal heat shock. However, populations differed in their basal thermotolerance and their plasticity in thermotolerance. Populations with the highest basal thermotolerance were least able to modify upper critical temperature, while the population with the lowest basal thermotolerance exhibited the greatest plasticity in the upper critical temperature. Our results highlight that populations with high basal thermotolerance may be most vulnerable to climate warming because they lack the plasticity required to adjust their upper thermal limits.
Collapse
Affiliation(s)
- Jillian M Bible
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Tyler G Evans
- Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA
| | - Eric Sanford
- Bodega Marine Laboratory, 2099 Westshore Road, Bodega Bay, CA 94923, USA; Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
6
|
Capparelli MV, Bordon IC, Araujo G, Gusso-Choueri PK, de Souza Abessa DM, McNamara JC. Combined effects of temperature and copper on oxygen consumption and antioxidant responses in the mudflat fiddler crab Minuca rapax (Brachyura, Ocypodidae). Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:35-41. [PMID: 31085294 DOI: 10.1016/j.cbpc.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022]
Abstract
This study investigates the combined effects of waterborne copper exposure and acute temperature change on oxygen consumption and the oxidative stress biomarkers, glutathione S-transferase (GST) and glutathione peroxidase (GPx), in the gills and hepatopancreas of the fiddler crab Minuca rapax. Crabs held at 25 °C were acclimated to 0 (control), 50, 250 or 500 μg Cu L-1 for 21 days, and were then subjected to 15, 25 and 35 °C for 24 h. Aerial oxygen consumption rates of crabs in copper free media increased with increasing temperature from 15 to 35 °C, Q10 values reaching ≈3. Crabs exposed to increasing copper concentrations exhibited variable responses, Q10 values falling to ≈1.5. Copper had no effect on oxygen consumption at 25 °C. However, at 35 °C, rates decreased in a clear concentration-response manner in the copper exposed crabs, revealing impaired aerobic capability. At 15 °C, oxygen consumption rates increased with copper concentration, except for a decrease at 500 μg Cu L-1. Gill GST activity was ≈2-fold that of the hepatopancreas, while hepatopancreas GPx activity was 3-fold that of the gills. Gill GST activities were reduced by copper exposure only at 25 °C while hepatopancreas GST activities were altered by copper at all temperatures. Hepatopancreas GST and GPx activities increased in crabs exposed to copper at 35 °C, revealing oxidative stress induction. Hepatopancreas GST and GPx activities were reduced in copper exposed crabs at 15 °C, suggesting a diminished capability to mitigate the effects of copper exposure at low temperature. These findings reveal that copper exposure increases oxygen consumption at low temperatures but decreases consumption at high temperature. Hepatopancreas GPx activities decreased at low temperature and increased at high temperature. These novel findings demonstrate that the interaction between copper exposure and temperature should be considered when evaluating biomarker activities in semi-terrestrial crabs.
Collapse
Affiliation(s)
- Mariana Vellosa Capparelli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Universidad Regional Amazónica-IKIAM, Via Tena, Muyuna kilómetro 7, Ecuador.
| | - Isabella C Bordon
- Universidade Estadual Paulista, Campus de São Vicente, São Vicente 11380-972, SP, Brazil
| | - Giuliana Araujo
- Universidade Estadual Paulista, Campus de São Vicente, São Vicente 11380-972, SP, Brazil
| | | | | | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| |
Collapse
|
7
|
Michel C, Bourgeault A, Gourlay-Francé C, Palais F, Geffard A, Vincent-Hubert F. Seasonal and PAH impact on DNA strand-break levels in gills of transplanted zebra mussels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 92:18-26. [PMID: 23490194 DOI: 10.1016/j.ecoenv.2013.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
Genotoxicity endpoints are useful tools to biomonitor the physicochemical and biological quality of aquatic ecosystems. A caging study on the freshwater bivalve Dreissena polymorpha was planned to run over four seasons in the Seine River basin in order to assess whether DNA damage measured in transplanted mussels to polluted area vary according to seasonal changes. Three sites were chosen along the Seine River, one upstream from Paris and two downstream, corresponding to a chemical gradient of water contamination. The DNA strand break (comet assay) and chromosomal damage (micronucleus test) were measured in caged mussels at each site and in winter, spring and summer, along with PAH water contamination, PAH bioaccumulation, the mussel condition index (CI), the gonado-somatic index (GSI) and the filtration rate (FR). The level of DNA strand break measured in winter was low and increased in spring, concomitantly with FR and GSI. Over the same period, micronucleus (MN) frequency and PAH bioaccumulation decreased significantly in caged mussels, with both parameters positively correlated to each other. DNA strand-break levels and MN frequencies showed inter-site variations corresponding to the chemical contamination gradient. These two genotoxicity endpoints usefully complement each other in field studies. These results show that the MN test and comet assay, when applied to gill cells of caged zebra mussels, are sensitive tools for freshwater genotoxicity monitoring.
