1
|
Wang P, Ge M, Luo X, Zhai Y, Meckbach N, Strehmel V, Li S, Chen Z, Strehmel B. Confinement of Sustainable Carbon Dots Results in Long Afterglow Emitters and Photocatalyst for Radical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202402915. [PMID: 38569128 DOI: 10.1002/anie.202402915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Sustainable carbon dots based on cellulose, particularly carboxymethyl cellulose carbon dots (CMCCDs), were confined in an inorganic network resulting in CMCCDs@SiO2. This resulted in a material exhibiting long afterglow covering a time frame of several seconds also under air. Temperature-dependent emission spectra gave information on thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) while photocurrent experiments provided a deeper understanding of charge availability in the dark period, and therefore, its availability on the photocatalyst surface. The photo-ATRP initiator, ethyl α-bromophenylacetate (EBPA), quenched the emission from the millisecond to the nanosecond time frame indicating participation of the triplet state in photoinduced electron transfer (PET). Both free radical and controlled radical polymerization based on photo-ATRP protocol worked successfully. Metal-free photo-ATRP resulted in chain extendable macroinitiators based on a reductive mechanism with either MMA or in combination with styrene. Addition of 9 ppm Cu2+ resulted in Mw/Mn of 1.4 while an increase to 72 ppm improved uniformity of the polymers; that is Mw/Mn=1.03. Complementary experiments with kerria laca carbon dots confined materials, namely KCDs@SiO2, provided similar results. Deposition of Cu2+ (9 ppm) on the photocatalyst surface explains better uniformity of the polymers formed in the ATRP protocol.
Collapse
Affiliation(s)
- Ping Wang
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Min Ge
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Xiongfei Luo
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
- Northeast Forestry University, College of Chemistry, Chemical Engineering and Resource Utilization, Hexing Road 26, 150040, Harbin, China
| | - Yingxiang Zhai
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Nicolai Meckbach
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Veronika Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| | - Shujun Li
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
| | - Zhijun Chen
- Northeast Forestry University, Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Hexing Road 26, 150040, Harbin, China
- Heilongjiang International Joint Lab of Advanced Biomass Materials, Northeast Forestry University, Hexing Road 26, 150040, Harbin, China
| | - Bernd Strehmel
- Niederrhein University of Applied Sciences, Department of Chemistry, Institute for Coatings and Surface Chemistry, Adlerstr. 1, D-47798, Krefeld, Germany
| |
Collapse
|
2
|
Bian L, Ge X, Feng S, Chen G, Li K, Wang X. Determination of chloropropanol esters and glycidyl esters in instant noodles based on solid-phase microextraction with chitosan-β-cyclodextrin coated fiber. Food Chem 2024; 442:138419. [PMID: 38237296 DOI: 10.1016/j.foodchem.2024.138419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
We developed a method for the determination of chloropropanol esters and glycidyl esters (GE) in instant noodles using solid-phase microextraction with chitosan-β-cyclodextrin (CS-β-CD) coated fiber coupled with gas chromatography-tandem mass spectrometry. The developed low-cost fiber coating can improve the sensitivity of the method. Immobilized enzymes can improve operational stability and reusability compared to free enzymes, thereby reducing costs. The adsorption isotherm was modeled using the Langmuir model, while the adsorption kinetics followed the pseudo second-order model. The limit of detection was 0.3 ng/L. The method exhibited satisfactory recoveries for the analytes, ranging from 80.2 % to 105.3 %, with relative standard deviations < 9.9 %. Furthermore, the results of the exposure assessment showed that chloropropanol esters do not pose unacceptable risks to different age groups. However, the margin of exposure for GE suggested a potential health risk for populations between the ages of 3 and 12 years old.
Collapse
Affiliation(s)
- Linlin Bian
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xue Ge
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Senwei Feng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guangxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao.
| | - Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Ding D, Kuang J, Yuan W, Huang Z, Lin B, Yang Y. Ion-imprinted chitosan prepared without cross-linking agent for efficient selective adsorption of Al(III) from rare earth solution. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1232-1243. [PMID: 38318767 DOI: 10.1039/d3ay01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In the aqueous phase, ion-imprinted materials exhibit excellent selective adsorption properties for specific ions, but their complicated preparation process and large amount of crosslinker consumption limit their application. In this study, ion-imprinted chitosan (IIP-CS) was prepared by a simple one-step hydrothermal method without a cross-linking agent for the efficient adsorption of trace amounts of Al(III) from a rare earth solution. The structures and morphology of IIP-CS were analyzed by FT-IR, SEM, and XRD. The Al(III) adsorption characteristics of IIP-CS were investigated under various preparation processes and adsorption conditions. It was found that the optimum mass ratio of IIP-CS is 3 : 1 and pH is 3 and the adsorption capacity reaches up to 40.36 mg g-1. In addition, three different isothermal models-Temkin, Freundlich, and Langmuir-were used to analyze the equilibrium adsorption of IIP-CS in aqueous solution. The results obtained are consistent with the Langmuir model. The adsorption process of Al(III) on IIP-CS follows a pseudo-secondary kinetic model, suggesting that electron sharing or exchange between IIP-CS and Al(III) is a key factor affecting its adsorption rate. IIP-CS shows high selectivity coefficients for Al(III) in mixtures of La(III), Y(III), and Gd(III), which are 792.50, 163.26, and 55.16, respectively. The mechanism of action is the formation of a complex via amidation between Al(III) and IIP-CS. IIP-CS is an adsorbent with excellent regeneration and selective adsorption performance in aqueous solution.
