1
|
Li D, Li J, Zhu Y, Wu Y, Du L, Wu Y, Li J, Guo W. Responses of SNEDPR-AGS system under long-term exposure of polyethylene terephthalate microplastics for treating low C/N wastewater: Granular effect and microbial structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136299. [PMID: 39467437 DOI: 10.1016/j.jhazmat.2024.136299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024]
Abstract
The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs). The results showed that the integrity of the AGS structure was disrupted significantly as the PET-MP concentration increased, with clear AGS cracks appearing on days 180, 124, and 74 after exposure to 1, 10, and 100 mg/L of PET-MPs, respectively. Additionally, the addition of PET-MPs also inhibited denitrification and phosphorus removal due to a decrease in the relative abundance of functional genes (napAB, nirK/nirS, ppk1, ppk2, and ppx). Notably, both chemometric and high-throughput sequencing results indicated that the metabolic form of the system would shift from a polyphosphate-accumulating metabolism to a glycogen-accumulating metabolism. The reason may be that PET-MP stress inhibited the relative abundance of functional genes related to carbon, glycogen, phosphorus, and energy metabolism pathways in Candidatus Accumulibacter and Dechloromonas, but promoted their relative abundance of Candidatus Competibacter. Flow cytometry and molecular docking simulations have also demonstrated the direct toxic effects of PET-MPs on the SNEDPR-AGS system. The biological enhancement and functional recovery of damaged SNEDPR-AGS systems must be further investigated in future studies.
Collapse
Affiliation(s)
- Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yaodong Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Yanshuo Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Chen L, Deng X, Xie X, Wang K, Chen H, Cen S, Huang F, Wang C, Li Y, Wei C, Qiu G. Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system. WATER RESEARCH 2024; 267:122479. [PMID: 39369504 DOI: 10.1016/j.watres.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
A novel coccus Thiothrix-related polyphosphate-accumulating organism (PAO) was enriched in an acetate-fed enhanced biological phosphorus removal (EBPR) system. High EBPR performance was achieved for an extended period (>100 days). A high-quality draft genome (completeness 97.2 %, contamination 3.26 %) was retrieved, representing a novel Thiothrix species (with similarity<93.2 % to known Thiothrix species), and was denoted as 'Candidatus Thiothrix phosphatis SCUT-1'. Its acetate uptake rate (6.20 mmol C/g VSS/h) surpassed most Ca. Accumulibacter and known glycogen-accumulating organisms (GAOs), conferring their predominance in the acetate-fed system. Metatranscriptomic analysis suggested that Ca. Thiothrix phosphatis SCUT-1 employed both low- and high-affinity pathways for acetate activation, and both the conventional (PhaABC) pathway and the fatty acid β-oxidation pathway for PHA synthesis; additionally, a much more efficient FAD-dependent malate: quinone oxidoreductase (MQO) were encoded and employed than the traditional malate dehydrogenase (MDH) to oxidize malate to oxaloacetate in the TCA and glyoxylate cycle, collectively contributing to a higher acetate utilization and processing rate of this microorganism. Batch tests further demonstrated the versatile ability of this PAO in using VFA (acetate, propionate, and butyrate), lactate, amino acids (aspartate and glutamate), and glucose as carbon sources for EBPR, showing a partially overlapped but unique ecological niche of this microorganism comparing to Ca. Accumulibacter and known GAOs. A metabolic model was built for Ca. Thiothrix phosphatis SCUT-1 using the above-mentioned carbon sources for EBPR. Overall, this study represents the first comprehensive characterization of the physiology and metabolic characteristics of representative coccus Thiothrix-related PAOs, which are expected to provide new insights into PAO microbiology in EBPR systems.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Kaiying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sheqi Cen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaqian Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
3
|
Lin Q, Sun S, Yang J, Hu P, Liu Z, Liu Z, Song C, Yang S, Wu F, Gao Y, Zhang W, Zhou L, Li Y. Enhanced aerobic granular sludge by thermally-treated dredged sediment in wastewater treatment under low superficial gas velocity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122210. [PMID: 39146649 DOI: 10.1016/j.jenvman.2024.122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The positive contributions of carriers to aerobic granulation have been wildly appreciated. In this study, as a way resource utilization, the dredged sediment was thermally-treated to prepared as carriers to promote aerobic granular sludge (AGS) formation and stability. The system was started under low superficial gas velocity (SGV, 0.6 cm/s)for a lower energy consumption. Two sequencing batch reactors (SBR) labeled R1 (no added carriers) and R2 (carriers added), were used in the experiment. R2 had excellent performance of granulation time (shortened nearly 43%). The maximum mean particle size at the maturity stage of AGS in R2 (0.545 mm) was larger compared to R1 (0.296 mm). The sludge settling performance in R2 was better. The reactors exhibited high chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal rates. The total phosphorus (TP) removal rate in R2 was higher than R1 (almost 15% higher) on stage II (93-175d). R2 had a higher microbial abundance and dominant bacteria content. The relative abundance of dominant species was mainly affected by the carrier. However, the enrichment of dominant microorganisms and the evolution of subdominant species were more influenced by the increase of SGV. The results indicated that the addition of carriers induced the secretion of extracellular polymeric substances (EPS) by microorganisms and accelerated the rapid formation of initial microbial aggregates. This work provided a low-cost method and condition to enhance aerobic granulation, which may be helpful in optimizing wastewater treatment processes.
Collapse
Affiliation(s)
- Qingxia Lin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Jianbin Yang
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Pei Hu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Zhengrong Liu
- Hunan Hengyong Expressway Construction and Development Co., Ltd., Hunan, 421600, China
| | - Ziqiang Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Chuxuan Song
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Suiqin Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Fangtong Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yang Gao
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yifu Li
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province / School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
4
|
Stewart RD, Myers KS, Amstadt C, Seib M, McMahon KD, Noguera DR. Refinement of the " Candidatus Accumulibacter" genus based on metagenomic analysis of biological nutrient removal (BNR) pilot-scale plants operated with reduced aeration. mSystems 2024; 9:e0118823. [PMID: 38415636 PMCID: PMC10949500 DOI: 10.1128/msystems.01188-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Members of the "Candidatus Accumulibacter" genus are widely studied as key polyphosphate-accumulating organisms (PAOs) in biological nutrient removal (BNR) facilities performing enhanced biological phosphorus removal (EBPR). This diverse lineage includes 18 "Ca. Accumulibacter" species, which have been proposed based on the phylogenetic divergence of the polyphosphate kinase 1 (ppk1) gene and genome-scale comparisons of metagenome-assembled genomes (MAGs). Phylogenetic classification based on the 16S rRNA genetic marker has been difficult to attain because most "Ca. Accumulibacter" MAGs are incomplete and often do not include the rRNA operon. Here, we investigate the "Ca. Accumulibacter" diversity in pilot-scale treatment trains performing BNR under low dissolved oxygen (DO) conditions using genome-resolved metagenomics. Using long-read sequencing, we recovered medium- and high-quality MAGs for 5 of the 18 "Ca. Accumulibacter" species, all with rRNA operons assembled, which allowed a reassessment of the 16S rRNA-based phylogeny of this genus and an analysis of phylogeny based on the 23S rRNA gene. In addition, we recovered a cluster of MAGs that based on 16S rRNA, 23S rRNA, ppk1, and genome-scale phylogenetic analyses do not belong to any of the currently recognized "Ca. Accumulibacter" species for which we propose the new species designation "Ca. Accumulibacter jenkinsii" sp. nov. Relative abundance evaluations of the genus across all pilot plant operations revealed that regardless of the operational mode, "Ca. A. necessarius" and "Ca. A. propinquus" accounted for more than 40% of the "Ca. Accumulibacter" community, whereas the newly proposed "Ca. A. jenkinsii" accounted for about 5% of the "Ca. Accumulibacter" community.IMPORTANCEOne of the main drivers of energy use and operational costs in activated sludge processes is the amount of oxygen provided to enable biological phosphorus and nitrogen removal. Wastewater treatment facilities are increasingly considering reduced aeration to decrease energy consumption, and whereas successful BNR has been demonstrated in systems with minimal aeration, an adequate understanding of the microbial communities that facilitate nutrient removal under these conditions is still lacking. In this study, we used genome-resolved metagenomics to evaluate the diversity of the "Candidatus Accumulibacter" genus in pilot-scale plants operating with minimal aeration. We identified the "Ca. Accumulibacter" species enriched under these conditions, including one novel species for which we propose "Ca. Accumulibacter jenkinsii" sp. nov. as its designation. Furthermore, the MAGs obtained for five additional "Ca. Accumulibacter" species further refine the phylogeny of the "Ca. Accumulibacter" genus and provide new insight into its diversity within unconventional biological nutrient removal systems.