Collapse
Affiliation(s)
- Cécile Michel
- IRSTEA/CEMAGREF, Unité de Recherches Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Piola RF, Hopkins GA. Thermal treatment as a method to control transfers of invasive biofouling species via vessel sea chests. MARINE POLLUTION BULLETIN 2012; 64:1620-1630. [PMID: 22732144 DOI: 10.1016/j.marpolbul.2012.05.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
This study examined the efficacy of heated seawater for the treatment and remediation of fouled vessel sea chest habitats. In laboratory trials, three temperature regimes (37.5°C for 60 min, 40°C for 30min and 42.5°C for 20 min) were tested on a range of temperate taxa commonly found in sea chests. Field validation trials further assessed the efficacy of heat treatment within a replica sea chest environment. During laboratory trials, 100% mortality was achieved across all three treatments for the majority of taxa; the exceptions being the barnacle Elminius modestus and the oyster Crassostrea gigas. Temperature tolerance limits observed in the laboratory were successfully replicated under simulated sea chest conditions; however, a failure to achieve even heat distribution was an obstacle to achieving uniform mortality. This study provides guidance on the temperature/exposure parameters required for vessels plying temperate latitudes, and demonstrates that heated seawater has potential for controlling biofouling in vessel sea chests.
Collapse
Affiliation(s)
- Richard F Piola
- Cawthron Institute, 98 Halifax Street East, Nelson 7042, New Zealand.
| | | |
Collapse
|
9
|
Wither A, Bamber R, Colclough S, Dyer K, Elliott M, Holmes P, Jenner H, Taylor C, Turnpenny A. Setting new thermal standards for transitional and coastal (TraC) waters. MARINE POLLUTION BULLETIN 2012; 64:1564-1579. [PMID: 22705072 DOI: 10.1016/j.marpolbul.2012.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
The construction of a new generation of coastal power stations in the UK and other western European countries has highlighted the absence of robust standards for thermal discharges to transitional and coastal waters. The proposed discharge volumes are greater than hitherto, yet there has been little independent critical examination of their potential impact, whilst much of the existing guidance has been adapted from freshwater practice. This review considers the available knowledge on the tolerance and behaviour of fish and other marine biota to heated effluents. Appropriate ways are suggested of grouping fish species to reflect their sensitivity to thermal effects. The plethora of existing standards are considered and their validity assessed in a framework of predicted seawater temperature rise. Those species or groups of organisms most likely to be affected are identified and finally specific recommendations for thermal standards consistent with long term sustainability are proposed.
Collapse
Affiliation(s)
- Andrew Wither
- National Oceanography Centre, 6 Brownlow Street, Liverpool L3 5DA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fitridge I, Dempster T, Guenther J, de Nys R. The impact and control of biofouling in marine aquaculture: a review. BIOFOULING 2012; 28:649-69. [PMID: 22775076 DOI: 10.1080/08927014.2012.700478] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.
Collapse
Affiliation(s)
- Isla Fitridge
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Department of Zoology, University of Melbourne, 3010 Victoria, Australia.
| | | | | | | |
Collapse
|
11
|
Carrasco MF, Barón PJ. Analysis of the potential geographic range of the Pacific oyster Crassostrea gigas (Thunberg, 1793) based on surface seawater temperature satellite data and climate charts: the coast of South America as a study case. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9668-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Jansen JM, Hummel H, Bonga SW. The respiratory capacity of marine mussels (Mytilus galloprovincialis) in relation to the high temperature threshold. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:399-402. [DOI: 10.1016/j.cbpa.2009.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/22/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
13
|
Bigot A, Doyen P, Vasseur P, Rodius F. Metallothionein coding sequence identification and seasonal mRNA expression of detoxification genes in the bivalve Corbicula fluminea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:382-387. [PMID: 18550164 DOI: 10.1016/j.ecoenv.2008.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 05/26/2023]
Abstract
The aim of this study was to identify a metallothionein (MT) coding sequence from the freshwater bivalve Corbicula fluminea and to measure the seasonal transcriptional pattern of MT in parallel with several detoxification genes: superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST) and glutathione peroxidases (GPx), in the digestive gland and the gills of this bivalve during a 1-year period. We identified a C. fluminea MT complete cDNA sequence using RT-PCR and RACE-PCR. The amino acid sequence deduced from the coding sequence encodes for a protein of 73 amino acids containing 21 cysteine residues. This protein exhibits high identities and similarities with the MT sequences of numerous bivalves. MT, SOD, CAT, pi-GST and Se-GPx expression patterns did not exhibit major seasonal variations. A slight increase of MT was observed in July. Therefore, the mRNA expression of these five genes could be used as biomarkers for monitoring studies.
Collapse
Affiliation(s)
- Aurélie Bigot
- Lab. I.E.B.E-CNRS UMR 7146, Université de Metz, Rue Delestraint, 57070 Metz, France
| | | | | | | |
Collapse
|