Collapse
Affiliation(s)
- Dan Ding
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Kejia Road 156, Ganzhou 341000, Jiangxi, China.
| | - Jingzhong Kuang
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Kejia Road 156, Ganzhou 341000, Jiangxi, China.
| | - Weiquan Yuan
- School of Resources and Architectural Engineering, GanNan University of Science and Technology, Ganzhou 341000, China
| | - Zheyu Huang
- School of Resources and Architectural Engineering, GanNan University of Science and Technology, Ganzhou 341000, China
| | - Bo Lin
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Kejia Road 156, Ganzhou 341000, Jiangxi, China.
| | - Yiqiang Yang
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Kejia Road 156, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
4
|
Jin C, Li Z, Huang M, Ding X, Zhou M, Chen J, Li B. Binding of Cd(II) to birnessite and fulvic acid organo-mineral composites and controls on Cd(II) availability. CHEMOSPHERE 2023; 329:138624. [PMID: 37030351 DOI: 10.1016/j.chemosphere.2023.138624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Manganese oxide minerals (MnOs) are major controls on cadmium (Cd) mobility and fate in the environment. However, MnOs are commonly coated with natural organic matter (OM), and the role of this coating in the retention and availability of harmful metals remains unclear. Herein, organo-mineral composites were synthesized using birnessite (BS) and fulvic acid (FA), during coprecipitation with BS and adsorption to preformed BS with two organic carbon (OC) loadings. The performance and underlying mechanism of Cd(II) adsorption by resulting BS-FA composites were explored. Consequently, FA interactions with BS at environmentally representative (5 wt% OC) increase Cd(II) adsorption capacity by 15.05-37.39% (qm = 156.5-186.9 mg g-1), attributing to the enhanced dispersion of BS particles by coexisting FA led to significant increases in specific surface area (219.1-254.8 m2 g-1). Nevertheless, Cd(II) adsorption was notably inhibited at a high OC level (15 wt%). This might have derived from the supplementation of FA decreased pore diffusion rate and generated Mn(II/III) competition for vacancy sites. The dominant Cd(II) adsorption mechanism was precipitation with minerals (Cd(OH)2), and complexation with Mn-O groups and acid oxygen-containing functional groups of FA. In organic ligand extractions, the exchange Cd content decreased by 5.63-7.93% with low OC coating (5 wt%), but increased to 33.13-38.97% at a high OC level (15 wt%). These findings help better understand the environmental behavior of Cd under the interactions of OM and Mn minerals, and provide a theoretical basis for organo-mineral composite remediation of Cd-contaminated water and soil.
Collapse
Affiliation(s)
- Changsheng Jin
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Mi Zhou
- College of Geography Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Bolin Li
- College of Environmental Science and Engineering, Hunan University, Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
5
|
Xu S, Zhang H, Li Y, Liu J, Li R, Xing Y. Thermoreversible and tunable supramolecular hydrogels based on chitosan and metal cations. Int J Biol Macromol 2023; 242:124906. [PMID: 37210055 DOI: 10.1016/j.ijbiomac.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
A new thermoreversible and tunable hydrogel CS-M with high water content prepared by metal cation (M = Cu2+, Zn2+, Cd2+ and Ni2+) and chitosan (CS) was reported. The influence of metal cations on the thermosensitive gelation of CS-M systems were studied. All prepared CS-M systems were in the transparent and stable sol state and could become the gel state at gelation temperature (Tg). These systems after gelation could recover to its original sol state at low temperature. CS-Cu hydrogel was mainly investigated and characterized due to its large Tg scale (32-80 °C), appropriate pH range (4.0-4.6) and low Cu2+ concentration. The result showed that the Tg range was influenced and could be tuned by adjusting Cu2+ concentration and system pH within an appropriate range. The influence of anions (Cl-, NO3- and Ac-) in cupric salts in the CS-Cu system was also investigated. Scale application as heat insulation window was investigated outdoors. The different supramolecular interactions of the -NH2 group in chitosan at different temperatures were proposed to dominate the thermoreversible process of CS-Cu hydrogel.
Collapse
Affiliation(s)
- Shikuan Xu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jingjing Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Rong Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yanjun Xing
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Yang M, Xin J, Fu H, Yang L, Zheng S. Amino-Functionalized Hierarchical Porous Carbon Derived from Zeolitic Imidazolate Frameworks for Ultrasensitive Electrochemical Sensing of Heavy Metals in Water. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18907-18917. [PMID: 37018015 DOI: 10.1021/acsami.3c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochemical sensing provides a feasible avenue to monitor heavy metal ions (HMIs) in water, whereas the construction of highly sensitive and selective sensors remains challenging. Herein, we fabricated a novel amino-functionalized hierarchical porous carbon by the template-engaged method using ZIF-8 as the precursor and polystyrene sphere as the template, followed by carbonization and controllable chemical grafting of amino groups for efficient electrochemical detection of HMIs in water. The amino-functionalized hierarchical porous carbon features an ultrathin carbon framework with a high graphitization degree, excellent conductivity, unique macro-, meso-, and microporous architecture, and rich amino groups. As a result, the sensor exhibits prominent electrochemical performance with significantly low limits of detection for individual HMIs (i.e., 0.93 nM for Pb2+, 2.9 nM for Cu2+, and 1.2 nM for Hg2+) and simultaneous detection of HMIs (i.e., 0.62 nM for Pb2+, 1.8 nM for Cu2+, and 0.85 nM for Hg2+), which are superior to most reported sensors in the literature. Moreover, the sensor displays excellent anti-interference ability, repeatability, and stability for HMI detection in actual water samples.
