1
|
Yuan CY, Yan WJ, Sun FY, Tu HH, Lu JJ, Feng L, Dong WY. Management of biofilm by an innovative layer-structured membrane for membrane biofilm reactor (MBfR) to efficient methane oxidation coupled to denitrification (AME-D). WATER RESEARCH 2024; 251:121107. [PMID: 38218075 DOI: 10.1016/j.watres.2024.121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Aerobic methane oxidation coupled with denitrification (AME-D) has garnered significant attention as a promising technology for nitrogen removal from water. Effective biofilm management on the membrane surface is essential to enhance the efficiency of nitrate removal in AME-D systems. In this study, we introduce a novel and scalable layer-structured membrane (LSM) developed using a meticulously designed polyurethane sponge. The application of the LSM in advanced biofilm management for AME-D resulted in a substantial enhancement of denitrification performance. Our experimental results demonstrated remarkable improvements in nitrate-removal flux (92.8 mmol-N m-2 d-1) and methane-oxidation rate (325.6 mmol m-2 d-1) when using an LSM in a membrane biofilm reactor (L-MBfR) compared with a conventional membrane reactor (C-MBfR). The l-MBfR exhibited 12.4-, 6.8- and 3.4-fold increases in nitrate-removal rate, biomass-retention capacity, and methane-oxidation rate, respectively, relative to the control C-MBfR. Notably, the l-MBfR demonstrated a 3.5-fold higher abundance of denitrifying bacteria, including Xanthomonadaceae, Rhodocyclaceae, and Methylophilaceae. In addition, the denitrification-related enzyme activity was twice as high in the l-MBfR than in the C-MBfR. These findings underscore the LSM's ability to create anoxic/anaerobic microenvironments conducive to biofilm formation and denitrification. Furthermore, the LSM exhibited a unique advantage in shaping microbial community structures and facilitating cross-feeding interactions between denitrifying bacteria and aerobic methanotrophs. The results of this study hold great promise for advancing the application of MBfRs in achieving efficient and reliable nitrate removal through the AME-D pathway, facilitated by effective biofilm management.
Collapse
Affiliation(s)
- Chun-Yan Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wei-Jia Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Fei-Yun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China.
| | - Hong-Hua Tu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Jian-Jiang Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Liang Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wen-Yi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| |
Collapse
|
2
|
Mortensen AT, Goonesekera EM, Dechesne A, Elad T, Tang K, Andersen HR, Smets BF, Valverde-Pérez B. Methanotrophic oxidation of organic micropollutants and nitrogen upcycling in a hybrid membrane biofilm reactor (hMBfR) for simultaneous O 2 and CH 4 supply. WATER RESEARCH 2023; 242:120104. [PMID: 37348423 DOI: 10.1016/j.watres.2023.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Pharmaceuticals and other organic micropollutants (OMPs) present in wastewater effluents are of growing concern, as they threaten environmental and human health. Conventional biological treatments lead to limited removal of OMPs. Methanotrophic bacteria can degrade a variety of OMPs. By employing a novel bubble-free hybrid membrane biofilm bioreactor (hMBfR), we grew methanotrophic bacteria at three CH4 loading rates. Biomass productivity and CH4 loading showed a linear correlation, with a maximum productivity of 372 mg-VSS·L-1·d-1, with corresponding biomass concentration of 1117.6 ± 56.4 mg-VSS·L-1. Furthermore, the biodegradation of sulfamethoxazole and 1H-benzotriazole positively correlated with CH4 oxidation rates, with highest biodegradation kinetic constants of 3.58 L·g-1·d-1 and 5.42 L·g-1·d-1, respectively. Additionally, the hMBfR recovered nutrients as microbial proteins, with an average content 39% DW. The biofilm community was dominated by Methylomonas, while the bulk was dominated by aerobic heterotrophic bacteria. The hMBfR removed OMPs, allowing for safer water reuse while valorising CH4 and nutrients.
Collapse
Affiliation(s)
- Anders T Mortensen
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Estelle M Goonesekera
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Tal Elad
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Kai Tang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Henrik R Andersen
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Building 115, Bygningstorvet, Lyngby 2800, Denmark.