Collapse
Affiliation(s)
- Rachel D. Stewart
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carly Amstadt
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matt Seib
- Madison Metropolitan Sewerage District, Madison, Wisconsin, USA
| | - Katherine D. McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Ma X, Shan J, Chai Y, Wei Z, Li C, Jin K, Zhou H, Yan X, Ji R. Microplastics enhance nitrogen loss from a black paddy soil by shifting nitrate reduction from DNRA to denitrification and Anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167869. [PMID: 37848146 DOI: 10.1016/j.scitotenv.2023.167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Microplastics (MPs) are frequently detected emerging pollutants in soil that can endanger farmland ecosystems; however, little is known about their impacts on dissimilatory nitrate reduction processes in paddy soil. Here, using the 15N-tracer and microbial molecular techniques, we investigated the effects of MPs (200-400 μm) made of polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE) on denitrification, anaerobic ammonium oxidation (Anammox), and dissimilatory nitrate reduction to ammonium (DNRA) and the associated microbial community in a black paddy soil. All MPs increased the Anammox rate by 6.6 %-745 % and decreased the DNRA rate by 15.1 %-74.2 %, while MPs of PS and PE significantly increased the denitrification rate by 79.3 %-102.3 % and 34.8 %-62.1 %, respectively. The MPs promoted the partitioning of NO3- towards denitrification and Anammox while inhibiting DNRA, as suggested by the decreased relative contributions of DNRA from 24.1 % to 5.4 %-14.2 % following MPs amendment. This was attributed to the increased denitrification gene abundance and the enriched specific denitrifier taxa, as well as the decreased DNRA gene abundance. Our findings suggest that the stimulated denitrification and Anammox by MPs, accompanied by the suppression of DNRA, may lead to substantial nitrogen loss in paddy fields, underscoring the need to further evaluate the environmental behaviors of MPs in agricultural ecosystems.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yanchao Chai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ke Jin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Han Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Chen L, Wei G, Zhang Y, Wang K, Wang C, Deng X, Li Y, Xie X, Chen J, Huang F, Chen H, Zhang B, Wei C, Qiu G. Candidatus Accumulibacter use fermentation products for enhanced biological phosphorus removal. WATER RESEARCH 2023; 246:120713. [PMID: 37839225 DOI: 10.1016/j.watres.2023.120713] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/17/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Previous research suggested that two major groups of polyphosphate-accumulating organisms (PAOs), i.e., Ca. Accumulibacter and Tetrasphaera, play cooperative roles in enhanced biological phosphorus removal (EBPR). The fermentation of complex organic compounds by Tetrasphaera provides carbon sources for Ca. Accumulibacter. However, the viability of the fermentation products (e.g., lactate, succinate, alanine) as carbon sources for Ca. Accumulibacter and their potential effects on the metabolism of Ca. Accumulibacter were largely unknown. This work for the first time investigated the capability and metabolic details of Ca. Accumulibacter cognatus clade IIC strain SCUT-2 (enriched in a lab-scale reactor with a relative abundance of 42.8%) in using these fermentation products for EBPR. The enrichment culture was able to assimilate lactate and succinate with the anaerobic P release to carbon uptake ratios of 0.28 and 0.36 P mol/C mol, respectively. In the co-presence of acetate, the uptake of lactate was strongly inhibited, since two substrates shared the same transporter as suggested by the carbon uptake bioenergetic analysis. When acetate and succinate were fed at the same time, Ca. Accumulibacter assimilated two carbon sources simultaneously. Proton motive force (PMF) was the key driving force (up to 90%) for the uptake of lactate and succinate by Ca. Accumulibacter. Apart from the efflux of proton in symport with phosphate via the inorganic phosphate transport system, translocation of proton via the activity of fumarate reductase contributed to the generation of PMF, which agreed with the fact that PHV was a major component of PHA when lactate and succinate were used as carbon sources, involving the succinate-propionate pathway. Metabolic models for the usage of lactate and succinate by Ca. Accumulibacter for EBPR were built based on the combined physiological, biochemical, metagenomic, and metatranscriptomic analyses. Alanine was shown as an invalid carbon source for Ca. Accumulibacter. Instead, it significantly and adversely affected Ca. Accumulibacter-mediated EBPR. Phosphate release was observed without alanine uptake. Significant inhibitions on the aerobic phosphate uptake was also evident. Overall, this study suggested that there might not be a simply synergic relationship between Ca. Accumulibacter and Tetrasphaera. Their interactions would largely be determined by the kind of fermentation products released by the latter.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kaiying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yaqian Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Bin Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Yan B, Jiang L, Zhou H, Okokon Atakpa E, Bo K, Li P, Xie Q, Li Y, Zhang C. Performance and microbial community analysis of combined bioreactors in treating high-salinity hydraulic fracturing flowback and produced water. BIORESOURCE TECHNOLOGY 2023; 386:129469. [PMID: 37451509 DOI: 10.1016/j.biortech.2023.129469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.
Collapse
Affiliation(s)
- Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Kuiyong Bo
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
8
|
Kang D, Yuan Z, Li G, Lee J, Han IL, Wang D, Zheng P, Reid MC, Gu AZ. Toward Integrating EBPR and the Short-Cut Nitrogen Removal Process in a One-Stage System for Treating High-Strength Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13247-13257. [PMID: 37615362 DOI: 10.1021/acs.est.3c03917] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.
Collapse
Affiliation(s)
- Da Kang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Zhihang Yuan
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - I L Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| |
Collapse
|
9
|
Nguyen P, Marques R, Wang H, Reis MA, Carvalho G, Oehmen A. The impact of pH on the anaerobic and aerobic metabolism of Tetrasphaera-enriched polyphosphate accumulating organisms. WATER RESEARCH X 2023; 19:100177. [PMID: 37008369 PMCID: PMC10063378 DOI: 10.1016/j.wroa.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/05/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Members of the genus Tetrasphaera are putative polyphosphate accumulating organisms (PAOs) that have been found in greater abundance than Accumulibacter in many full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants worldwide. Nevertheless, previous studies on the effect of environmental conditions, such as pH, on the performance of EBPR have focused mainly on the response of Accumulibacter to pH changes. This study examines the impact of pH on a Tetrasphaera PAO enriched culture, over a pH range from 6.0 to 8.0 under both anaerobic and aerobic conditions, to assess its impact on the stoichiometry and kinetics of Tetrasphaera metabolism. It was discovered that the rates of phosphorus (P) uptake and P release increased with an increase of pH within the tested range, while PHA production, glycogen consumption and substrate uptake rate were less sensitive to pH changes. The results suggest that Tetrasphaera PAOs display kinetic advantages at high pH levels, which is consistent with what has been observed previously for Accumulibacter PAOs. The results of this study show that pH has a substantial impact on the P release and uptake kinetics of PAOs, where the P release rate was >3 times higher and the P uptake rate was >2 times higher at pH 8.0 vs pH 6.0, respectively. Process operational strategies promoting both Tetrasphaera and Accumulibacter activity at high pH do not conflict with each other, but lead to a potentially synergistic impact that can benefit EBPR performance.
Collapse
Affiliation(s)
- P.Y. Nguyen
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Hongmin Wang
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Maria A.M. Reis
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Gilda Carvalho
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Department of Chemistry, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
10
|
Zhao B, Yang Y, Zhao C, Zhang C, Zhang Z, Wang L, Wang S, Wang J. Exploration of the metabolic flexibility of glycogen accumulating organisms through metatranscriptome analysis and metabolic characterization. J Environ Sci (China) 2023; 126:234-248. [PMID: 36503752 DOI: 10.1016/j.jes.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/17/2023]
Abstract
Glycogen accumulating organisms (GAOs) are closely related to the deterioration of enhanced biological phosphorus removal systems. However, the metabolic mechanisms that drive GAOs remain unclear. Here, the two-thirds supernatant of a reactor were decanted following the anaerobic period to enrich GAOs. Long-term monitoring demonstrated that the system was stable and exhibited typical characteristics of GAOs metabolism. Acetate was completely consumed after 60 min of the anaerobic phase. The level of glycogen decreased from 0.20 to 0.14 g/gSS during the anaerobic phase, whereas the level of glycogen significantly increased to 0.21g/gSS at the end of the aerobic period. Moreover, there was almost no phosphate release and absorption in the complete periods, thus confirming the successful construction of a GAOs enrichment system. Microbial community analysis demonstrated that Ca. Contendobacter was among the core functional genera and showed the highest activity among all of the communities. Furthermore, our study is the first to identify the involvement of the ethyl-malonyl-CoA pathway in the synthesis of polyhydroxyvalerate via croR, ccr, ecm, mcd, mch and mcl genes. The Embden-Meyerhof-Parnas (EMP) pathway was preferentially used via glgP. Furthermore, the glyoxylate cycle was the main source of ATP under anaerobic conditions, whereas the tricarboxylic acid cycle provided ATP under aerobic conditions. aceA and mdh appeared to be major modulators of the glyoxylate pathway for controlling energy flow. Collectively, our findings not only revealed the crucial metabolic mechanisms in a GAOs enrichment system but also provided insights into the potential application of Ca. Contendobacter for wastewater treatment.
Collapse
Affiliation(s)
- Bin Zhao
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Yanping Yang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Chunchun Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China
| | - Zhaohui Zhang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- School of Environmental Science Engineering, Tiangong University, Tianjin 300387, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| | - Jingfeng Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300201, China.
| |
Collapse
|
11
|
Páez-Watson T, van Loosdrecht MCM, Wahl SA. Predicting the impact of temperature on metabolic fluxes using resource allocation modelling: Application to polyphosphate accumulating organisms. WATER RESEARCH 2023; 228:119365. [PMID: 36413834 DOI: 10.1016/j.watres.2022.119365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The understanding of microbial communities and the biological regulation of its members is crucial for implementation of novel technologies using microbial ecology. One poorly understood metabolic principle of microbial communities is resource allocation and biosynthesis. Resource allocation theory in polyphosphate accumulating organisms (PAOs) is limited as a result of their slow imposed growth rate (typical sludge retention times of at least 4 days) and limitations to quantify changes in biomass components over a 6 hours cycle (less than 10% of their growth). As a result, there is no direct evidence supporting that biosynthesis is an exclusive aerobic process in PAOs that alternate continuously between anaerobic and aerobic phases. Here, we apply resource allocation metabolic flux analysis to study the optimal phenotype of PAOs over a temperature range of 4 °C to 20 °C. The model applied in this research allowed to identify optimal metabolic strategies in a core metabolic model with limited constraints based on biological principles. The addition of a constraint limiting biomass synthesis to be an exclusive aerobic process changed the metabolic behaviour and improved the predictability of the model over the studied temperature range by closing the gap between prediction and experimental findings. The results validate the assumption of limited anaerobic biosynthesis in PAOs, specifically "Candidatus Accumulibacter" related species. Interestingly, the predicted growth yield was lower, suggesting that there are mechanistic barriers for anaerobic growth not yet understood nor reflected in the current models of PAOs. Moreover, we identified strategies of resource allocation applied by PAOs at different temperatures as a result of the decreased catalytic efficiencies of their biochemical reactions. Understanding resource allocation is paramount in the study of PAOs and their currently unknown complex metabolic regulation, and metabolic modelling based on biological first principles provides a useful tool to develop a mechanistic understanding.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands.
| | | | - S Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
12
|
Coats ER, Appel FJ, Guho N, Brinkman CK, Mellin J. Interrogating the performance and microbial ecology of an enhanced biological phosphorus removal/post-anoxic denitrification process at bench and pilot scales. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10852. [PMID: 36987547 DOI: 10.1002/wer.10852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Research focused on interrogating post-anoxic enhanced biological phosphorus removal (EBPR) at bench and pilot scales. Average bench-scale effluent ranged from 0.33 to 1.4 mgP/L, 0.35 to 3.7 mgNH3 -N/L, and 1.1 to 3.9 mgNOx -N/L. Comparatively, the pilot achieved effluent (50th percentile/average) of 0.13/0.2 mgP/L, 9.7/8.2 mgNH3 -N/L, and 0.38/3.3 mgNOx -N/L under dynamic influent and environmental conditions. For EBPR process monitoring, P:C ratio data indicated that 0.2-0.4 molP/molC will result in stable EBPR; relatedly, a target design influent volatile fatty acid (VFA):P ratio would exceed 15 mgCOD/mgP. Post-anoxic EBPR was enriched for Nitrobacter spp. at 1.70%-20.27%, with Parcubacteria also dominating; the former is putatively associated with nitritation and the latter is a putative fermenting heterotrophic organism. Post-anoxic specific denitrification rates (SDNRs) (20°C) ranged from 0.70 to 3.10 mgN/gVSS/h; there was a strong correlation (R2 = 0.94) between the SDNR and %Parcubacteria for systems operated at a 20-day solids residence time (SRT). These results suggest that carbon substrate potentially generated by this putative fermenter may enhance post-anoxic EBPR. PRACTITIONER POINTS: Post-anoxic EBPR can achieve effluent of <0.2 mgP/L and <12 mgN/L. The P:C and VFA:P ratios can be predictive for EBPR process monitoring. Post-anoxic EBPR was enriched for Nitrobacter spp. over Nitrospira spp. and also for Parcubacteria, which is a putative fermenting heterotrophic organism. Post-anoxic specific denitrification rates (20°C) ranged from 0.70 to 3.10 mgN/gVSS/h. BLASTn analysis of 16S rDNA PAO primer set was shown to be improved to 93.8% for Ca. Accumulibacter phosphatis and 73.2%-94.0% for all potential PAOs.