Collapse
Affiliation(s)
- Mingyue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Jinkai Xin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
7
|
Soleymani F, Khani MH, Pahlevanzadeh H, Amini Y. Intensification of strontium (II) ion biosorption on Sargassum sp via response surface methodology. Sci Rep 2023; 13:5403. [PMID: 37012342 PMCID: PMC10070446 DOI: 10.1038/s41598-023-32532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A batch system was employed to investigate the biosorption of strontium (II) on Sargassum sp. The biosorption of strontium on Sargassum sp was studied with response surface methodology to determine the combined effect of temperature, initial metal ion concentration, biomass treatment, biosorbent dosage and pH. Under optimal conditions, the algae's biosorption capacity for strontium (initial pH 7.2, initial strontium concentration 300 mg/l for Mg-treated biomass and biosorbent dosage 0.1 g in 100 mL metal solution) was measured at 103.95 mg/g. In our analysis, equilibrium data were fitted to Langmuir and Freundlich isotherms. Results show that the best fit is provided by the Freundlich model. Biosorption dynamics analysis of the experimental data indicated that strontium (II) was absorbed into algal biomass in accordance with the pseudo-second-order kinetics model well.
Collapse
Affiliation(s)
- F Soleymani
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - M H Khani
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| | - H Pahlevanzadeh
- Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Younes Amini
- Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-8486, Tehran, Iran.
| |
Collapse
|
8
|
Lazar MM, Ghiorghita CA, Dragan ES, Humelnicu D, Dinu MV. Ion-Imprinted Polymeric Materials for Selective Adsorption of Heavy Metal Ions from Aqueous Solution. Molecules 2023; 28:molecules28062798. [PMID: 36985770 PMCID: PMC10055817 DOI: 10.3390/molecules28062798] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The introduction of selective recognition sites toward certain heavy metal ions (HMIs) is a great challenge, which has a major role when the separation of species with similar physicochemical features is considered. In this context, ion-imprinted polymers (IIPs) developed based on the principle of molecular imprinting methodology, have emerged as an innovative solution. Recent advances in IIPs have shown that they exhibit higher selectivity coefficients than non-imprinted ones, which could support a large range of environmental applications starting from extraction and monitoring of HMIs to their detection and quantification. This review will emphasize the application of IIPs for selective removal of transition metal ions (including HMIs, precious metal ions, radionuclides, and rare earth metal ions) from aqueous solution by critically analyzing the most relevant literature studies from the last decade. In the first part of this review, the chemical components of IIPs, the main ion-imprinting technologies as well as the characterization methods used to evaluate the binding properties are briefly presented. In the second part, synthesis parameters, adsorption performance, and a descriptive analysis of solid phase extraction of heavy metal ions by various IIPs are provided.
Collapse
Affiliation(s)
- Maria Marinela Lazar
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ecaterina Stela Dragan
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
9
|
Removal of Cu (II) Via chitosan-conjugated iodate porous adsorbent: Kinetics, thermodynamics, and exploration of real wastewater sample. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
10
|
Ji Y, Wang X. Purification performance of modified polyacrylonitrile fiber-activated carbon fiber filter for heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23372-23385. [PMID: 36323966 DOI: 10.1007/s11356-022-23833-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
A heavy metal ion adsorbent (HFPANF) with high surface area was obtained from polyacrylonitrile fibers with fibrillation and alkali hydrolysis, and an activated carbon fiber filter was prepared by using HFPANF as the binder. The surface area of polyacrylonitrile was 48.64 m2/g due to fibrillation, which also led to the carboxyl content of the HFPANF up to 3.4 mmol/g. Batch adsorption experiments on Cu2+ and Pb2+ showed that the adsorption capacities of HFPANF for Cu2+ and Pb2+ were 47.5 mg/g and 54.3 mg/g. The adsorption kinetics showed that the adsorption reached equilibrium at 90 min and that the adsorption followed the pseudo-second order model. It indicates that the adsorption process is chemisorption. HFPANF formed a single tooth chelate with Cu and a double tooth chelate with Pb. HFPANF-ACF filter was prepared by wet molding technique. When the HFPANF content was 30%, the filter reached a compressive strength of 15.37 MPa and its maximum flux was 180 L/h. 2.5 mg/L of Cu and Pb were used for dynamic adsorption experiments and the heavy metal removal rate was still above 95% after filtering 600 L. The pressure drop of HFPANF-ACF filter was much smaller compared with that of GAC filter due to the combined effect of fibrillated nanofibers and ACF, which can improve the filtration efficiency of the filter.