| |
Collapse
|
3
|
Wu M, Lai CY, Wang Y, Yuan Z, Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions. WATER RESEARCH 2023; 235:119887. [PMID: 36947926 DOI: 10.1016/j.watres.2023.119887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrate contamination has been commonly detected in water environments and poses serious hazards to human health. Previously methane was proposed as a promising electron donor to remove nitrate from contaminated water. Compared with pure methane, natural gas, which not only contains methane but also other short chain gaseous alkanes (SCGAs), is less expensive and more widely available, representing a more attractive electron source for removing oxidized contaminants. However, it remains unknown if these SCGAs can be utilized as electron donors for nitrate reduction. Here, two lab-scale membrane biofilm reactors (MBfRs) separately supplied with propane and butane were operated under oxygen-limiting conditions to test its feasibility of microbial nitrate reduction. Long-term performance suggested nitrate could be continuously removed at a rate of ∼40-50 mg N/L/d using propane/butane as electron donors. In the absence of propane/butane, nitrate removal rates significantly decreased both in the long-term operation (∼2-10 and ∼4-9 mg N/L/d for propane- and butane-based MBfRs, respectively) and batch tests, indicating nitrate bio-reduction was driven by propane/butane. The consumption rates of nitrate and propane/butane dramatically decreased under anaerobic conditions, but recovered after resupplying limited oxygen, suggesting oxygen was an essential triggering factor for propane/butane-based nitrate reduction. High-throughput sequencing targeting 16S rRNA, bmoX and narG genes indicated Mycobacterium/Rhodococcus/Thauera were the potential microorganisms oxidizing propane/butane, while various denitrifiers (e.g. Dechloromonas, Denitratisoma, Zoogloea, Acidovorax, Variovorax, Pseudogulbenkiania and Rhodanobacter) might perform nitrate reduction in the biofilms. Our findings provide evidence to link SCGA oxidation with nitrate reduction under oxygen-limiting conditions and may ultimately facilitate the design of cost-effective techniques for ex-situ groundwater remediation using natural gas.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Yulu Wang
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Vanzin GF, Wrighton KC, Sedlak DL, Sharp JO. Methane-Oxidizing Activity Enhances Sulfamethoxazole Biotransformation in a Benthic Constructed Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7240-7253. [PMID: 37099683 DOI: 10.1021/acs.est.2c09314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Complete genome sequence of the denitrifying Pseudomonas sp. strain DNDY-54 isolated from deep-sea sediment of ninety east ridge. Mar Genomics 2022; 66:100995. [DOI: 10.1016/j.margen.2022.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
6
|
Singh AK, Nakhate SP, Gupta RK, Chavan AR, Poddar BJ, Prakash O, Shouche YS, Purohit HJ, Khardenavis AA. Mining the landfill soil metagenome for denitrifying methanotrophic taxa and validation of methane oxidation in microcosm. ENVIRONMENTAL RESEARCH 2022; 215:114199. [PMID: 36058281 DOI: 10.1016/j.envres.2022.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/21/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
In the present study, the microbial community residing at different depths of the landfill was characterized to assess their roles in serving as a methane sink. Physico-chemical characterization revealed the characteristic signatures of anaerobic degradation of organic matter in the bottom soil (50-60 cm) and, active process of aerobic denitrification in the top soil (0-10 cm). This was also reflected from the higher abundance of bacterial domain in the top soil metagenome represented by dominant phyla Proteobacteria and Actinobacteria which are prime decomposers of organic matter in landfill soils. The multiple fold higher relative abundances of the two most abundant genera; Streptomyces and Intrasporangium in the top soil depicted greater denitrifying taxa in top soil than the bottom soil. Amongst the aerobic methanotrophs, the genera Methylomonas, Methylococcus, Methylocella, and Methylacidiphilum were abundantly found in the top soil metagenome that were essential for oxidizing methane generated in the landfill. On the other hand, the dominance of archaeal domain represented by Methanosarcina and Methanoculleus in the bottom soil highlighted the complete anaerobic digestion of organic components via acetoclasty, carboxydotrophy, hydrogenotrophy, methylotrophy. Functional characterization revealed a higher abundance of methane monooxygenase gene in the top soil and methyl coenzyme M reductase gene in the bottom soil that correlated with the higher relative abundance of aerobic methanotrophs in the top soil while methane generation being the active process in the highly anaerobic bottom soil in the landfill. The activity dependent abundance of endogenous microbial communities in the different zones of the landfill was further validated by microcosm studies in serum bottles which established the ability of the methanotrophic community for methane metabolism in the top soil and their potential to serve as sink for methane. The study provides a better understanding about the methanotrophs in correlation with their endogenous environment, so that these bacteria can be used in resolving the environmental issues related to methane and nitrogen management at landfill site.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Sciences, Pune, Maharashtra, 411007, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Lu JJ, Zhang H, Li W, Yi JB, Sun FY, Zhao YW, Feng L, Li Z, Dong WY. Biofilm stratification in counter-diffused membrane biofilm bioreactors (MBfRs) for aerobic methane oxidation coupled to aerobic/anoxic denitrification: Effect of oxygen pressure. WATER RESEARCH 2022; 226:119243. [PMID: 36270147 DOI: 10.1016/j.watres.2022.119243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Aerobic methane oxidation coupled with denitrification (AME-D) executed in membrane biofilm bioreactors (MBfRs) provides a high promise for simultaneously mitigating methane (CH4) emissions and removing nitrate in wastewater. However, systematically experimental investigation on how oxygen partial pressure affects the development and characteristics of counter-diffusional biofilm, as well as its spatial stratification profiles, and the cooperative interaction of the biofilm microbes, is still absent. In this study, we combined Optical Coherence Tomography (OCT) with Confocal Laser Scanning Microscopy (CLSM) to in-situ characterize the development of counter-diffusion biofilm in the MBfR for the first time. It was revealed that oxygen partial pressure onto the MBfR was capable of manipulating biofilm thickness and spatial stratification, and then managing the distribution of functional microbes. With the optimized oxygen partial pressure of 5.5 psig (25% oxygen content), the manipulated counter-diffusional biofilm in the AME-D process obtained the highest denitrification efficiency, due mainly to that this biofilm had the proper dynamic balance between the aerobic-layer and anoxic-layer where suitable O2 gradient and sufficient aerobic methanotrophs were achieved in aerobic-layer to favor methane oxidation, and complete O2 depletion and accessible organic sources were kept to avoid constraining denitrification activity in anoxic-layer. By using metagenome analysis and Fluorescence in situ hybridization (FISH) staining, the spatial distribution of the functional microbes within counter-diffused biofilm was successfully evidenced, and Rhodocyclaceae, one typical aerobic denitrifier, was found to survive and gradually enriched in the aerobic layer and played a key role in denitrification aerobically. This in-situ biofilm visualization and characterization evidenced directly for the first time the cooperative path of denitrification for AME-D in the counter-diffused biofilm, which involved aerobic methanotrophs, heterotrophic aerobic denitrifiers, and heterotrophic anoxic denitrifiers.