Collapse
Affiliation(s)
- Erik R Coats
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA
| | - Felicity J Appel
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA
- Kimley-Horn, Seattle, Washington, USA
| | - Nick Guho
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA
- Carollo Engineers, Walnut Creek, California, USA
| | - Cynthia K Brinkman
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA
| | - Jason Mellin
- Department of Civil and Environmental Engineering, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
13
|
Cavanaugh SK, Nguyen Quoc B, Jacobson E, Bucher R, Sukapanpotharam P, Winkler MKH. Impact of nitrite and oxygen on nitrous oxide emissions from a granular sludge sequencing batch reactor. CHEMOSPHERE 2022; 308:136378. [PMID: 36113651 DOI: 10.1016/j.chemosphere.2022.136378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2-) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda® full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.
Collapse
Affiliation(s)
- Shannon K Cavanaugh
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA.
| | - Bao Nguyen Quoc
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| | - Eron Jacobson
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Robert Bucher
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Pardi Sukapanpotharam
- Resource Recovery, Wastewater Treatment Division, King County Department of Natural Resources and Parks, Seattle, WA, 98104, USA
| | - Mari-Karoliina H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA, 98195, USA
| |
Collapse
|
14
|
Maszenan AM, Bessarab I, Williams RBH, Petrovski S, Seviour RJ. The phylogeny, ecology and ecophysiology of the glycogen accumulating organism (GAO) Defluviicoccus in wastewater treatment plants. WATER RESEARCH 2022; 221:118729. [PMID: 35714465 DOI: 10.1016/j.watres.2022.118729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive review looks critically what is known about members of the genus Defluviicoccus, an example of a glycogen accumulating organism (GAO), in wastewater treatment plants, but found also in other habitats. It considers the operating conditions thought to affect its performance in activated sludge plants designed to remove phosphorus microbiologically, including the still controversial view that it competes with the polyphosphate accumulating bacterium Ca. Accumulibacter for readily biodegradable substrates in the anaerobic zone receiving the influent raw sewage. It looks at its present phylogeny and what is known about it's physiology and biochemistry under the highly selective conditions of these plants, where the biomass is recycled continuously through alternative anaerobic (feed); aerobic (famine) conditions encountered there. The impact of whole genome sequence data, which have revealed considerable intra- and interclade genotypic diversity, on our understanding of its in situ behaviour is also addressed. Particular attention is paid to the problems in much of the literature data based on clone library and next generation DNA sequencing data, where Defluviicoccus identification is restricted to genus level only. Equally problematic, in many publications no attempt has been made to distinguish between Defluviicoccus and the other known GAO, especially Ca. Competibacter, which, as shown here, has a very different ecophysiology. The impact this has had and continues to have on our understanding of members of this genus is discussed, as is the present controversy over its taxonomy. It also suggests where research should be directed to answer some of the important research questions raised in this review.
Collapse
Affiliation(s)
- Abdul M Maszenan
- E2S2, NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 117456, Singapore
| | - Steve Petrovski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia
| | - Robert J Seviour
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, 3086 Victoria, Australia.
| |
Collapse
|
15
|
Lu W, Zhang X, Zhang Y, Wang Q, Wei Y, Ma B. Synergistic simultaneous endogenous partial denitrification/anammox (EPDA) and denitrifying dephosphatation for advanced nitrogen and phosphorus removal in a complete biofilm system. BIORESOURCE TECHNOLOGY 2022; 358:127378. [PMID: 35644451 DOI: 10.1016/j.biortech.2022.127378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
To achieve simultaneous biological nitrogen and phosphorus removal from municipal wastewater, the endogenous partial denitrification/anammox (EPDA) was combined with denitrifying dephosphatation in a complete biofilm reactor. Advanced nitrogen and phosphorus removal were achieved with effluent total nitrogen (TN) and PO43--P concentrations of 7.77 ± 0.33 mg/L and 0.35 ± 0.10 mg/L, respectively. Anammox took a major role in the system, accounting for 76 ± 7% of nitrogen removal. 16S rRNA high-throughput sequencing results showed that the anammox bacteria co-existed with the denitrifying glycogen accumulating organisms (DGAOs) and the denitrifying phosphorus accumulating organisms (DPAOs). Anammox bacteria were mainly distributed in the inner layer, while DGAOs and DPAOs existed in the outer layer of EPDA biofilms. Furthermore, based on the EPDA biofilm system, a promising advanced nitrogen and phosphorus removal process was suggested to achieve lower requirements for energy and reagent consumption.
Collapse
Affiliation(s)
- Wenkang Lu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Xiangyu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yu Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Qingqing Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Chen L, Chen H, Hu Z, Tian Y, Wang C, Xie P, Deng X, Zhang Y, Tang X, Lin X, Li B, Wei C, Qiu G. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. WATER RESEARCH 2022; 216:118258. [PMID: 35320769 DOI: 10.1016/j.watres.2022.118258] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
17
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Zhang M, Wang X, Yang J, Wang D, Liang J, Zhou L. Nitrogen removal performance of high ammonium and high salt wastewater by adding carbon source from food waste fermentation with different acidogenic metabolic pathways. CHEMOSPHERE 2022; 292:133512. [PMID: 34990718 DOI: 10.1016/j.chemosphere.2022.133512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Food waste fermentation liquid components, mainly lactate and volatile fatty acids (VFAs), can be used as alternative carbon sources to improve the nitrogen removal efficiency. To investigate the effects of carbon sources generated from food waste (FW) fermentation liquid on nitrogen removal for the treatment of high ammonium and high salt wastewater (HAHS), the lactate, acetate, propionate, butyrate, and their mixtures were added in activated sludge systems operating over 130-days. Lactate and butyrate inhibited nitrifiers by enriching polyphosphate accumulating organisms (PAOs), thus deteriorated nitrogen removal after a long-term period. When fed with acetate or propionate, the dominant glycogen accumulating organisms (GAOs) groups simultaneously realized nitrification and denitrification. The mixed carbon source enhanced microbial community robustness and the transformation of Polyhydroxyalkanoate (PHA), advancing nitrogen removal efficiency. Mixed carbon source of acetate-propionate was preferred, in which the coexisting groups of GAOs and PAOs enhanced the denitrification rate of denitrifiers and kept balancing with nitrifiers, where the highest denitrification rate (DNR) was 1.05 mg N/(h·g VSS) and the average TN removal efficiency was above 98% under the maximum nitrogen load of 0.48 kg N/(kg VSS·d). In addition, the primary pathways of nitrogen removal were heterotrophic nitrification and denitrification, since the autotrophic nitrifiers were inhibited by the free ammonium and salinity. This study illustrated the differences of nitrogen removal performance and mechanisms with fermentation liquid components as carbon sources processing of HAHS wastewater.
Collapse
Affiliation(s)
- Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawei Yang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianru Liang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
19
|
The Inhibitory Effect of Free Nitrous Acid and Free Ammonia on the Anoxic Phosphorus Uptake Rate of Polyphosphate-Accumulating Organisms. ENERGIES 2022. [DOI: 10.3390/en15062108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to investigate the effect of free nitrous acid (FNA) and free ammonia (FA) on the anoxic phosphorus uptake rate (PUR) of polyphosphate-accumulating organisms (PAOs) via the utilization of nitrite. With this goal, upon developing a PAO-enriched culture in a sequential batch reactor, a series of batch experiments were conducted to examine the effects of nitrite and ammonium on the anoxic phosphorus uptake rate at different pH levels. According to the results, both free nitrous acid and free ammonia were found to inhibit anoxic PUR to a degree similar to their respective effects on aerobic PUR reported in previous studies, suggesting that phosphorus removal via the anoxic pathway may be just as susceptible as that via the aerobic pathway. The effect of FNA on anoxic PUR is optimally described by a non-competitive inhibition model with a KiFNA value of 1.6 μg N L−1, while the Levenspiel model with an SFA* value of 37 mg N L−1 provided the best fit for the FA effect on PAOs anoxic activities. The results of this study provide new insights regarding the viability of EBPR under high nitrogen loading conditions.
Collapse
|
20
|
Zhang H, Zhang SS, Zhu L, Li YP, Chen L. Phosphorus recovery in the alternating aerobic/anaerobic biofilm system: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152297. [PMID: 34896486 DOI: 10.1016/j.scitotenv.2021.152297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
To balance the high phosphorus concentration in recirculated solution and the stability of biofilm system, this study explored the performance and mechanism of phosphorus uptake/release for recovering phosphorus from sewage when the phosphorus content in biofilm (Pbiofilm) changed. The results showed that the maximum phosphorus concentration in the concentrated solution reached 171.2 ± 2.5 mg·L-1 in harvest 1st-5th stages. Polyphosphate accumulating organisms (PAOs) performed a metabolic shift from glycogen accumulation metabolism (GAM) to polyphosphate accumulation metabolism (PAM) when Pbiofilm increased at each phosphorus enrichment stage, and more phosphorus was absorbed/released by PAOs. Nevertheless, the release of poly-phosphate from PAOs was inhibited after phosphorus concentration stabilized, and PAOs were unable to absorb phosphorus from wastewater as it reached the phosphorus saturation stage. To maintain the stability of the system, phosphorus had to be harvested so that the saturated phosphorus in PAOs was easily released in a new recirculated solution, resulting in adequate storage space for PAOs to absorb phosphorus. Meanwhile, the 31P NMR analysis demonstrated that phosphorus was stored in EPS and cell of PAOs, whereas EPS played a significant role than cell at the anaerobic phase. Particularly, ortho-phosphate was the major component of phosphorus release by EPS and poly-phosphate was the major part of phosphorus release by cell. Furthermore, the change of Pbiofilm had no impact on biofilm characteristics and microbial communities, whereas some PAOs would be enriched, and others that were not suitable for this process would be inhibited with repeated cycles of alternating aerobic/anaerobic operation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | | - Liang Zhu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi-Ping Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Lin Chen
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
21
|
Dong X, Liu H, Long S, Xu S, Lichtfouse E. Weak electrical stimulation on biological denitrification: Insights from the denitrifying enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150926. [PMID: 34655632 DOI: 10.1016/j.scitotenv.2021.150926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In order to improve the denitrification efficiency of low carbon to nitrogen ratio (C/N) wastewater, we conducted continuous flow experiments of weakly electrically stimulated denitrification using a direct current output voltage. The results showed that the best denitrification was achieved at a voltage of 0.2 V. The removal of nitrate and total nitrogen was increased by 20% and the production of intermediate greenhouse gas (N2O) was reduced by 62.6%. We explored the specific pathways involved in the weak electrical stimulated denitrification using enzyme activity as a cut-off point. The enzyme activity analysis and 3D fluorescence spectroscopy revealed that nitrate reductase (NAR) and nitrite reductase (NIR) activities were significantly enhanced by weak electrical stimulation, and the aromatic protein content in extracellular polymers substances (EPS) increased, accelerating electron transfer and promoting the conversion of loosely bound EPS (LB) to tightly bound EPS (TB). The accelerated electron transfer further increased enzyme activity and the metabolic rate of microorganisms. This study indicates that weak electrical stimulation could improve activities of biological enzymes to enhance denitrification efficiency.