Collapse
Affiliation(s)
- Yuanhuo Ji
- School of Light Industry Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510641, Guangdong, China
| | - Xiwen Wang
- School of Light Industry Science and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou, 510641, Guangdong, China.
| |
Collapse
|
11
|
Removal of yttrium from rare-earth wastewater by Serratia marcescens: biosorption optimization and mechanisms studies. Sci Rep 2022; 12:4861. [PMID: 35318347 PMCID: PMC8941142 DOI: 10.1038/s41598-022-08542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 01/11/2023] Open
Abstract
The discharge of yttrium containing wastewater is a potential risk to human health. Although biosorption is a promising method to remove yttrium from wastewater, whereas the application of it is limited due to the lack of efficient biosorbents. In this study, the removal of yttrium from wastewater using Serratia marcescens as a biosorbent was conducted. The effects of six parameters including pH (2–5.5), initial yttrium concentration (10–110 mg/L), biosorbent dosage (0.1–0.5 g/L), biosorption time (10–700 min), stirring speed (50–300 rpm) and temperature (20–60 °C) were evaluated. The main parameters were optimized using response surface methodology. The results showed that the adsorption capacity reached 123.65 mg/g at the optimized conditions. The biosorption mechanism was revealed based on a combined analysis using field emission transmission electron microscope-energy dispersion spectrum, Fourier transform infrared spectrophotometer, and X-ray photoelectron spectroscopy. These results revealed that the hydroxyl, carboxyl, and amino groups were the adsorption functional groups for yttrium ions. Biosorption of yttrium by S. marcescens is under the combination of ion exchange, electrostatic attraction and complexation. These findings indicated that S. marcescens can be used as an efficient biosorbent to remove yttrium from wastewater. In addition, its adsorption capacity can be further improved by the enhancement of adsorption functional groups on the surface through chemical modification.
Collapse
|
12
|
N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Mo L, Tan Y, Shen Y, Zhang S. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II). CHEMOSPHERE 2022; 291:132887. [PMID: 34785178 DOI: 10.1016/j.chemosphere.2021.132887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Cellulose-based aerogels have considerable potential for various application due to renewable, low cost, and high availability. However, mechanical robustness and functionalization remain major challenges. Here, we synthesized a compressible, recoverable cellulose nanofiber (CNF)/carboxymethyl cellulose (CMC)/branched polyethyleneimine (BPEI) aerogel via electrostatic-modulated interfacial covalent crosslinking and freeze-drying process. The porous BPEI@CNF/CMC aerogel possessed excellent mechanical compression and high-density metal-chelating groups, which exhibited fast adsorption kinetics and high adsorption capacity (452.49 mg g-1) in static copper adsorption process. Furthermore, BPEI@CNF/CMC aerogels displayed excellent recyclability and could still reach 85% after 10 cycles. The integrated analyses of ATR-FTIR and XPS suggested that the predominant adsorption mechanism included electrostatic interaction, ion-exchange and chelation. This strategy provides a sustainable route to fabricate efficient biomass-based adsorbents for selective copper removal from water.
Collapse
Affiliation(s)
- Liuting Mo
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yi Tan
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yulin Shen
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shifeng Zhang
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Sayin F, Tunali Akar S, Akar T, Celik S, Gedikbey T. Chitosan immobilization and Fe 3O 4 functionalization of olive pomace: An eco-friendly and recyclable Pb 2+ biosorbent. Carbohydr Polym 2021; 269:118266. [PMID: 34294298 DOI: 10.1016/j.carbpol.2021.118266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
An effective and sustainable biosorbent (MagOPIC) was prepared from chitosan and olive pomace by the combined action of immobilization and magnetic modification to remediate Pb2+-contaminated waters. Pb2+ sorption yield at the end of the equilibrium (45 min) period was estimated to be 98.56 ± 0.28% at pH 5.5. Agitation speed, ionic strength, and temperature did not significantly affect the Pb2+ biosorption. Biosorption kinetics are successfully fitted by the pseudo-second-order equation while the equilibrium biosorption data are properly modeled using the Freundlich and D-R isotherms. MagOPIC has also exhibited a high biosorption yield in the column tests (≥99%) and showed remarkable stability up to twenty consecutive regeneration cycles. Furthermore, it was successfully used for the treatment of Pb2+ containing real wastewater. The findings of this work highlighted the potential use of MagOPIC as a novel, cost-effective and eco-friendly biosorbent for the Pb2+ removal from the contaminated aquatic phase.
Collapse
Affiliation(s)
- Fatih Sayin
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey.
| | - Sibel Tunali Akar
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Tamer Akar
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Sema Celik
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Tevfik Gedikbey
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| |
Collapse
|
15
|
Synergistic DFT-guided design and microfluidic synthesis of high-performance ion-imprinted biosorbents for selective heavy metal removal. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Saad EM, Elshaarawy RF, Mahmoud SA, El-Moselhy KM. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2021. [DOI: 10.1016/j.jobab.2021.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
17
|
Li S, Guo Q, Jiang L, Ahmed Z, Dang Z, Wu P. The influence mechanism of dissolved organic matter on the adsorption of Cd (II) by calcite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37120-37129. [PMID: 34075494 DOI: 10.1007/s11356-021-14585-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) has been widely existed in the soil, which has great influence on the adsorption of heavy metals by minerals. In this paper, the effects of DOM on Cd (II) adsorption by calcite were studied. In the presence of DOM (5 mg/L, 10 mg/L, and 20 mg/L), the maximum sorption of Cd (II) by calcite reduced from 48.94 mg/g to 44.14 mg/g, 28.11 mg/g, and 22.30 mg/g, respectively. The characterizations (XRD, SEM, XPS, FTIR, 3D-EEM, and UHPLC-Q-Orbitrap) were used to further study the mechanism about the effects of DOM on the adsorption of Cd (II) by calcite. These results showed calcite exhibited a significant adsorption capacity for Cd (II) at pH = 6.0, and CdCO3 was formed on the surface of calcite after calcite reaction with Cd (II). Meanwhile, the fractionation of DOM by calcite could change the binding characteristics of DOM to calcite, which would increase the migration of Cd (II) in the solution. After the reaction of DOM with Cd (II) and calcite, Cd (II)-DOM complex was formed, and part of calcite was dissolved in the solution which would further increase the migration of Cd (II) and decrease the adsorption of Cd (II) by calcite. This paper might help further understand the effect of calcite and DOM on the environmental behavior of Cd (II) in the soil environment.