Collapse
Affiliation(s)
- Jian-Jiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Yi
- Instrumental Analysis Center of Shenzhen University, Shenzhen University (Xili Campus), Shenzhen 518060, China
| | - Fei-Yun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yi-Wei Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Liang Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
8
|
Shi LD, Zhou YJ, Tang XJ, Kappler A, Chistoserdova L, Zhu LZ, Zhao HP. Coupled Aerobic Methane Oxidation and Arsenate Reduction Contributes to Soil-Arsenic Mobilization in Agricultural Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11845-11856. [PMID: 35920083 DOI: 10.1021/acs.est.2c01878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial oxidation of organic compounds can promote arsenic release by reducing soil-associated arsenate to the more mobile form arsenite. While anaerobic oxidation of methane has been demonstrated to reduce arsenate, it remains elusive whether and to what extent aerobic methane oxidation (aeMO) can contribute to reductive arsenic mobilization. To fill this knowledge gap, we performed incubations of both microbial laboratory cultures and soil samples from arsenic-contaminated agricultural fields in China. Incubations with laboratory cultures showed that aeMO could couple to arsenate reduction, wherein the former bioprocess was carried out by aerobic methanotrophs and the latter by a non-methanotrophic bacterium belonging to a novel and uncultivated representative of Burkholderiaceae. Metagenomic analyses combined with metabolite measurements suggested that formate served as the interspecies electron carrier linking aeMO to arsenate reduction. Such coupled bioprocesses also take place in the real world, supported by a similar stoichiometry and gene activity in the incubations with natural paddy soils, and contribute up to 76.2% of soil-arsenic mobilization into pore waters in the top layer of the soils where oxygen was present. Overall, this study reveals a previously overlooked yet significant contribution of aeMO to reductive arsenic mobilization.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Jie Zhou
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian-Jin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen 72074, Germany
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-0005, United States
| | - Li-Zhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li Y, Liu Y, Luo J, Li YY, Liu J. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications. BIORESOURCE TECHNOLOGY 2021; 341:125905. [PMID: 34523566 DOI: 10.1016/j.biortech.2021.125905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Partial nitrification-anammox process is promising in leachate treatment, but the 11% residue nitrate limits the total nitrogen removal efficiency. Denitrification or partial denitrification and anammox are both practical polishing processes of anammox effluent, requiring extra electron donors. Fortunately, there are organic matter, sulfide and methane in leachate or produced by leachate treatment, which can serve as onsite electron donors. In this review, the mechanisms and processes using these three kinds of electron donors for residue nitrate reduction in anammox effluent of leachate are systematically summarized and discussed. It can be concluded that, biodegradable organic matter is an effective electron donor, sulfide is a promising electron donor, methane is a potential electron donor. Two possible applications in future based on anammox treatment of fresh and mature leachate using sulfide and methane as onsite electron donors are proposed. Through sulfide reutilization, energy-saving with about 14% of aeration reduction can be achieved.
Collapse
Affiliation(s)
- Yanyan Li
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Jinghuan Luo
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
10
|
Lee HS, Liao B. Anaerobic membrane bioreactors for wastewater treatment: Challenges and opportunities. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:993-1004. [PMID: 33151594 DOI: 10.1002/wer.1475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/03/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) have become a new mature technology and entered into the wastewater market, but there are several challenges to be addressed for wide applications. In this review, we discuss challenges and potentials of AnMBRs focusing on wastewater treatment. Nitrogen and dissolved methane control, membrane fouling and its control, and membrane associated cost including energy consumption are main bottlenecks to facilitating AnMBR application in wastewater treatment. Accumulation of dissolved methane in AnMBR permeate decreases the benefit of methane energy and contributes to methane gas emissions to atmosphere. Separate control units for nitrogen and dissolved methane add system complexity and increase capital and operating and maintenance (O & M) costs in AnMBR-centered wastewater treatment. Alternatively, methane-based denitrification can be an ideal nitrogen control process due to simultaneous removal of nitrogen and dissolved methane. Membrane fouling and energy associated with membrane fouling control are major limitations, in addition to membrane cost. More efforts are required to decrease capital and O & M costs associated with the control of dissolved methane nitrogen and membrane fouling to facilitate AnMBRs for wastewater treatment. PRACTITIONER POINTS: AnMBRs can accelerate anaerobic wastewater treatment including dilute wastewater. Nitrogen and dissolved methane control is detrimental for AnMBR application to wastewater treatment. Membrane biofilm reactors using gas-permeable membranes are suitable for simultaneous nitrogen and dissolved methane control. High capital and O & M costs from membranes are a major bottleneck to wide application of AnMBRs. Dynamic membranes could be an option to reduce capital and O & M costs for AnMBRs.