Collapse
Affiliation(s)
- Xinyi Dong
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Shiping Long
- Chongqing New World Environment Detection Technology Co. Ltd., 22 Jinyudadao, 401122 Chongqing, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France
| |
Collapse
|
22
|
Dockx L, Caluwé M, Dobbeleers T, Dries J. Nitrous oxide formation during simultaneous phosphorus and nitrogen removal in aerobic granular sludge treating different carbon substrates. BIORESOURCE TECHNOLOGY 2022; 345:126542. [PMID: 34906707 DOI: 10.1016/j.biortech.2021.126542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The impact of different substrates on N2O dynamics and gene expression of marker enzymes (nirS, nirK and nosZ) involved in denitrifying enhanced biological phosphorus removal (d-EBPR) was investigated. Aerobic granular sludge fed with VFAs led to an anoxic P-uptake (27.7 ± 1.2 mg PO43--P.gVSS-1) and N2O emissions up to 80.7 ± 3.4% N2O-N. A decisive role of Accumulibacter in N2O formation was observed. Dosage of amino acids (12.0 ± 1.2 mg PO43--P.gVSS-1) and glucose (1.5 ± 0.9 mg PO43--P.gVSS-1) as sole substrate did not support d-EBPR activity. Presence of NO2- resulted in higher N2O formation in comparison to nitrate and a nosZ/(nirS + nirK) ratio lower than 0.3. A linear correlation (R2 > 0.95) between the nosZ/(nirS + nirK) ratio and the N2O reductase rate was found only when dosing the same type of substrate. This suggests an interplay between the microbial community composition and different polyhydroxyalkanoates derivatives, when dosing different substrates.
Collapse
Affiliation(s)
- Lennert Dockx
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Michel Caluwé
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Thomas Dobbeleers
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Jan Dries
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium.
| |
Collapse
|
23
|
Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149133. [PMID: 34311377 DOI: 10.1016/j.scitotenv.2021.149133] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Lowered air supply and organic carbon need are the key factors to reduce wastewater treatment costs and thereby, avoid eutrophication. Denitrifying PO43-- removal (DPR) process using nitrate instead of oxygen for PO43- uptake was started up in the sequencing batch reactor (SBR) at a nitrate dosing rate of 20-25 mg N L-1 d-1. Operation with a real municipal wastewater supplied with CH3COONa, K2HPO4 and KNO3 succeeded in the cultivation of biomass containing denitrifying polyphosphate accumulating organisms (DPAOs). The durations of SBR process anaerobic/anoxic/oxic cycles were 1.5 h, 3.5 h and 1 h, respectively. SBR operation resulted in a maximum PO43--P uptake of 17 mg PO43--P g-1 MLSS. The highest TN and PO43- removal efficiencies were observed during the first half of reactor operation at 77 (±10) % and 71 (±5) %, respectively. An average COD removal rate of 172 (±98) mg g-1 MLSS and a high average removal efficiency of 89 (±4) % were achieved. Nitrite effect with/without nitrate as DPR electron acceptor was investigated in batch-scale to show possibilities to use high nitrite and nitrate contents simultaneously as electron acceptors for the anoxic phosphate uptake. Nitrate attenuation against nitrite toxicity can be economically justified in full-scale treatment applications in which wastewater has a high nitrogen content. Nitrate attenuated nitrite toxicity (caused by nitrite content at 5-100 mg NO2--N L-1) when using supplemental additions of nitrate (at concentrations of 45-200 mg NO3--N L-1) in batch tests. Illumina sequencing emphasized that during biomass adaption microbial community changed by lowered aerobic cycle length and by lowered nitrate dosing towards representation of key DPAO/PAO- organisms, such as Candidatus Accumulibacter, Xanthomonadaceae, Comomonadaceae, Saprospiraceae and Rhodocyclaceae. This study showed that DPAO biomass adaption to nitrate maintained an efficient COD, nitrogen and phosphorus removal and the biomass can be applied for treatment of wastewater containing high nitrite and nitrate content.
Collapse
|
24
|
Dockx L, Caluwé M, De Vleeschauwer F, Dobbeleers T, Dries J. Impact of the substrate composition on enhanced biological phosphorus removal during formation of aerobic granular sludge. BIORESOURCE TECHNOLOGY 2021; 337:125482. [PMID: 34320762 DOI: 10.1016/j.biortech.2021.125482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Performance of enhanced biological phosphorus removal (EBPR) is often investigated with simple synthetic wastewater containing volatile fatty acids (VFAs). In this study, various (fermentable) substrates, individually and in mixtures, were examined during the application of a granulation strategy. In addition, the microbial community and N2O formation were monitored. Sludge densification was observed in all systems. Stable EBPR, associated with the presence of Accumulibacter and an anaerobic P-release up to 21.9 mgPO43--P.gVSS-1, was only obtained when VFAs were present as sole substrate or in mixture. Systems fed with VFAs were strongly related to the formation of N2O (maximum of 6.25% relative to the total available nitrogen). A moderate anaerobic dissolved organic carbon (DOC) uptake was observed when amino acids (64.27 ± 3.08%) and glucose (75.39 ± 5.79%) as sole carbon source were applied. The substrate/species-specific enrichment of Burkholderiaceae and Saccharimonadaceae respectively, resulted in unstable EBPR in those systems.
Collapse
Affiliation(s)
- Lennert Dockx
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Michel Caluwé
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Flinn De Vleeschauwer
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Thomas Dobbeleers
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Jan Dries
- BioWAVE, Biochemical Wastewater Valorization and Engineering, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
25
|
Long XY, Tang R, Wang T, Tao GJ, Wang JY, Zhou HW, Xue M, Yu YP. Characteristics of enhanced biological phosphorus removal (EBPR) process under the combined actions of intracellular and extracellular polyphosphate. CHEMOSPHERE 2021; 279:130912. [PMID: 34134440 DOI: 10.1016/j.chemosphere.2021.130912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The characteristics of enhanced biological phosphorus removal (EBPR) process under the combined actions of intracellular and extracellular polyphosphate (polyP) were investigated with the 31P Nuclear Magnetic Resonance (NMR) and the fractionation extracting the loosely-bound and tightly-bound extracellular polymer substances (i.e., LB-EPS and TB-EPS) and bacterial cells in EBPR sludge. The hydrolysis/synthesis of extracellular and intracellular polyP was a key step of the phosphate migration and transformation in EBPR sludge. The orthophosphate (orthoP) produced from the intracellular and extracellular polyP anaerobic-hydrolysis was partially accumulated in the bacterial cells and TB-EPS, and then the accumulated orthoP was main composition for these polyP aerobic-synthesis. Importantly, the anaerobic-hydrolysis enhancement of intracellular and extracellular ployP could promote EBPR sludge to absorb volatile fatty acids (VFAs) followed by being transformed into intracellular poly-hydroxy-alkanoates (PHAs). The mechanism for VFAs passing through the LB-EPS and TB-EPS should be an anion-exchange action between orthoP and VFAs. The orthoP accumulation in the TB-EPS kept an orthoP concentration gradient among the TB-EPS, LB-EPS and bulk solution, driving orthoP and VFAs migrations. The orthoP accumulation in the bacterial cells could keep an orthoP concentration difference between the cell-membrane two sides of phosphorus accumulating organisms (PAOs) to promote VFAs passing through the cell membrane considered as an anion exchange membrane. The intracellular PHAs continuously hydrolyzed accompanied with the average chain-length increases of the extracellular and intracellular polyP during the whole aerobic stage. Additionally, the energy of the extracellular polyP synthesized in situ should came from the intracellular PHAs hydrolysis.
Collapse
Affiliation(s)
- Xiang-Yu Long
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Ran Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, University Town, Shapingba District, Chongqing, 401331, China.
| | - Tao Wang
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Guang-Jian Tao
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Jia-Yue Wang
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Hai-Wei Zhou
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Ming Xue
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| | - Yong-Ping Yu
- Department of Military Installation, Army Logistics Academy of the People's Liberation Army, University Town, Shapingba District, Chongqing, 401311, China.
| |
Collapse
|
26
|
Izadi P, Izadi P, Eldyasti A. A review of biochemical diversity and metabolic modeling of EBPR process under specific environmental conditions and carbon source availability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112362. [PMID: 33831633 DOI: 10.1016/j.jenvman.2021.112362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 05/25/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is one of the most promising technologies as an economical and environmentally sustainable technique for removal of phosphorus from wastewater (WW). However, with high capacity of EBPR, insufficient P-removal is a major yet common issue of many full-scale wastewater treatment plants (WWTP), due to misinterpreted environmental and microbial disturbance. By developing a rather extensive understanding on biochemical pathways and metabolic models governing the anaerobic and aerobic/anoxic processes; the optimal operational conditions, environmental changes and microbial population interaction are efficiently predicted. Therefore, this paper critically reviews the current knowledge on biochemical pathways and metabolic models of phosphorus accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) as the most abundant microbial populations in EBPR process with an insight on the effect of available carbon source types in WW on phosphorus removal performance. Moreover, this paper critically assesses the gaps and potential future research in metabolic modeling area. With all the developments on EBPR process in the past few decades, there is still lack of knowledge in this critical sector. This paper hopes to touch on this problem by gathering the existing knowledge and to provide farther insights on the future work onto chemical transformations and metabolic strategies in different conditions to benefit the quantitative model as well as WWTP designs.