Collapse
Affiliation(s)
- Shuaishuai Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Lu Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
18
|
Chen H, Yang X, Liu Y, Lin X, Wang J, Zhang Z, Li N, Li Y, Zhang Y. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 130:82-92. [PMID: 34052470 DOI: 10.1016/j.wasman.2021.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Waste chicken feathers are the ideal precursor for the production of low-cost N-enriched biochar. KOH-modified N-enriched biochar (KNB) containing 15.92 wt% N was successfully prepared using waste chicken feathers. The adsorption kinetics results showed that KNB had rapid Cd (2 h) and Pb (1 h) adsorption rates. The Cd and Pb adsorption capacities of KNB (the values of KF were 22.324 (Cd) and 119.654 (Pb) mg1-(1/n)·L1/n·g-1) were 7.07 and 26.52 times higher than those of the original biochar based on the adsorption isotherm results. The KNB was stable at pH 3-6 and had stronger co-adsorption capacities in double-ion systems. Based on the adsorption experiments and various characterization methods, we concluded that the primary Cd and Pb adsorption mechanisms of KNB involved electrostatic interactions, cation-π interactions, complexation, and K+ exchange. The precipitation mechanism could partially account for Pb adsorption but not for Cd adsorption. KOH modification enhanced the electronegativity of biochar and then increased the electrostatic attraction. Surface O- and N-containing functional groups were involved in Cd and Pb adsorption. Graphitic-N, oxidised-N, and OCO were the main active adsorption groups, the relative contents of which increased after KOH modification, thus increasing the Cd and Pb adsorption performance. Therefore, KNB can be used as a fast and highly efficient adsorption agent to remove Cd and Pb from wastewater containing either Cd and Pb or a combination of these two metals.
Collapse
Affiliation(s)
- Huayi Chen
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Hunan Division of GRG Metrology and Test, Changsha 410000, PR China
| | - Yonglin Liu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xueming Lin
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinjin Wang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Na Li
- Shenzhen RAINK Ecology & Environment Co, Ltd, Shenzhen 518101, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, PR China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Hunan Division of GRG Metrology and Test, Changsha 410000, PR China.
| |
Collapse
|
19
|
Lin S, Wei W, Lin X, Bediako JK, Kumar Reddy DH, Song MH, Yun YS. Pd(II)-Imprinted Chitosan Adsorbent for Selective Adsorption of Pd(II): Optimizing the Imprinting Process through Box-Behnken Experimental Design. ACS OMEGA 2021; 6:13057-13065. [PMID: 34056455 PMCID: PMC8158805 DOI: 10.1021/acsomega.1c00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The ion/molecular imprinting technique is an efficient method for developing materials with high adsorption selectivity. However, it is still difficult to obtain an imprinted adsorbent with desirably high selectivity when the preparation processes are not well designed and optimized. In this present work, a chitosan-based ion-imprinted adsorbent was optimally prepared through Box-Behnken experimental design to achieve desirably high selectivity for Pd anions (PdCl4 2-) from aqueous solutions with high acidity. The dosage of epichlorohydrin (ECH) used in the first and second steps of cross-linking as well as the pH of the imprinting reaction medium is likely one of the key factors affecting the selectivity of the synthesized ion-imprinted chitosan adsorbent, which were selected as factors in a three-level factorial Box-Behnken design. As a result, the effects of these three factors on Pd(II) selectivity were able to be described by using a second-order polynomial model with a high regression coefficient (R 2; 0.996). The obtained optimal conditions via the response surface methodology were 0.10% (v/v) of first cross-linking ECH, an imprinting pH of 1.0, and 1.00% of second cross-linking ECH. Competitive adsorption was performed to investigate the selectivities of the ion-imprinted chitosan adsorbents prepared under the optimal conditions. The selectivity coefficient of Pd(II) versus Pt(IV) (βPd/Pt) of the Pd(II)-imprinted adsorbent was 115.83, much greater than that of the chitosan adsorbent without imprinting and various reported selective adsorbents. Therefore, the Box-Behnken design can be a useful method for optimizing the synthesis of ion-imprinted adsorbents with desirably high adsorptive selectivity for precious metals.
Collapse
Affiliation(s)
- Shuo Lin
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
- Department
of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Wei Wei
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
- Key
Laboratory for Synergistic Prevention of Water and Soil Environmental
Pollution, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaoyu Lin
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
| | - John Kwame Bediako
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
| | | | - Myung-Hee Song
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
| | - Yeoung-Sang Yun
- School
of Chemical Engineering, Jeonbuk National
University, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
20
|
Removal Mechanisms of Slag against Potentially Toxic Elements in Soil and Plants for Sustainable Agriculture Development: A Critical Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13095255] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Potentially toxic element (PTE) pollution is a major abiotic stress, which reduces plant growth and affects food quality by entering the food chain, and ultimately poses hazards to human health. Currently, the use of slag in PTE-contaminated soils has been reported to reduce PTEs and toxicity in plants. This review highlights the role of slag used as a fertilizer for better crop production and sustainable agricultural development. The application of slag increased the growth, yield, and quality of crops under PTE toxicity. The mechanisms followed by slag are the immobilization of PTEs in the soil, enhancement of soil pH, changes in the redox state of PTEs, and positive changes in soil physicochemical and biological properties under PTE toxicity. Nevertheless, these processes are influenced by the plant species, growth conditions, imposition length of stress, and type of slag used. The current review provides an insight into improving plant tolerance to PTE toxicity by slag-based fertilizer application and highlights the theoretical basis for applying slag in PTE-contaminated environments worldwide.