Collapse
Affiliation(s)
- Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
11
|
Costa RB, Lens PNL, Foresti E. Methanotrophic denitrification in wastewater treatment: microbial aspects and engineering strategies. Crit Rev Biotechnol 2021; 42:145-161. [PMID: 34157918 DOI: 10.1080/07388551.2021.1931014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anaerobic technologies are consolidated for sewage treatment and are the core processes for mining marketable products from waste streams. However, anaerobic effluents are supersaturated with methane, which represents a liability regarding greenhouse gas emissions. Meanwhile, anaerobic technologies are not capable of nitrogen removal, which is required to ensure environmental protection. Methane oxidation and denitrification processes can be combined to address both issues concurrently. Aerobic methane oxidizers can release intermediate organic compounds that can be used by conventional denitrifiers as electron donors. Alternatively, anoxic methanotrophic species combine methane oxidation with either nitrate or nitrite reduction in the same metabolism. Engineered systems need to overcome the long doubling times and low NOx consumption rates of anoxic methanotrophic microorganisms. Another commonly reported bottleneck of methanotrophic denitrification relates to gas-liquid mass transfer limitations. Although anaerobic effluents are supersaturated with methane, experimental setups usually rely on methane supply in a gaseous mode. Hence, possibilities for the application of methane-oxidation coupled to denitrification in full scale might be overlooked. Moreover, syntrophic relationships among methane oxidizers, denitrifiers, nitrifiers, and other microorganisms (such as anammox) are not well understood. Integrating mixed populations with various metabolic abilities could allow for more robust methane-driven wastewater denitrification systems. This review presents an overview of the metabolic capabilities of methane oxidation and denitrification and discusses technological aspects that allow for the application of methanotrophic denitrification at larger scales.
Collapse
Affiliation(s)
- R B Costa
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil.,National University of Ireland, Galway, Ireland
| | - P N L Lens
- National University of Ireland, Galway, Ireland
| | - E Foresti
- Department of Hydraulics and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| |
Collapse
|
12
|
Lu JJ, Yan WJ, Shang WT, Sun FY, Li A, Sun JX, Li XY, Mu JL. Simultaneous enhancement of nitrate removal flux and methane utilization efficiency in MBfR for aerobic methane oxidation coupled to denitrification by using an innovative scalable double-layer membrane. WATER RESEARCH 2021; 194:116936. [PMID: 33640753 DOI: 10.1016/j.watres.2021.116936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Endevours on the enhancement of nitrate removal efficiency during methane oxidation coupled with denitrification (AME-D) has always overlooked the role of membrane employed. It would be highly beneficial to enrich the biomass content and to manage biofilm on the membrane, in the utilization of methane and denitrification. In this study, an innovative and scalable double-layer membrane (DLM) was designed and prepared for a membrane biofilm reactor (MBfR), to simultaneously enhance nitrate removal flux and methane utilization efficiency during aerobic methane oxidation coupled with the denitrification (AME-D) process. The DLM allowed quick bacterial attachment and biomass accumulation for biofilm growth, which would be then self-regulated for well distribution of functional microbes on/within the DLM. Upon a high biofilm density of over 70 g-VSS m-2 achieved on the DLM, the methane utilization efficiency of the MBfR was enhanced significantly to over 1.3 times than the control MBfR with conventional polypropylene membrane. The MBfR employed DLM also demonstrated the maximum nitrate removal flux of 740 mg-NO3--N m-2 d-1 that was approximately 1.64 times of that in control MBfR at continuous-mode operation. This DLM indeed favored the enrichment of Type II aerobic methanotrophs of Methylocystaceae, and methanol-utilization denitrifiers of Rhodocyclaceae that preferentially utilize methanol as the cross-feeding intermediates to promote the methane utilization efficiency, and thus to enhance the nitrate removal flux. These results raised from new designed DLM confirmed the importance of membrane surface properties on the effectiveness of MBfR, and offered great potential to address challenging problems of MBfRs during engineering application.
Collapse
Affiliation(s)
- Jian-Jiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Wei-Jia Yan
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Wen-Tao Shang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Fei-Yun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, People's Republic of China.
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Jin-Xu Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Xiao-Ying Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Jia-Le Mu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
13
|
Xu X, Zhu J, Thies JE, Wu W. Methanol-linked synergy between aerobic methanotrophs and denitrifiers enhanced nitrate removal efficiency in a membrane biofilm reactor under a low O 2:CH 4 ratio. WATER RESEARCH 2020; 174:115595. [PMID: 32097807 DOI: 10.1016/j.watres.2020.115595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Nitrate removal efficiency of aerobic methane oxidation coupled with denitrification (AME-D) process was elevated by enhancing the methanol-linked synergy in a membrane biofilm reactor (MBfR) under a low O2:CH4 ratio. After 140 days' enrichment, the nitrate removal rate increased significantly from 3 to 4 mg-N L-1 d-1 to 22.09 ± 1.21 mg-N L-1 d-1 and the indicator, mol CH4 consumed/mol reduced NO3--N (C/N ratio), decreased to 1.79 which was very close to the theoretical minimum value (1.27-1.39). The increased nitrate removal efficiency was largely related to the enhanced relationship between aerobic methanotrophs and methanol-utilizing denitrifiers. Type I methanotrophs and some denitrifiers, especially those potential methanol-utilizing denitrifiers from Methylobacillus, Methylotenera, Methylophilus and Methyloversatilis, were abundant in the MBfR sludge. Aerobic methanotrophs and potential methanol-utilizing denitrifiers were closely associated in many globular aggregates (5-10 μm diameter) in the MBfR sludge, which may have promoted the denitrifiers to capture methanol released by methanotrophs efficiently. If we assume methanol is the only cross-feeding intermediate in the MBfR, about 38-60% of the CH4 supplied would be converted to methanol and secreted rather than continuing to be oxidized. At least 63% of this secreted methanol should be utilized for denitrification instead of being oxidized by oxygen in the MBfR. These findings suggest that the nitrate removal efficiency of the AME-D process could be significantly improved.