Collapse
Affiliation(s)
- Parnian Izadi
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Parin Izadi
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Ahmed Eldyasti
- Civil engineering, York university, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| |
Collapse
|
27
|
Wang L, Liu J, Oehmen A, Le C, Geng Y, Zhou Y. Butyrate can support PAOs but not GAOs in tropical climates. WATER RESEARCH 2021; 193:116884. [PMID: 33556694 DOI: 10.1016/j.watres.2021.116884] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Glycogen accumulating organisms (GAOs) are thought to compete with polyphosphate accumulating organisms (PAOs) for the often-limiting carbon sources available in wastewater, deteriorating enhanced biological phosphorus removal (EBPR) performance at high temperatures. Fermentation liquids are often used to provide an additional carbon source supply in EBPR processes, where butyrate is known to be an important volatile fatty acid (VFA) produced in sludge fermentation. Nevertheless, the impact of butyrate on the PAO-GAO competition is not well understood especially at high temperature. The results of this study demonstrate that butyrate, as a supplemental or sole carbon source, could be promising for EBPR in tropical climates. When the carbon source was gradually changed from acetate to butyrate, a substantial PAO population was found under both conditions, despite a substantial shift in the abundance of Candidatus Accumulibacter phosphatis (decreased from 37.4% to 13.9%) to Rhodocyclaceae (increased from 2.0% to 14.5%), where both organisms likely played an important role in P-removal. Thus, a relatively stable P removal performance was realized throughout the whole operation period. Nevertheless, butyrate had a negative impact on GAOs. The biomass concentration and microbial diversity continually decreased in the GAO reactor, and Candidatus Competibacter phosphatis reduced from 27.3% to 6.2%, where the dominant population was replaced by Zoogloea. With the addition of butyrate as carbon source, the total amount of synthesized PHAs reduced in both PAO and GAO cultures and the composition of PHA was greatly changed. The presence of a novel PHA fraction (PHH) may disturb the microbial activity in the aerobic phase, where the GAO culture was more severely affected. Glycogen cycling also seemed to be limited in both reactors. This could reduce the GAO metabolism in both cultures and favor PAOs and P removal. Furthermore, the biomass growth rate of the PAO culture was higher than that of GAO when fed with butyrate, which also provides PAO a competitive advantage. All the above results indicate that butyrate could not be well metabolized by GAOs, but could provide PAOs a competitive advantage. Thus, mixed VFAs (i.e. acetate, propionate and butyrate) are likely to favor PAOs over GAOs in EBPR processes operated in warm climates, where the impact of substantial butyrate fractions represents an advantage towards successful process operation.
Collapse
Affiliation(s)
- Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianbo Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chencheng Le
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yikun Geng
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
28
|
Zaman M, Kim M, Nakhla G. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143387. [PMID: 33218807 DOI: 10.1016/j.scitotenv.2020.143387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
This study investigated simultaneous nitrification-denitrifying phosphorus removal in a sequencing batch reactor (SBR) activated sludge process. The process consisted of an extended anaerobic period (180 min) followed by a low DO (0.3 ± 0.05 mg/L) simultaneous nitrification-denitrifying phosphorus removal. The reactor was operated within a wide range of COD/N ratio (5-10) without any volatile fatty acids (VFA) supplementation. N and P removal efficiencies were as high as 91% and 96%, respectively. The process was efficient even at a very low COD /N ratio of 5, with N and P removal efficiencies of 70% and 90%, respectively. The N and P removal efficiencies improved to more than 90% at a COD/N ratio 8. It was found that the initial filtered flocculated COD (ffCOD)/[total oxidized Kjeldahl Nitrogen (TKNoxidized) + NOx-Nintitial] ratio in the reactor played a significant role in the process efficiency. It was observed that N-removal efficiency decreased with a decrease of [ffCODinitial/ (TKNoxidized + NOx-Ninitial)] ratio even at high COD/N ratio of 10. Simultaneous nitrification denitrification (SND) efficiencies varied between 60%-88% depending on the influent COD/N ratio and [ffCODinitial/ (TKNoxidized + NOx-Ninitial)] ratio in the reactor. Cyclic studies showed a distinct two step phosphorus release in the extended anaerobic period in contrast to the more conventional single step phosphorus release. During the aerobic period, low DO favored denitrifying P-removal without significant accumulation of NO3-N, and NO2-N until all endogenous carbon was consumed. Denitrifying phosphorus accumulating organisms (DPAOs) played a vital role in simultaneous denitrification and phosphorus removal. Aerobic and anoxic P-removal represented about 55% and 45% of the overall phosphorus removal, respectively. Cycle tests showed that DPAOs have a competitive advantage over NOB for nitrite consumption at low DO. The process was found to be carbon efficient as evidenced by the COD/NOx-N ratio of 4.2 for denitrification. Compared to traditional enhanced biological phosphorus removal (EBPR) coupled with exogenous denitrification, this process reduces carbon and oxygen demand for combined N and P removal from municipal wastewater by about 45%, and 35% respectively.
Collapse
Affiliation(s)
- Masuduz Zaman
- Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada
| | - Mingu Kim
- Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada
| | - George Nakhla
- Department of Chemical and Biochemical Engineering, Western University, London, ON, Canada; Department of Civil and Environmental Engineering, Western University, London, ON, Canada.
| |
Collapse
|
29
|
Zhang C, Guisasola A, Baeza JA. Achieving simultaneous biological COD and phosphorus removal in a continuous anaerobic/aerobic A-stage system. WATER RESEARCH 2021; 190:116703. [PMID: 33310441 DOI: 10.1016/j.watres.2020.116703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Recovering energy from wastewater in addition to its treatment is a hot trend in the new concept of water resource recovery facility (WRRF). High-rate systems operating at low solid retention time (SRT) have been proposed to meet this challenge. In this paper, the integration of Enhanced Biological Phosphorus Removal (EBPR) in an anaerobic/aerobic continuous high-rate system (A-stage EBPR) was evaluated. Successful P and COD removal were obtained operating at SRT 6, 5 and 4 days treating real wastewater, while a further decrease to 3 days led to biomass washout. The best steady state operational conditions were obtained at SRT = 4d, with high removal percentage of P (94.5%) and COD (96.3%), and without detecting nitrification. COD mineralization could be reduced to 30%, while 64 % of the entering carbon could be diverted as biomass to energy recovery. Regarding nitrogen, about 69±1% of the influent N was left as ammonium in the effluent, with 30% used for biomass growth. The aerobic reactor could be operated at low dissolved oxygen (DO) (0.5 mg/L), which is beneficial to decrease energy requirements. Biochemical methane potential (BMP) tests showed better productivity for the anaerobic sludge than the aerobic sludge, with an optimal BMP of 296±2 mL CH4/gVSS. FISH analysis at SRT = 4d revealed a high abundance of Accumulibacter (33±13%) and lower proportion of GAO: Competibacter (3.0±0.3%), Defluviicoccus I (0.6±0.1%) and Defluviicoccus II (4.3±1.1%).
Collapse
Affiliation(s)
- Congcong Zhang
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Albert Guisasola
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Juan Antonio Baeza
- GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental. Escola d'Enginyeria. Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain.
| |
Collapse
|
30
|
Santos JMM, Martins A, Barreto S, Rieger L, Reis M, Oehmen A. Long-term simulation of a full-scale EBPR plant with a novel metabolic-ASM model and its use as a diagnostic tool. WATER RESEARCH 2020; 187:116398. [PMID: 32942180 DOI: 10.1016/j.watres.2020.116398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the predictive capacity of the META-ASM model, a new integrated metabolic activated sludge model, in describing the long-term performance of a full-scale enhanced biological phosphorus removal (EBPR) system that suffers from inconsistent performance. In order to elucidate the causes of EBPR upsets and troubleshoot the process accordingly, the META-ASM model was tested as an operational diagnostic tool in a 1336-day long-term dynamic simulation, while its performance was compared with the ASM-inCTRL model, a version based on the Barker & Dold model. Overall, the predictions obtained with the META-ASM without changing default parameters were more reliable and effective at describing the active biomass of polyphosphate accumulating organisms (PAOs) and the dynamics of their storage polymers. The primary causes of the EBPR upsets were the high aerobic hydraulic retention times (HRTs) and low organic loading rates (OLRs) of the plant, which led to periods of starvation. The impact of these factors on EBPR performance were only identified with the META-ASM model. Furthermore, the first signs of process upsets were predicted by variations in the aerobic PAO maintenance rates, suggesting that the META-ASM model has potential to provide an early warning of process upset. The simulation of a new viable operational strategy indicated that troubleshooting the process could be achieved by reducing the aerated volume by switching off air in the first half of the aeration tank. In this new strategy, the META-ASM model predicted a simultaneous improvement in the biological phosphorus (P) and nitrogen (N) removal due to the enhancement of the hydrolysis and fermentation of the mixed liquor sludge in the new unaerated zone, which increased the availability of volatile fatty acids (VFAs) for PAOs. This study demonstrates that the META-ASM model is a powerful operational diagnostic tool for EBPR systems, capable of predicting and mitigating upsets, optimising performance and evaluating new process designs.
Collapse
Affiliation(s)
- Jorge M M Santos
- UCIBIO-REQUIMTE, Chemistry department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - António Martins
- Águas do Algarve, S.A., Grupo Águas de Portugal, 8000-302 Faro, Portugal
| | - Sara Barreto
- Águas do Algarve, S.A., Grupo Águas de Portugal, 8000-302 Faro, Portugal
| | | | - Maria Reis
- UCIBIO-REQUIMTE, Chemistry department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
31
|
Majed N, Gu AZ. Phenotypic dynamics in polyphosphate and glycogen accumulating organisms in response to varying influent C/P ratios in EBPR systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140603. [PMID: 32758819 DOI: 10.1016/j.scitotenv.2020.140603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
This study employed molecular tools and single cell Raman micro-spectroscopy techniques to reveal the single cell- and population-level phenotypic dynamics and changes in functionally relevant organisms, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), in response to influent loading readily biodegradable carbon to phosphorus ratio (C/P) changes in enhanced biological phosphorus removal (EBPR) systems. The results, for the first time, provided direct and cellular evidence confirming the adaptive anaerobic metabolic pathway shifts in PAOs in response to influent loading variations. Increase in influent readily biodegradable carbon to phosphorus (C/P) ratio from 20 to 50 led to nearly 50% decline in polyphosphate content and drastic rise of intracellular polyβhydroxybutyrate (PHB) to polyphosphate (polyP) ratio by nearly 6 times in PAOs, indicating corresponding diminishing reliance on polyP hydrolysis for energy as P becomes limiting. Influent carbon availability surge also impacted the intracellular carbon polymers in GAOs, with significant increase in the mean PHB content level but no observed changes in the intracellular glycogen level. Furthermore, the Raman-based quantification of differentiated intracellular polymer content associated with PAOs and GAOs, revealed new insights into the quantitative shift in intracellular carbon storage distribution between the two populations and their variations between the two carbon polymers (PHB, Glycogen). In summary, this investigation revealed high-resolution cellular level information regarding the metabolic flexibility in PAOs, phenotypic stoichiometry changes and carbon flux and distribution among PAOs and GAOs, in response to influent loading conditions. The new information will contribute to improvement in mechanistic EBPR modeling and design.