Collapse
|
21
|
Liu XQ, Zhao XX, Liu Y, Zhang TA. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03626-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kakoria A, Sinha-Ray S, Sinha-Ray S. Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhao H, Song F, Su F, Shen Y, Li P. Removal of Cadmium from Contaminated Groundwater Using a Novel Silicon/Aluminum Nanomaterial: An Experimental Study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:234-247. [PMID: 33222007 DOI: 10.1007/s00244-020-00784-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a harmful element to human health and biodiversity. The removal of Cd from groundwater is of great significance to maintain the environmental sustainability and biodiversity. In this work, a novel low-temperature roasting associated with alkali was applied to synthesize an eco-friendly adsorbent using coal fly ash. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray fluorescence, and X-ray photoelectron spectroscopy were applied to analyze the physical and chemical characteristics of the adsorbent. The experiments show that a significant improvement in specific surface area and activity of adsorbent was observed in this study. The functional groups of Na-O and Fe-O were verified to be beneficial in the removal of Cd2+. The material capacity to adsorb Cd2+ was considerably improved, and the maximum uptake capacity was 61.8 mg g-1 for Cd2+ at 25 °C. Furthermore, pH and ionic strength play critical roles in the adsorption process. The Langmuir and pseudo-second-order models can appropriately describe the adsorption behavior, and the enhanced adsorption ability of Cd2+ by modified coal fly ash was attributed to ion-exchange, co-precipitation, and complexation. Higher sorption efficiency was maintained after two regeneration cycles. These results offer valuable insights to develop high-performance adsorbent for Cd2+ removal.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Fengmin Song
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Fengmei Su
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Yun Shen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
24
|
Florek J, Larivière D, Kählig H, Fiorilli SL, Onida B, Fontaine FG, Kleitz F. Understanding Selectivity of Mesoporous Silica-Grafted Diglycolamide-Type Ligands in the Solid-Phase Extraction of Rare Earths. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57003-57016. [PMID: 33300788 PMCID: PMC7760098 DOI: 10.1021/acsami.0c16282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/17/2020] [Indexed: 05/26/2023]
Abstract
Rare earth elements (REEs) and their compounds are essential for rapidly developing modern technologies. These materials are especially critical in the area of green/sustainable energy; however, only very high-purity fractions are appropriate for these applications. Yet, achieving efficient REE separation and purification in an economically and environmentally effective way remains a challenge. Moreover, current extraction technologies often generate large amounts of undesirable wastes. In that perspective, the development of selective, reusable, and extremely efficient sorbents is needed. Among numerous ligands used in the liquid-liquid extraction (LLE) process, the diglycolamide-based (DGA) ligands play a leading role. Although these ligands display notable extraction performance in the liquid phase, their extractive chemistry is not widely studied when such ligands are tethered to a solid support. A detailed understanding of the relationship between chemical structure and function (i.e., extraction selectivity) at the molecular level is still missing although it is a key factor for the development of advanced sorbents with tailored selectivity. Herein, a series of functionalized mesoporous silica (KIT-6) solid phases were investigated as sorbents for the selective extraction of REEs. To better understand the extraction behavior of these sorbents, different spectroscopic techniques (solid-state NMR, X-ray photoelectron spectroscopy, XPS, and Fourier transform infrared spectroscopy, FT-IR) were implemented. The obtained spectroscopic results provide useful insights into the chemical environment and reactivity of the chelating ligand anchored on the KIT-6 support. Furthermore, it can be suggested that depending on the extracted metal and/or structure of the ligand and its attachment to KIT-6, different functional groups (i.e., C═O, N-H, or silanols) act as the main adsorption centers and preferentially capture targeted elements, which in turn may be associated with the different selectivity of the synthesized sorbents. Thus, by determining how metals interact with different supports, we aim to better understand the solid-phase extraction process of hybrid (organo)silica sorbents and design better extraction materials.