Collapse
Affiliation(s)
- Xingkun Xu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China
| | - Janice E Thies
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Liu JM, Bao ZH, Cao WW, Han JJ, Zhao J, Kang ZZ, Wang LX, Zhao J. Enrichment of Type I Methanotrophs with nirS Genes of Three Emergent Macrophytes in a Eutrophic Wetland in China. Microbes Environ 2020; 35. [PMID: 31969532 PMCID: PMC7104278 DOI: 10.1264/jsme2.me19098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pmoA gene, encoding particulate methane monooxygenase in methanotrophs, and nirS and nirK genes, encoding bacterial nitrite reductases, were examined in the root and rhizosphere sediment of three common emergent macrophytes (Phragmites australis, Typha angustifolia, and Scirpus triqueter) and unvegetated sediment from eutrophic Wuliangsuhai Lake in China. Sequencing analyses indicated that 334 out of 351 cloned pmoA sequences were phylogenetically the most closely related to type I methanotrophs (Gammaproteobacteria), and Methylomonas denitrificans-like organisms accounted for 44.4% of the total community. In addition, 244 out of 250 cloned nirS gene sequences belonged to type I methanotrophs, and 31.2% of nirS genes were the most closely related to paddy rice soil clone SP-2-12 in Methylomonas of the total community. Three genera of type I methanotrophs, Methylomonas, Methylobacter, and Methylovulum, were common in both pmoA and nirS clone libraries in each sample. A quantitative PCR (qPCR) analysis demonstrated that the copy numbers of the nirS and nirK genes were significantly higher in rhizosphere sediments than in unvegetated sediments in P. australis and T. angustifolia plants. In the same sample, the nirS gene copy number was significantly higher than that of nirK. Furthermore, type I methanotrophs were localized in the root tissues according to catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Thus, nirS-carrying type I methanotrophs were enriched in macrophyte root and rhizosphere sediment and are expected to play important roles in carbon/nitrogen cycles in a eutrophic wetland.
Collapse
Affiliation(s)
- Ju-Mei Liu
- College of Life Sciences, Inner Mongolia University.,College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences
| | - Zhi-Hua Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University.,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University
| | - Wei-Wei Cao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Jing-Jing Han
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Jun Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Zhen-Zhong Kang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Li-Xin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Ji Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University.,Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Inner Mongolia University
| |
Collapse
|
15
|
Lee J, Alrashed W, Engel K, Yoo K, Neufeld JD, Lee HS. Methane-based denitrification kinetics and syntrophy in a membrane biofilm reactor at low methane pressure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133818. [PMID: 31756873 DOI: 10.1016/j.scitotenv.2019.133818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
A methane-based membrane biofilm reactor (MBfR) was assessed for a tertiary nitrogen removal process in domestic wastewater treatment. To mitigate effluent dissolved methane concentrations, the MBfR was operated with a 20% methane mixing ratio and a low pressure of 0.003 atm. The nitrate concentration was reduced from 20 to 4 mg/L with a low methane concentration of 3.3 mg/L in the effluent at 4 h hydraulic retention time (HRT). An in situ dissolved oxygen sensor showed a concentration of 0.045 mg/L in the MBfR, demonstrating methane oxidation under hypoxic conditions. Both 16S rRNA gene sequencing and metagenomic analysis identified bacteria capable of oxidation of methane coupled to denitrification (Methylocystis), whereas other bacteria were implicated in either methane oxidation (Methylococcus) or nitrate reduction (Escherichia). Reduced genetic potential for nitrate reduction to nitrite at a shorter HRT coincided with a decreased efficiency of denitrification, suggesting rate limitation by this initial step of denitrification. Genes encoding nitrite reduction to dinitrogen were at similar relative abundance under both HRT conditions. Our results provide mechanistic evidence for microbial syntrophy between aerobic methanotrophs and denitrifiers in methane-fed MBfRs operated under varying HRTs, with important implications for novel biological nitrogen removal to dilute wastewater.
Collapse
Affiliation(s)
- Jangho Lee
- Department of Civil and Environmental Engineering, University of Waterloo 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Wael Alrashed
- Department of Civil and Environmental Engineering, University of Waterloo 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Katja Engel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Keunje Yoo
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, United States.
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
16
|
Luo JH, Wu M, Liu J, Qian G, Yuan Z, Guo J. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. ENVIRONMENT INTERNATIONAL 2019; 130:104926. [PMID: 31228790 DOI: 10.1016/j.envint.2019.104926] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/02/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
It has been reported that microbial reduction of sulfate, nitrite/nitrate and iron/manganese could be coupled with anaerobic oxidation of methane (AOM), which plays a significant role in controlling methane emission from anoxic niches. However, little is known about microbial chromate (Cr(VI)) reduction coupling with AOM. In this study, a microbial consortium was enriched via switching nitrate dosing to chromate feeding as the sole electron acceptor under anaerobic condition in a membrane biofilm reactor (MBfR), in which methane was continuously provided as the electron donor through bubble-less hollow fiber membranes. According to long-term reactor operation and chromium speciation analysis, soluble chromate could be reduced into Cr(III) compounds by using methane as electron donor. Fluorescence in situ hybridization and high-throughput 16S rRNA gene amplicon profiling further indicated that after feeding chromate Candidatus 'Methanoperedens' (a known nitrate-dependent anaerobic methane oxidation archaeon) became sole anaerobic methanotroph in the biofilm, potentially responsible for the chromate bio-reduction driven by methane. Two potential pathways of the microbial AOM-coupled chromate reduction were proposed: (i) Candidatus 'Methanoperedens' independently utilizes chromate as electron acceptor to form Cr(III) compounds, or (ii) Candidatus 'Methanoperedens' oxidizes methane to generate intermediates or electrons, which will be utilized to reduce chromate to Cr(III) compounds by unknown chromate reducers synergistically. Our findings suggest a possible link between the biogeochemical chromium and methane cycles.