Collapse
Affiliation(s)
- Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, 74/A Green Road, Dhaka 1205, Bangladesh; Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - April Z Gu
- Department of Civil & Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Gnida A, Żubrowska-Sudoł M, Sytek-Szmeichel K, Podedworna J, Surmacz-Górska J, Marciocha D. Effect of anaerobic phases length on denitrifying dephosphatation biocenosis - a case study of IFAS-MBSBBR. BMC Microbiol 2020; 20:222. [PMID: 32709219 PMCID: PMC7379833 DOI: 10.1186/s12866-020-01896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/12/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study aimed to evaluate the influence of the duration times of anaerobic phases on the bacterial biocenosis characterisation while denitrifying dephosphatation in the Integrated Fixed-Film Activated Sludge - Moving-Bed Sequencing Batch Biofilm Reactor (IFAS-MBSBBR). The experiment was conducted in a laboratory model. The study consisted of four series, which differed in terms of the ratio of the anaerobic phases. duration concerning the overall reaction time in the cycle. The anaerobic phases covered from 18 to 30% of the whole cycle duration. During the reactor performance that took 9 months, the influent and effluent were monitored by analysis of COD, TKN, NH4-N, NO2-N, NO3-N, TP, PO4-P, pH, alkalinity and the phosphorus uptake batch tests. Characterisation of the activated sludge and the biofilm biocenosis was based on fluorescent in situ hybridisation (identification of PAO and GAO) and the denaturing gradient gel electrophoresis patterns. RESULTS The organic compounds removal was high (more than 95.7%) independently of cycle configuration. The best efficiency for nitrogen (91.1%) and phosphorus (98.8%) removal was achieved for the 30% share of the anaerobic phases in the reaction time. Denitrifying PAO (DPAO) covered more than 90% of PAO in the biofilm and usually around 70% of PAO in the activated sludge. A substantial part of the polyphosphate accumulating organisms (PAO) community were Actinobacteria. The denitrifying dephosphatation activity was performed mainly by Accumulibacter phosphatis. CONCLUSIONS High nutrient removal efficiencies may be obtained in IFAS-MBSBBR using the denitrifying dephosphatation process. It was found that the length of anaerobic phases influenced denitrification and the biological phosphorus removal. The extension of the anaerobic phases duration time in the reaction time caused an increase in the percentage share of denitrifying PAO (DPAO) in PAO. The biocenosis of the biofilm and the activated sludge reveal different species patterns and domination of the EBPR community.
Collapse
Affiliation(s)
- Anna Gnida
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland.
| | - Monika Żubrowska-Sudoł
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Katarzyna Sytek-Szmeichel
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Jolanta Podedworna
- Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska Str. 20, 00-653, Warsaw, Poland
| | - Joanna Surmacz-Górska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland
| | - Dorota Marciocha
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 2A Akademicka St., 44-100, Gliwice, Poland
| |
Collapse
|
33
|
Genomic and biotechnological insights on stress-linked polyphosphate production induced by chromium(III) in Ochrobactrum anthropi DE2010. World J Microbiol Biotechnol 2020; 36:97. [DOI: 10.1007/s11274-020-02875-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
|
34
|
Xu Q, Liu X, Yang G, Wang D, Wu Y, Li Y, Huang X, Fu Q, Wang Q, Liu Y, Li X, Yang Q. Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122336. [PMID: 32105958 DOI: 10.1016/j.jhazmat.2020.122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
In this study, long-term experiments were performed under synthetic wastewater conditions to evaluated the potential impacts of norfloxacin (NOR) (10, 100 and 500 μg/L) on enhanced biological phosphorus removal (EBPR). Experimental result showed that long-term exposure to 10 μg/L NOR induced negligible effects on phosphorus removal. The presence of 100 μg/L NOR slightly decreased phosphorus removal efficiency to 94.41 ± 1.59 %. However, when NOR level further increased to 500 μg/L, phosphorus removal efficiency was significantly decreased from 97.96 ± 0.8 5% (control) to 82.33 ± 3.07 %. The mechanism study revealed that the presence of 500 μg/L NOR inhibited anaerobic phosphorus release and acetate uptake as well as aerobic phosphorus uptake during long-term exposure. It was also found that 500 μg/L NOR exposure suppressed the activity of key enzymes related to phosphorus removal but promoted the transformations of intracellular polyhydroxyalkanoate and glycogen. Microbial analysis revealed that that the presence of 500 μg/L NOR reduced the abundances of polyphosphate accumulating organisms but increased glycogen accumulating organisms, as compared the control.
Collapse
Affiliation(s)
- Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guojing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoding Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
35
|
Zhang M, Wang Y, Fan Y, Liu Y, Yu M, He C, Wu J. Bioaugmentation of low C/N ratio wastewater: Effect of acetate and propionate on nutrient removal, substrate transformation, and microbial community behavior. BIORESOURCE TECHNOLOGY 2020; 306:122465. [PMID: 32200224 DOI: 10.1016/j.biortech.2019.122465] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The effect of various acetate/propionate ratios (1:0, 2:1, 1:1, 1:2, and 0:1) in a two-sludge A2/O - MBBR process was investigated. Results showed that the increased propionic/acetic ratios exerted indistinctive impact on COD (91.21-93.44%) and P (92.23-93.87%) removals, but high P content (7.42%) accelerated sludge granulation proved by SEM and EDS. Acetate favored N removal (79.52%-82.92%) with higher PURA (3.53-4.06 mgP/(gVSS·h)), while the removal declined (75.14%) due to lower PHB/PHA ratio (52.3-57.8%) with propionate as sole carbon source. Based on the stoichiometry-based quantifications, PAOs were the major contributors to nutrient removal although certain GAOs and OHO participated. The mixture ratio of 1:1 facilitated microbial diversity (995 OTUs), Rhodobacteraceae (25.63%) was responsible for high-efficient denitrifying phosphorus removal, while Defluviicoccus (15.23%) contributed to nitrite accumulation was the main competitiveness with PAOs. Nitrospira, Nitrosomonas, and Nitrosomonadaceae responsible for nitrification accounted for 7.73%, 27.11%, and 38.76% in MBBR, but the biodiversity decreased owing to the enrichment and purification.
Collapse
Affiliation(s)
- Miao Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yixin Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yajun Fan
- Yangzhou Polytechnic Institute, Yangzhou 225127, PR China
| | - Yizhong Liu
- Yangzhou Jieyuan Drainage Company Limited, Yangzhou 225002, PR China
| | - Meng Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chengda He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| |
Collapse
|
36
|
Wu L, Peng L, Wei W, Wang D, Ni BJ. Nitrous oxide production from wastewater treatment: The potential as energy resource rather than potent greenhouse gas. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121694. [PMID: 31776086 DOI: 10.1016/j.jhazmat.2019.121694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Nitrous oxide (N2O), produced from wastewater treatment, is a potent greenhouse gas and has become a global concern in recent years. However, N2O has also been commonly used as a powerful oxidant for energy generation. As such, an increasing effort has been devoted to explore the energy potential of N2O from wastewater treatment processes recently. Nevertheless, the holistic knowledge on energy recovery from nitrogen in wastewater is still lacking for facilitating its further development. Striving for sustainable wastewater treatment, this review paper aimed to give the up-to-date status on several essential aspects regarding the N2O recovery as an energy resource rather than emission as a greenhouse gas, including energy production via N2O decomposition, main biotic N2O production sources, the potential bioprocesses used for N2O recovery, and the possible N2O harvesting strategies. We then put forward perspectives for N2O recovery and future challenges to improve our understanding of the energy generation, microbial processes involved and harvesting approaches in order to potentially achieve sustainable wastewater treatment via N2O recovery.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
37
|
Santos JMM, Rieger L, Lanham AB, Carvalheira M, Reis MAM, Oehmen A. A novel metabolic-ASM model for full-scale biological nutrient removal systems. WATER RESEARCH 2020; 171:115373. [PMID: 31846822 DOI: 10.1016/j.watres.2019.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/23/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrates that META-ASM, a new integrated metabolic activated sludge model, provides an overall platform to describe the activity of the key organisms and processes relevant to biological nutrient removal (BNR) systems with a robust single-set of default parameters. This model overcomes various shortcomings of existing enhanced biological phosphorous removal (EBPR) models studied over the last twenty years. The model has been tested against 34 data sets from enriched lab polyphosphate accumulating organism (PAO)-glycogen accumulating organism (GAO) cultures and experiments with full-scale sludge from five water resource recovery facilities (WRRFs) with two different process configurations: three stage Phoredox (A2/O) and adapted Biodenitro™ combined with a return sludge sidestream hydrolysis tank (RSS). Special attention is given to the operational conditions affecting the competition between PAOs and GAOs, capability of PAOs and GAOs to denitrify, metabolic shifts as a function of storage polymer concentrations, as well as the role of these polymers in endogenous processes and fermentation. The overall good correlations obtained between the predicted versus measured EBPR profiles from different data sets support that this new model, which is based on in-depth understanding of EBPR, reduces calibration efforts. On the other hand, the performance comparison between META-ASM and literature models demonstrates that existing literature models require extensive parameter changes and have limited predictive power, especially in the prediction of long-term EBPR performance. The development of such a model able to describe in detail the microbial and chemical transformations of BNR systems with minimal adjustment to parameters suggests that the META-ASM model is a powerful tool to predict and mitigate EBPR upsets, optimise EBPR performance and to evaluate new process designs.