Collapse
Affiliation(s)
- Justyna Florek
- Department
of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Dominic Larivière
- Department
of Chemistry, Université Laval, Québec, QC G1V 0A6, Canada
- Centre
en Catalyse et Chimie Verte (C3V) Université Laval, Québec, QC G1V 0A6, Canada
| | - Hanspeter Kählig
- Department
of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Sonia L. Fiorilli
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Barbara Onida
- Dipartimento
di Scienza Applicata e Tecnologia, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Frédéric-Georges Fontaine
- Department
of Chemistry, Université Laval, Québec, QC G1V 0A6, Canada
- Centre
en Catalyse et Chimie Verte (C3V) Université Laval, Québec, QC G1V 0A6, Canada
- Canada Research
Chair in Green Catalysis and Metal-Free Processes, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Freddy Kleitz
- Department
of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
25
|
The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Liu G, Meng J, Huang Y, Dai Z, Tang C, Xu J. Effects of carbide slag, lodestone and biochar on the immobilization, plant uptake and translocation of As and Cd in a contaminated paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115194. [PMID: 32682162 DOI: 10.1016/j.envpol.2020.115194] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The contamination of arsenic (As) and cadmium (Cd) in paddy soils is widely reported and these two metals are difficult to be co-remediated due to the contrasting chemical behaviors. This poses a challenge to simultaneously decrease their availability in soil and accumulation in rice via immobilization by amendments, especially in in-situ fields. This study compared the effects of carbide slag, lodestone and biochar on the bioavailability of As and Cd in soil and their accumulation in rice tissues and root Fe-Mn plaque at tillering and mature stages in a paddy field. The addition of three amendments significantly limited the mobilization of As and Cd in soil and decreased their accumulations in brown rice by 30-52% and 9-21%, respectively. Carbide slag was most whereas lodestone least effective in As and Cd immobilization in the tested contaminated soils. Community Bureau of Reference (BCR) sequential extraction analysis showed that the amendments changed the forms of As and Cd to less-available. Activated functional groups of the amendments (e.g. -OH, C-O, OC-O, OH- and CO32-) sequestered metals by precipitation, adsorption, ion exchange or electrostatic attributes contributed greatly to the As and Cd immobilization in soil. Furthermore, the amendments promoted the formation of Fe-Mn plaque in rice roots, which further limited the mobility of As and Cd in soil and prevented their transport from soil to rice roots. The application of carbide slag and biochar but not lodestone increased rice yield compared to the unamended control, indicating their applicability in situ remediation. Our study gives a strong reference to select immobilizing amendments for food safe production in co-contaminated paddy soils.
Collapse
Affiliation(s)
- Guofei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jun Meng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Yanlan Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, VIC, 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Chen X, Xiang Y, Xu L, Liu G. Recovery and reduction of Au(III) from mixed metal solution by thiourea-resorcinol-formaldehyde microspheres. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122812. [PMID: 32442852 DOI: 10.1016/j.jhazmat.2020.122812] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
To develop a novel adsorbent that can efficiently and rapidly recover gold from the leaching solution of electronic appliances, thiourea-resorcinol-formaldehyde resin microspheres (TRF) were prepared by a one-pot solvothermal method. Fourier transform infrared (FT-IR), thermogravimetric (TGA), X-ray diffraction (XRD), Transmission Electron Microscope (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron micrograph and energy dispersive X-ray spectroscopy (SEM and SEM-EDS) were used to analyze the morphology and physical properties of TRF microspheres. The first time, TRF was successfully used to capture gold ions. The results showed that it had very high absorption capacity (1432 mg·g-1), good selectivity (Au(III) ≫ Fe3+ > Ni2+ > Co2+ ≈ Cu2+ > Al3+ > Na+ ≈ K+) and excellent reuse performance for gold ions. Based on the study of adsorption isotherms and kinetics, Au(III) adsorption on TRF is mainly chemisorption and the adsorption sites are uniform. In acidic systems, Au(III) was reduced by TRF and deposited on TRF as elemental gold. This work provides the possibility to further develop the application of sulfur- and nitrogen-containing polymer materials in gold recovery from mixed metal solution.
Collapse
Affiliation(s)
- Xiangmeng Chen
- Chemical Engineering Institute, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yong Xiang
- Chemical Engineering Institute, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Li Xu
- Chemical Engineering Institute, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guoji Liu
- Chemical Engineering Institute, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
28
|
Qin L, Zhao Y, Wang L, Zhang L, Kang S, Wang W, Zhang T, Song S. Preparation of ion-imprinted montmorillonite nanosheets/chitosan gel beads for selective recovery of Cu(Ⅱ) from wastewater. CHEMOSPHERE 2020; 252:126560. [PMID: 32222519 DOI: 10.1016/j.chemosphere.2020.126560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
The novel ion-imprinted montmorillonite nanosheets/chitosan (IIMNC) gel beads were prepared for selective adsorption of Cu2+. The IIMNC gel beads were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The results showed that IIMNC was successfully assembled and rich in honeycombed pores, which performed well in the removal of Cu2+ through the synergistic effect of montmorillonite nanosheets and chitosan. The elimination of copper was followed by pseudo-second-order model and was enhanced by introduced montmorillonite nanosheets (MMTNS) because MMTNS attracted Cu(Ⅱ) by its negative charge and provided active adsorption sites through its high performance of cation exchange. This composite gel also showed excellent reusability, performing well in the removal of Cu2+ after undergoing adsorption-desorption in five cycles, because the adsorption sites of MMTNS can be continually reactivated by NaOH solution. More importantly, its high selectivity for Cu2+ provides a feasible way to recover Cu2+ from wastewater containing various cations.