Collapse
Affiliation(s)
- Jing-Huan Luo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
17
|
Show PL, Pal P, Leong HY, Juan JC, Ling TC. A review on the advanced leachate treatment technologies and their performance comparison: an opportunity to keep the environment safe. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:227. [PMID: 30887225 DOI: 10.1007/s10661-019-7380-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Landfill application is the most common approach for biowaste treatment via leachate treatment system. When municipal solid waste deposited in the landfills, microbial decomposition breaks down the wastes generating the end products, such as carbon dioxide, methane, volatile organic compounds, and liquid leachate. However, due to the landfill age, the fluctuation in the characteristics of landfill leachate is foreseen in the leachate treatment plant. The focuses of the researchers are keeping leachate from contaminating groundwater besides keeping potent methane emissions from reaching the atmosphere. To address the above issues, scientists are required to adopt green biological methods to keep the environment safe. This review focuses on the assorting of research papers on organic content and nitrogen removal from the leachate via recent effective biological technologies instead of conventional nitrification and denitrification process. The published researches on the characteristics of various Malaysian landfill sites were also discussed. The understanding of the mechanism behind the nitrification and denitrification process will help to select an optimized and effective biological treatment option in treating the leachate waste. Recently, widely studied technologies for the biological treatment process are aerobic methane oxidation coupled to denitrification (AME-D) and partial nitritation-anammox (PN/A) process, and both were discussed in this review article. This paper gives the idea of the modification of the conventional treatment technologies, such as combining the present processes to make the treatment process more effective. With the integration of biological process in the leachate treatment, the effluent discharge could be treated in shortcut and novel pathways, and it can lead to achieving "3Rs" of reduce, reuse, and recycle approach.
Collapse
Affiliation(s)
- Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
- Bioseparation Research Group, Faculty of Science and Engineering, Centre for Food and Bioproduct Processing, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Preeti Pal
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Hui Yi Leong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Modin O. A mathematical model of aerobic methane oxidation coupled to denitrification. ENVIRONMENTAL TECHNOLOGY 2018; 39:1217-1225. [PMID: 28443363 DOI: 10.1080/09593330.2017.1323961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Aerobic methanotrophic bacteria use methane as their only source of energy and carbon. They release organic compounds that can serve as electron donors for co-existing denitrifiers. This interaction between methanotrophs and denitrifiers is known to contribute to nitrogen losses in natural environments and has also been exploited by researchers for denitrification of nitrate-contaminated wastewater. The purpose of this study was to develop a mathematical model describing aerobic methane oxidation coupled to denitrification in suspended-growth reactors. The model considered the activities of three microbial groups: aerobic methanotrophs, facultative methylotrophs, and facultative heterotrophs. The model was tested against data from the scientific literature and used to explore the effects of the oxygen mass transfer coefficient, the solids retention time, and the fraction methane in the feed gas on nitrate removal. The fraction of methane in the feed gas was found to be critical for the nitrate removal rate. A value of about 15% in air was optimal. A lower methane fraction led to excess oxygen, which was detrimental for denitrification. A higher fraction led to oxygen-limitation, which restricted the growth rate of methanotrophs in the reactor.
Collapse
Affiliation(s)
- Oskar Modin
- a Division of Water Environment Technology, Department of Architecture and Civil Engineering , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
19
|
Li Y, Wang Y, Lin Z, Wang J, He Q, Zhou J. A novel methanotrophic co-metabolic system with high soluble methane monooxygenase activity to biodegrade refractory organics in pulping wastewater. BIORESOURCE TECHNOLOGY 2018; 256:358-365. [PMID: 29471231 DOI: 10.1016/j.biortech.2018.02.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Pulping wastewater still contains massive refractory organics after biotreatment, with high colority, low biodegradability, and lasting biotoxicity. To eliminate refractory organics in pulping wastewater, a methanotrophic co-metabolic system in a gas cycle Sequencing Batch Biofilm Reactor (gcSBBR) seeded by soil at a ventilation opening of coal mine was quickly built on the 92nd day. The removal rate of COD, colority and TOC was 53.28%, 50.59% and 51.60%, respectively. Analysis of 3D-EEM indicated that glycolated protein-like, melanoidin-like or lignocellulose-like, and humic acid-like decreased by 7.85%, 5.02% and 1.74%, respectively. Moreover, this system exhibited high activity of soluble methane monooxygenase (sMMO) and mmoX encoding sMMO reached up to 7.89 × 105 copies/μL. Methanotrophs, namely, Methylocaldum (8.28%), Methylococcus (6.06%) and Methylomonas (0.07%), were detected by 16S rRNA sequencing. And other bacteria were dominated by Denitratisoma, Anaerolineaceae_uncultured and Methylophilaceae_uncultured. Refractory organics was biodegraded through the synergy among microorganisms, and a postulated synergy pathway was put forward.