Collapse
Affiliation(s)
- Jorge M M Santos
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal.
| | | | - Ana B Lanham
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Mónica Carvalheira
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Adrian Oehmen
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Tecnology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| |
Collapse
|
38
|
Wang HG, Huang H, Liu RL, Mao YP, Biswal BK, Chen GH, Wu D. Investigation on polyphosphate accumulation in the sulfur transformation-centric EBPR (SEBPR) process for treatment of high-temperature saline wastewater. WATER RESEARCH 2019; 167:115138. [PMID: 31585382 DOI: 10.1016/j.watres.2019.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/10/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the polyphosphates accumulation rate in a novel sulfur transformation-centric enhanced biological phosphorus removal (SEBPR) process. The SEBPR system was continuously operated over 120 days in a sequencing batch reactor (SBR) that alternated between the anaerobic mode and the anoxic mode of operation (temperature: 30 °C and salinity: 6000 mg/L Cl-). In addition to the SBR, batch experiments were carried out to test the effect of two different sulfate concentrations on the system performance and sulfur-phosphorus transformations. The key intercellular polymers of polyphosphates and polysulfur (poly-S) were identified by employing advanced microscopes. Metagenomic analysis was performed to characterize the diversity of microbes and their functions enriched in the SEBPR system. Finally, several molecular techniques including flow cytometry cell sorting and 16S DNA high-throughput sequencing were applied to identify the phosphorus-accumulating organisms (PAOs). The amounts of P release and P uptake in the SEBPR increased gradually to nearly 18 ± 6.4 mg P/L and 26.5 ± 6.7 mg P/L respectively, yielding a net P removal efficiency of 84 ± 25%. Batch tests indicated no polyhydroxyalkanate (PHA) synthesis, but P uptake was observed and it was correlated with the intracellular poly-S consumption, suggesting that the poly-S could act as an intracellular energy source for P uptake and polyphosphates formation. Moreover, CLSM and TEM micrographs clearly showed the presence of intercellular polyphosphates and poly-S respectively. Metagenomic analysis revealed that Proteobacteria (36.5%), Bacteroidetes (23.3%), Thermotogae (7.1%), Chloroflexi (4.5%) and Firmicutes (2.3%) were the dominant phyla in Bacteria. The conventional PAO of Candidatus Accumulibacter was found at a low abundance of 0.32% only; and an uncultured genus close to Rhodobacteraceae at the family level is speculated to be the putative sulfur PAO (SPAO). Finally, this research suggests that poly-S considerably impacts on polyphosphates accumulation in the SEBPR system when no PHAs are formed.
Collapse
Affiliation(s)
- Hai-Guang Wang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ru-Long Liu
- Department of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Yan-Ping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, FYT Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
39
|
Nguyen Quang M, Rogers T, Hofman J, Lanham AB. Global Sensitivity Analysis of Metabolic Models for Phosphorus Accumulating Organisms in Enhanced Biological Phosphorus Removal. Front Bioeng Biotechnol 2019; 7:234. [PMID: 31637235 PMCID: PMC6787149 DOI: 10.3389/fbioe.2019.00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/09/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to identify, quantify and prioritize for the first time the sources of uncertainty in a mechanistic model describing the anaerobic-aerobic metabolism of phosphorus accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems. These wastewater treatment systems play an important role in preventing eutrophication and metabolic models provide an advanced tool for improving their stability via system design, monitoring and prediction. To this end, a global sensitivity analysis was conducted using standard regression coefficients and Sobol sensitivity indices, taking into account the effect of 39 input parameters on 10 output variables. Input uncertainty was characterized with data in the literature and propagated to the output using the Monte Carlo method. The low degree of linearity between input parameters and model outputs showed that model simplification by linearization can be pursued only in very well defined circumstances. Differences between first and total-order sensitivity indices showed that variance in model predictions was due to interactions between combinations of inputs, as opposed to the direct effect of individual inputs. The major sources of uncertainty affecting the prediction of liquid phase concentrations, as well as intra-cellular glycogen and poly-phosphate was due to 64% of the input parameters. In contrast, the contribution to variance in intra-cellular PHA constituents was uniformly distributed among all inputs. In addition to the intra-cellular biomass constituents, notably PHB, PH2MV and glycogen, uncertainty with respect to input parameters directly related to anaerobic propionate uptake, aerobic poly-phosphate formation, glycogen formation and temperature contributed most to the variance of all model outputs. Based on the distribution of total-order sensitivities, characterization of the influent stream and intra-cellular fractions of PHA can be expected to significantly improve model reliability. The variance of EBPR metabolic model predictions was quantified. The means to account for this variance, with respect to each quantity of interest, given knowledge of the corresponding input uncertainties, was prescribed. On this basis, possible avenues and pre-requisite requirements to simplify EBPR metabolic models for PAO, both structurally via linearization, as well as by reduction of the number of non-influential variables were outlined.
Collapse
Affiliation(s)
- Minh Nguyen Quang
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | - Tim Rogers
- Department of Mathematical Sciences, Centre for Networks and Collective Behaviour, University of Bath, Bath, United Kingdom
| | - Jan Hofman
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| | - Ana B Lanham
- Department of Chemical Engineering, Water Innovation and Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
40
|
Rubio-Rincón FJ, Weissbrodt DG, Lopez-Vazquez CM, Welles L, Abbas B, Albertsen M, Nielsen PH, van Loosdrecht MCM, Brdjanovic D. "Candidatus Accumulibacter delftensis": A clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. WATER RESEARCH 2019; 161:136-151. [PMID: 31189123 DOI: 10.1016/j.watres.2019.03.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Populations of "Candidatus Accumulibacter", a known polyphosphate-accumulating organism, within clade IC have been proposed to perform anoxic P-uptake activity in enhanced biological phosphorus removal (EBPR) systems using nitrate as electron acceptor. However, no consensus has been reached on the ability of "Ca. Accumulibacter" members of clade IC to reduce nitrate to nitrite. Discrepancies might relate to the diverse operational conditions which could trigger the expression of the Nap and/or Nar enzyme and/or to the accuracy in clade classification. This study aimed to assess whether and how certain operational conditions could lead to the enrichment and enhance the denitrification capacity of "Ca. Accumulibacter" within clade IC. To study the potential induction of the denitrifying enzyme, an EBPR culture was enriched under anaerobic-anoxic-oxic (A2O) conditions that, based on fluorescence in situ hybridization and ppk gene sequencing, was composed of around 97% (on a biovolume basis) of affiliates of "Ca. Accumulibacter" clade IC. The influence of the medium composition, sludge retention time (SRT), polyphosphate content of the biomass (poly-P), nitrate dosing approach, and minimal aerobic SRT on potential nitrate reduction were studied. Despite the different studied conditions applied, only a negligible anoxic P-uptake rate was observed, equivalent to maximum 13% of the aerobic P-uptake rate. An increase in the anoxic SRT at the expenses of the aerobic SRT resulted in deterioration of P-removal with limited aerobic P-uptake and insufficient acetate uptake in the anaerobic phase. A near-complete genome (completeness = 100%, contamination = 0.187%) was extracted from the metagenome of the EBPR biomass for the here-proposed "Ca. Accumulibacter delftensis" clade IC. According to full-genome-based phylogenetic analysis, this lineage was distant from the canonical "Ca. Accumulibacter phosphatis", with closest neighbor "Ca. Accumulibacter sp. UW-LDO-IC" within clade IC. This was cross-validated with taxonomic classification of the ppk1 gene sequences. The genome-centric metagenomic analysis highlighted the presence of genes for assimilatory nitrate reductase (nas) and periplasmic nitrate reductase (nap) but no gene for respiratory nitrate reductases (nar). This suggests that "Ca. Accumulibacter delftensis" clade IC was not capable to generate the required energy (ATP) from nitrate under strict anaerobic-anoxic conditions to support an anoxic EBPR metabolism. Definitely, this study stresses the incongruence in denitrification abilities of "Ca. Accumulibacter" clades and reflects the true intra-clade diversity, which requires a thorough investigation within this lineage.
Collapse
Affiliation(s)
- F J Rubio-Rincón
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - D G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - C M Lopez-Vazquez
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - L Welles
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - B Abbas
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - M Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - P H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - D Brdjanovic
- Sanitary Engineering Chair Group. Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
41
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Cyclic Metabolism as a Mode of Microbial Existence. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Costa RHR, Villafranca BM, Voltolini CA, Guimarães LB, Hoffmann H, Velho VF, Mohedano RA. EFFECTIVENESS OF PHOSPHORUS REMOVAL IN AN SBR USING CO-PRECIPITATION WITH FERRIC CHLORIDE, AND ITS EFFECTS ON MICROBIAL ACTIVITY. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Viviane F. Velho
- Instituto Federal de Educação, Ciência e Tecnologia Catarinense, Brazil
| | | |
Collapse
|
43
|
Zhao J, Wang X, Li X, Jia S, Wang Q, Peng Y. Improvement of partial nitrification endogenous denitrification and phosphorus removal system: Balancing competition between phosphorus and glycogen accumulating organisms to enhance nitrogen removal without initiating phosphorus removal deterioration. BIORESOURCE TECHNOLOGY 2019; 281:382-391. [PMID: 30831518 DOI: 10.1016/j.biortech.2019.02.109] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The novel partial nitrification endogenous denitrification and phosphorus removal (PNEDPR) process can achieve deep-level nutrient removal from low carbon/nitrogen municipal wastewater without extra carbons. However, its performance is limited by long hydraulic retention time (HRT) and low specific endogenous denitrification rate (rNO2). This study aimed at investigating the effects of two improving strategies on PNEDPR. One was decreasing both anaerobic and anoxic reaction time for shortening HRT from 55 h to 17.5 h. The other was temporarily discharging orthophosphate-rich supernatant for balancing the competition between phosphorus and glycogen accumulating organisms to further raise rNO2 without deterioration of phosphorus removal. Results revealed that, desirable nutrient removal was obtained, as average effluent concentrations of total nitrogen and orthophosphate were 8.4 and 0.5 mg/L with their average removal efficiencies of 86.8% and 90.9%. High-throughput sequencing analysis revealed that, Candidatus_Competibacter conducted nitrogen removal endogenous denitrification and Candidatus_Accumulibacter and Tetrasphaera ensured phosphorus removal.
Collapse
Affiliation(s)
- Ji Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoxia Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Shuyuan Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
44
|
Watson SJ, Needoba JA, Peterson TD. Widespread detection of Candidatus Accumulibacter phosphatis, a polyphosphate-accumulating organism, in sediments of the Columbia River estuary. Environ Microbiol 2019; 21:1369-1382. [PMID: 30815950 DOI: 10.1111/1462-2920.14576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 11/27/2022]
Abstract
Enhanced biological phosphorus removal (EBPR) exploits the metabolism of polyphosphate-accumulating organisms (PAOs) to remove excess phosphorus (P) from wastewater treatment. Candidatus Accumulibacter phosphatis (Accumulibacter) is the most abundant and well-studied PAO in EBPR systems. In a previous study, we detected polyphosphates throughout peripheral bay sediments, and hypothesized that an estuary is an ideal setting to evaluate PAOs in a natural system, given that estuaries are characterized by dynamic dissolved oxygen fluctuations that potentially favour PAO metabolism. We detected nucleotide sequences attributable to Accumulibacter (16S rRNA, ppk1) in sediments within three peripheral bays of the Columbia River estuary at abundances rivalling those observed in conventional wastewater treatment plants (0.01%-2.6%). Most of the sequences attributable to Accumulibacter were Type I rather than Type II, despite the fact that the estuary does not have particularly high nutrient concentrations. The highest diversity of Accumulibacter was observed in oligohaline peripheral bays, while the greatest abundances were observed at the mouth of the estuary in mesohaline sediments in the spring and summer. In addition, an approximately 70% increase in polyphosphate concentrations observed at one of the sites between dawn and dusk suggests that PAOs may play an important role in P cycling in estuary sediments.