Collapse
Affiliation(s)
- Yancheng Li
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Jiale Wang
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir's Eco-Environments, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
20
|
Luo JH, Chen H, Yuan Z, Guo J. Methane-supported nitrate removal from groundwater in a membrane biofilm reactor. WATER RESEARCH 2018; 132:71-78. [PMID: 29306701 DOI: 10.1016/j.watres.2017.12.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/21/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
The discovery of denitrifying anaerobic methane oxidation (DAMO) has not only improved our understanding of global methane and nitrogen cycles, but also provided new technology options for removal of nitrate from nitrate-contaminated water. Previous studies have demonstrated DAMO organisms could remove nitrate and nitrite from wastewater under strictly anaerobically conditions. In the study, we investigate the feasibility of nitrate removal from groundwater, which contains dissolved oxygen in addition to nitrate. A membrane biofilm reactor (MBfR), inoculated with DAMO co-culture, was capable of treating synthetic groundwater containing highly contaminated nitrate (50 mg N/L) and oxygen (7-9 mg O2/L), with a maximum volumetric nitrate removal rate of 45 mg N/L-d. Accumulations of acetate and propionate were observed in some transient periods, indicating the possible involvement of acetate and propionate as intermediates in methane oxidation. The 16 S rRNA gene amplicon sequencing revealed that Candidatus Methylomirabilis, a known bacterial DAMO organism able to couple nitrite reduction with anaerobic oxidation of methane (AOM), was the dominant population. No archaeal DAMO organisms that are capable of coupling nitrate to AOM were observed, however, considerable amount of denitrifiers were developed in this system. Based on known metabolisms of these microorganisms and a series of batch studies, it was assumed that methane was oxidized into volatile fatty acids (VFAs) under oxygen-limiting conditions, then the generated VFAs served as carbon sources for these heterotrophic denitrifiers to remove nitrate. This study offers a potential technology for nitrate removal from groundwater by DAMO process in MBfR.
Collapse
Affiliation(s)
- Jing-Huan Luo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
21
|
Chen R, Luo YH, Chen JX, Zhang Y, Wen LL, Shi LD, Tang Y, Rittmann BE, Zheng P, Zhao HP. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9540-9548. [PMID: 26841777 DOI: 10.1007/s11356-016-6146-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm's microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 (-) to NO2 (-) or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 (-). Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 (-) or ClO4 (-) directly. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ran Chen
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Hao Luo
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia-Xian Chen
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yin Zhang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Lian Wen
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou, China
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Ling-Dong Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ, 85287-5701, USA
| | - Ping Zheng
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou, China
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University, Hangzhou, Zhejiang, China.
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Zhejiang University, Hangzhou, China.
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Zhu J, Wang Q, Yuan M, Tan GYA, Sun F, Wang C, Wu W, Lee PH. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. WATER RESEARCH 2016; 90:203-215. [PMID: 26734780 DOI: 10.1016/j.watres.2015.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qian Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mengdong Yuan
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Giin-Yu Amy Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Faqian Sun
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Cheng Wang
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
23
|
Chen X, Guo J, Shi Y, Hu S, Yuan Z, Ni BJ. Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9540-9547. [PMID: 25055054 DOI: 10.1021/es502608s] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nitrogen removal by using the synergy of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) microorganisms in a membrane biofilm reactor (MBfR) has previously been demonstrated experimentally. In this work, a mathematical model is developed to describe the simultaneous anaerobic methane and ammonium oxidation by DAMO and Anammox microorganisms in an MBfR for the first time. In this model, DAMO archaea convert nitrate, both externally fed and/or produced by Anammox, to nitrite, with methane as the electron donor. Anammox and DAMO bacteria jointly remove the nitrite fed/produced, with ammonium and methane as the electron donor, respectively. The model is successfully calibrated and validated using the long-term (over 400 days) dynamic experimental data from the MBfR, as well as two independent batch tests at different operational stages of the MBfR. The model satisfactorily describes the methane oxidation and nitrogen conversion data from the system. Modeling results show the concentration gradients of methane and nitrogen would cause stratification of the biofilm, where Anammox bacteria mainly grow in the biofilm layer close to the bulk liquid and DAMO organisms attach close to the membrane surface. The low surface methane loadings result in a low fraction of DAMO microorganisms, but the high surface methane loadings would lead to overgrowth of DAMO bacteria, which would compete with Anammox for nitrite and decrease the fraction of Anammox bacteria. The results suggest an optimal methane supply under the given condition should be applied not only to benefit the nitrogen removal but also to avoid potential methane emissions.
Collapse
Affiliation(s)
- Xueming Chen
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Wibisono Y, Cornelissen E, Kemperman A, van der Meer W, Nijmeijer K. Two-phase flow in membrane processes: A technology with a future. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.10.072] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ. Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. BIORESOURCE TECHNOLOGY 2013; 145:2-9. [PMID: 23582221 DOI: 10.1016/j.biortech.2013.03.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Aerobic methane-oxidation coupled to denitrification (AME-D) process was successfully achieved in a membrane biofilm reactor (MBfR). PVDF membrane was employed to supply the methane and oxygen for biofilm, which was coexistence of methanotrophs and denitrifier. With a feeding NO3(-)-N of 30 mg/L, up to 97% nitrate could be removed stably. The oxygen ventilation modes impacted the denitrification performance remarkably, resulting in different nitrate removal efficiencies and biofilm microorganism distribution. The biofilm sludge showed a high resistance to the DO inhibition, mainly due to the co-existing methanotroph being capable of utilizing oxygen perferentially within biofilm, and create an anoxic micro-environment. The denitrification of both nitrate and nitrite by biofilm sludge conformed to the Monod equation, and the maximum specific nitrate utilization rate (k) ranged from 1.55 to 1.78 NO3(-)-N/g VSS-d. The research findings should be significant to understand the considerable potential of MBfR as a bioprocess for denitrification.
Collapse
Affiliation(s)
- Fei-yun Sun
- ShenZhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH3. Biotechnol Lett 2013; 36:69-74. [DOI: 10.1007/s10529-013-1339-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/05/2013] [Indexed: 10/26/2022]
|
27
|
Barrett M, Jahangir MMR, Lee C, Smith CJ, Bhreathnach N, Collins G, Richards KG, O'Flaherty V. Abundance of denitrification genes under different peizometer depths in four Irish agricultural groundwater sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:6646-6657. [PMID: 23625052 DOI: 10.1007/s11356-013-1729-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
This study examined the relationship between the abundance of bacterial denitrifiers in groundwater at four sites, differing with respect to overlaying land management and peizometer depth. Groundwater was sourced from 36 multilevel piezometers, which were installed to target different groundwater zones: (1) subsoil, (2) subsoil to bedrock interface, and (3) bedrock. The gene copy concentrations (GCCs), as gene copies per liter, for bacterial 16S rRNA genes and the denitrifying functional genes, nirK, nirS, and nosZ, were determined using quantitative polymerase chain reaction assays. The results were related to gaseous nitrogen emissions and to the physicochemical properties of the four sites. Overall, nirK and nirS abundance appeared to show no significant correlation to N2O production (P = 0.9989; P = 0.3188); and no significant correlation was observed between nosZ and excess N2 concentrations (P = 0.0793). In the majority of piezometers investigated, the variation of nirK and nirS gene copy concentrations was considered significant (P < 0.0001). Dissolved organic carbon (DOC) decreased with aquifer depth and ranged from 1.0-4.0 mg l(-1), 0.9-2.4 mg l(-1), and 0.8-2.4 mg l(-1) within piezometers located in the subsoil, subsoil/bedrock interface, and bedrock depths, respectively. The availability of increasing DOC and the depth of the water table were positively correlated with increasing nir and nosZ GCCs (P = 0.0012). A significant temporal correlation was noted between nirS and piezometer depth (P < 0.001). Interestingly, the nirK, nirS, and nosZ GCCs varied between piezometer depths within specific sites, while GCCs remained relatively constant from site to site, thus indicating no direct impact of agricultural land management strategies investigated on denitrifier abundance.
Collapse
Affiliation(s)
- Maria Barrett
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway (NUI Galway), University Road, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cuba RMF, Pozzi E, Teran FJC, Foresti E. A most-probable number technique for methanotrophic bacteria determination in biological reactors using methane as an electron donor for denitrification. ENVIRONMENTAL TECHNOLOGY 2013; 34:585-590. [PMID: 23837307 DOI: 10.1080/09593330.2012.707231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The most-probable number (MPN) technique along with methane uptake determinations were used to estimate the density of methanotrophic organisms in the biological reactors used for wastewater treatment. The experimental technique was conducted using serum bottles seeded with an inoculum taken from an aerobic sequencing batch reactor that used methane as the sole carbon source. To verify the presence ofmethanotrophic organisms in the support media, biomass samples were subjected to molecular cloning and sequencing techniques. When compared with the sequences published in databanks, the nucleotide sequences obtained showed a phylogenetic similarity of 98% to Methylomonas sp. (access number AF150792) and a phylogenetic similarity of 96% to Chryseobacterium sp. (access number AB264124), which are type I methanotrophs and denitrifiers, respectively.
Collapse
Affiliation(s)
- Renata M F Cuba
- Faculdade de Ciências e Letras de Presidente Prudente, Universidade do Oeste Paulista, Presidente Prudente, Brazil
| | | | | | | |
Collapse
|
29
|
Kim TG, Yi T, Lee EH, Ryu HW, Cho KS. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl Microbiol Biotechnol 2011; 95:1051-9. [PMID: 22134640 DOI: 10.1007/s00253-011-3728-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/14/2011] [Indexed: 11/27/2022]
Abstract
A mixed methane-oxidizing biofilm was characterized, concurrently using a number of advanced techniques. Community analysis results by microarray exhibited that type II members dominated the methanotrophic community, in which Methylocystis was most abundant, followed by Methylosinus. Observation results by fluorescent in situ hybridization and confocal microscopy showed multiple biofilm colonies that were irregular, bell-shaped, with mean thickness of approximately 20 μm. Image analysis results indicated that the relative abundance of methanotrophs peaked at a depth of about 5 μm. Although the biofilm colonies differed in size, methanotrophs accounted for 4-9%. Gaussian and linear regression results between the biofilm volumes and types I (r (2) = 0.86) and II volumes (r (2) = 0.92), respectively, revealed that type I members played a role in the growth of the biofilm but only below a threshold volume, whereas type II members supported the overall growth. Geostatistical analyses results revealed concentration of types I and II methanotrophic individuals with decreasing depth, and randomness between the spatial locations and population levels. Collectively, the methane-oxidizing biofilm was a highly organized system with methanotrophs and their cohabitants.
Collapse
Affiliation(s)
- Tae Gwan Kim
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|