Collapse
Affiliation(s)
- Sheree J Watson
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA
| | - Joseph A Needoba
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA.,OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Tawnya D Peterson
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, USA.,OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
45
|
Integrated Omic Analyses Provide Evidence that a " Candidatus Accumulibacter phosphatis" Strain Performs Denitrification under Microaerobic Conditions. mSystems 2019; 4:mSystems00193-18. [PMID: 30944872 PMCID: PMC6446978 DOI: 10.1128/msystems.00193-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 11/20/2022] Open
Abstract
The ability of "Candidatus Accumulibacter phosphatis" to grow and remove phosphorus from wastewater under cycling anaerobic and aerobic conditions has also been investigated as a metabolism that could lead to simultaneous removal of nitrogen and phosphorus by a single organism. However, although phosphorus removal under cyclic anaerobic and anoxic conditions has been demonstrated, clarifying the role of "Ca. Accumulibacter phosphatis" in this process has been challenging, since (i) experimental research describes contradictory findings, (ii) none of the published "Ca. Accumulibacter phosphatis" genomes show the existence of a complete respiratory pathway for denitrification, and (iii) some genomes lacking a complete respiratory pathway have genes for assimilatory nitrate reduction. In this study, we used an integrated omics analysis to elucidate the physiology of a "Ca. Accumulibacter phosphatis" strain enriched in a reactor operated under cyclic anaerobic and microaerobic conditions. The reactor's performance suggested the ability of the enriched "Ca. Accumulibacter phosphatis" strain (clade IC) to simultaneously use oxygen and nitrate as electron acceptors under microaerobic conditions. A draft genome of this organism was assembled from metagenomic reads ("Ca. Accumulibacter phosphatis" UW-LDO-IC) and used as a reference to examine transcript abundance throughout one reactor cycle. The genome of UW-LDO-IC revealed the presence of a full pathway for respiratory denitrification. The observed transcript abundance patterns showed evidence of coregulation of the denitrifying genes along with a cbb 3 cytochrome, which has been characterized as having high affinity for oxygen. Furthermore, we identified an FNR-like binding motif upstream of the coregulated genes, suggesting transcription-level regulation of both denitrifying and respiratory pathways in UW-LDO-IC. Taking the results together, the omics analysis provides strong evidence that "Ca. Accumulibacter phosphatis" UW-LDO-IC uses oxygen and nitrate simultaneously as electron acceptors under microaerobic conditions. IMPORTANCE "Candidatus Accumulibacter phosphatis" is widely found in full-scale wastewater treatment plants, where it has been identified as the key organism for biological removal of phosphorus. Since aeration can account for 50% of the energy use during wastewater treatment, microaerobic conditions for wastewater treatment have emerged as a cost-effective alternative to conventional biological nutrient removal processes. Our report provides strong genomics-based evidence not only that "Ca. Accumulibacter phosphatis" is the main organism contributing to phosphorus removal under microaerobic conditions but also that this organism simultaneously respires nitrate and oxygen in this environment, consequently removing nitrogen and phosphorus from the wastewater. Such activity could be harnessed in innovative designs for cost-effective and energy-efficient optimization of wastewater treatment systems.
Collapse
|
46
|
Nguyen HN, Rodrigues DF. Chronic toxicity of graphene and graphene oxide in sequencing batch bioreactors: A comparative investigation. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:200-207. [PMID: 28961500 DOI: 10.1016/j.jhazmat.2017.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the chronic toxicity of graphene (G) and graphene oxide (GO) in activated sludge. Sequencing batch bioreactors were fed with influents containing 0, 1 and 5mgL-1 of GO or G (12h cycles) for ten days. Reduction in performance of the bioreactors in relation to chemical oxygen demand, ammonia and phosphate removals was observed after three days in the bioreactors fed with 5mgL-1 of nanomaterials. After about eight days, these reactors reached a steady state nutrient removal, which corresponded to recovery of certain groups of ammonia oxidizing bacteria and phosphate accumulating bacteria despite the increasing accumulation of nanomaterials in the sludge. These results suggested that biological treatment can be affected transiently by initial exposure to the nanomaterials, but certain groups of microorganisms, less sensitive to these nanomaterials, can potentially strive in the presence of these nanomaterials. Results of 16S rRNA gene deep sequencing showed that G and GO affected differently the microbial communities in the activated sludge. Between the two nanomaterials investigated, GO presented the highest impact in nutrient removal, gene abundance and changes in microbial population structures.
Collapse
Affiliation(s)
- Hang N Nguyen
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, Room N136 Engineering Building 1, University of Houston, TX 77204-4003, USA.
| |
Collapse
|
47
|
Rubio-Rincón FJ, Lopez-Vazquez CM, Welles L, van Loosdrecht MCM, Brdjanovic D. Cooperation between Candidatus Competibacter and Candidatus Accumulibacter clade I, in denitrification and phosphate removal processes. WATER RESEARCH 2017; 120:156-164. [PMID: 28486166 DOI: 10.1016/j.watres.2017.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 05/19/2023]
Abstract
Although simultaneous P-removal and nitrate reduction has been observed in laboratory studies as well as full-scale plants, there are contradictory reports on the ability of PAO I to efficiently use nitrate as electron acceptor. Such discrepancy could be due to other microbial groups performing partial denitrification from nitrate to nitrite. The denitrification capacities of two different cultures, a highly enriched PAO I and a PAO I-GAO cultures were assessed through batch activity tests conducted before and after acclimatization to nitrate. Negligible anoxic phosphate uptake coupled with a reduction of nitrate was observed in the highly enriched PAO I culture. On the opposite, the PAO I-GAO culture showed a higher anoxic phosphate uptake activity. Both cultures exhibited good anoxic phosphate uptake activity with nitrite (8.7 ± 0.3 and 9.6 ± 1.8 mgPO4-P/gVSS.h in the PAO I and PAO I-GAO cultures, respectively). These findings suggest that other microbial populations, such as GAOs, were responsible to reduce nitrate to nitrite in this EBPR system, and that PAO I used the nitrite generated for anoxic phosphate uptake. Moreover, the simultaneous denitrification and phosphate removal process using nitrite as electron acceptor may be a more sustainable process as can: i) reduce the carbon consumption, ii) reduce oxygen demand of WWTP, and iii) due to a lower growth yield contribute to a lower sludge production.
Collapse
Affiliation(s)
- F J Rubio-Rincón
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - C M Lopez-Vazquez
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.
| | - L Welles
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands.
| | - M C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - D Brdjanovic
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, Westvest 7, 2611AX, Delft, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
48
|
Xie T, Mo C, Li X, Zhang J, An H, Yang Q, Wang D, Zhao J, Zhong Y, Zeng G. Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4494-4505. [PMID: 27943155 DOI: 10.1007/s11356-016-7860-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/06/2016] [Indexed: 05/24/2023]
Abstract
In this study, the effects of different ratios of glucose to acetate on enhanced biological phosphorus removal (EBPR) were investigated with regard to the changes of intercellular polyhydroxyalkanoates (PHAs) and glycogen, as well as microbial community. The experiments were carried out in five sequencing batch reactors (SBRs) fed with glucose and/or acetate as carbon sources at the ratios of 0:100 %, 25:75 %, 50:50 %, 75:25 %, and 100:0 %. The experimental results showed that a highest phosphorus removal efficiency of 96.3 % was obtained with a mixture of glucose and acetate at the ratio of 50:50 %, which should be attributed to more glycogen and polyhydroxyvalerate (PHV) transformation in this reactor during the anaerobic condition. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of sludge samples taken from different anaerobic/aerobic (A/O) SBRs revealed that microbial community structures were distinctively different with a low similarity between each other.
Collapse
Affiliation(s)
- Ting Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chuangrong Mo
- School of Environment, Guangxi University, Nanning, 530004, China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Jian Zhang
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Hongxue An
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jianwei Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yu Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
49
|
Coats ER, Brinkman CK, Lee S. Characterizing and contrasting the microbial ecology of laboratory and full-scale EBPR systems cultured on synthetic and real wastewaters. WATER RESEARCH 2017; 108:124-136. [PMID: 27814897 PMCID: PMC5176642 DOI: 10.1016/j.watres.2016.10.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/20/2023]
Abstract
The anthropogenic discharge of phosphorus (P) into surface waters can induce the proliferation of cyanobacteria and algae, which can negatively impact water quality. Enhanced biological P removal (EBPR) is an engineered process that can be employed to efficiently remove significant quantities of P from wastewater. Within this engineered system, the mixed microbial consortium (MMC) becomes enriched with polyphosphate accumulating organisms (PAOs). To date much knowledge has been developed on PAOs, and the EBPR process is generally well understood; nonetheless, the engineered process remains underutilized. In this study, investigations were conducted using qPCR and Illumina MiSeq to assess the impacts of wastewater (synthetic vs. real) on EBPR microbial ecology. While a strong relationship was demonstrated between EBPR metrics (P:C; influent VFA:P) and excellent P removal across diverse EBPR systems and MMCs, no such correlations existed with the specific MMCs. Moreover, MMCs exhibited distinct clusters based on substrate, and qPCR results based on the putative PAO Accumulibacter did not correlate with BLASTN eubacterial results for either Accumulibacter or Rhodocyclaceae. More critically, PAO-based sequences aligned poorly with Accumulibacter for both eubacterial and PAO primer sets, which strongly suggests that the conventional PAO primers applied in FISH and qPCR analysis do not sufficiently target the putative PAO Accumulibacter. In particular, negligible alignment was observed for PAO amplicons obtained from a MMC performing excellent EBPR on crude glycerol (an atypical substrate). A synthetic wastewater-based MMC exhibited the best observed BLASTN match of the PAO amplicons, raising concerns about the potential relevance in using synthetic substrates in the study of EBPR.
Collapse
Affiliation(s)
- Erik R Coats
- Department of Civil Engineering, University of Idaho, Moscow, ID 83844-1022, USA.
| | - Cynthia K Brinkman
- Department of Civil Engineering, University of Idaho, Moscow, ID 83844-1022, USA
| | - Stephen Lee
- Department of Statistics, University of Idaho, Moscow, ID 83844-1104, USA
| |
Collapse
|
50
|
Terashima M, Yama A, Sato M, Yumoto I, Kamagata Y, Kato S. Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant. Microbes Environ 2016; 31:449-455. [PMID: 27867159 PMCID: PMC5158118 DOI: 10.1264/jsme2.me16097] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.
Collapse
Affiliation(s)
- Mia Terashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | |
Collapse
|