Collapse
Affiliation(s)
- Lei Qin
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunliang Zhao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Liang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lingbo Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shichang Kang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Wei Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| |
Collapse
|
29
|
Fotsing PN, Woumfo ED, Mezghich S, Mignot M, Mofaddel N, Le Derf F, Vieillard J. Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr(vi) removal. RSC Adv 2020; 10:20009-20019. [PMID: 35520429 PMCID: PMC9054216 DOI: 10.1039/d0ra03027a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/20/2020] [Indexed: 12/22/2022] Open
Abstract
The present work addresses the development of simple, low-cost and eco-friendly cocoa-shell-based materials for efficient removal of heavy metal hexavalent chromium (Cr(vi)), and toxic nitrate (NO3 -) from aqueous solution. A conventional treatment process was used to purify cocoa shell (CS) into an adsorbent, followed by chemical grafting of dendrimers to promote its surface properties for nitrate and Cr(vi) removal. The morphology, surface charge, structure and stability of the new adsorbent were investigated by scanning electron microscopy, Fourier transform infrared and UV-visible spectroscopies, zeta potential, X-ray photoelectron spectrometry, and differential scanning calorimetry. The successful chemical grafting of the dendrimer (polyethyleneimine, PEI) onto purified CS was confirmed. CS-T-PEI-P proved to be a very efficient candidate for the removal of nitrate and chromium(vi). Removal of the two pollutants at different initial concentrations and pH values was studied and discussed. Sorption of chromium and nitrate was found to obey 2nd-order kinetics and a Freundlich-type isotherm, affording an uptake adsorption of 16.92 mg g-1 for NO3 - and 24.78 mg g-1 for Cr(vi). These results open promising prospects for its potential applications as a low cost catalyst in wastewater treatment.
Collapse
Affiliation(s)
- P Nkuigue Fotsing
- Laboratory of Applied Inorganic Chemistry, Faculty of Sciences, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
| | - E Djoufac Woumfo
- Laboratory of Applied Inorganic Chemistry, Faculty of Sciences, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
| | - S Mezghich
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - M Mignot
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - N Mofaddel
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - F Le Derf
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| | - J Vieillard
- Normandie Univ., UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014) 55, rue Saint Germain, 27000 Evreux France
| |
Collapse
|
30
|
Saldarriaga-Hernandez S, Hernandez-Vargas G, Iqbal HMN, Barceló D, Parra-Saldívar R. Bioremediation potential of Sargassum sp. biomass to tackle pollution in coastal ecosystems: Circular economy approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136978. [PMID: 32014784 DOI: 10.1016/j.scitotenv.2020.136978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023]
Abstract
During the past years, the ecological integrity and biodiversity of marine ecosystems have been highly threatened due to the controlled or uncontrolled release of high concentrations of pollutants generated through anthropogenic activities. The occurrence of environmentally related hazardous pollutants, such as toxic elements, and recalcitrant compounds in various environmental matrices has raised increasing concern. Different technologies have been developed for efficient removal and complete mitigation or degradation of these toxic elements from the aquatic environment. Among them, biosorption and bioaccumulation by renewable and biodegradable sources are of supreme interest and have not been reviewed much. For instance, the invasive seaweed Sargassum sp. has been spotted as a cost-effective natural material to capture targeted pollutants from the coastal ecosystem, which is currently becoming a pressing problem, around the globe, due to its unusual proliferation near tropical shores. This review is an effort to cover the left behind gap to present the multifunctional potentialities of Sargassum sp. biomass. Herein, salient information is given to highlight the potential of Sargassum sp. biomass for environmental decontamination with particular focus to coastal ecosystems. Bioremediation mechanisms, challenges of implementation and factors involved in adsorption and absorption of pollutants by seaweeds are also discussed in this review. Against this background, a circular economy perspective is given for the integrated use of the algal raw material. The up-taken pollutants can be recovered and reintegrated into the value chain of industrial processes, while residual biomass is refined to obtain added-value products as bioactive compounds with potential applications for biofuel, agriculture, cosmetics, nutraceutical, pharmaceutical industries among others, to make the most of renewable resources.
Collapse
Affiliation(s)
- Sara Saldarriaga-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL, Mexico
| | - Gustavo Hernandez-Vargas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, NL, Mexico.
| |
Collapse
|
31
|
Mao J, Lin S, Lu XJ, Wu XH, Zhou T, Yun YS. Ion-imprinted chitosan fiber for recovery of Pd(II): Obtaining high selectivity through selective adsorption and two-step desorption. ENVIRONMENTAL RESEARCH 2020; 182:108995. [PMID: 31851945 DOI: 10.1016/j.envres.2019.108995] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Selective separation of platinum group metals from acidic solutions is of great importance due to their cumulative supply risk and environmental concern. In this study, a Pd(II) ion-imprinted chitosan fiber (ICF) was prepared as the novel adsorbent, and a well-designed two-step desorption process was implemented for selectively recovering Pd(II) from acidic solution containing Pd(II) and interfering metals of Co(II), Ni(II), Cu(II) and Pt (IV). The ICF showed higher selectivity for Pd(II) adsorption, comparing the non-imprinted chitosan fiber (NICF) towards other metals adsorption. The first selective desorption was achieved by NaOH solution, since only Pt (IV) adsorbed on the ICF in a small amount could be eluted, without any acting on Pd(II) ions. The second desorption process was carried out using acidified thiourea solution for the exclusive Pd(II) ions desorption. Therefore, much higher selective recovery of Pd(II) was achieved through ICF with a good selective adsorption performance and a well-designed desorption process. Furthermore, the mechanisms of selective adsorption and desorption were investigated by X-ray photoelectron spectra (XPS) and X-ray diffraction (XRD) analyses. Finally, ICF-packed column system was conducted using synthetic multiple metals solution and a practical hydrometallurgy wastewater as influent, respectively, with a good adsorption capacity of 87.2 mg g-1 and 94.2 mg g-1, resulting quite high concentrated effluent consisted of 97.4% of Pd(II) and 99.5% of Pd(II), respectively. It was opened up a promising designed material and technique for selectively recovering Pd(II) in the further practical large-scale application.
Collapse
Affiliation(s)
- Juan Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Shuo Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Xie Juan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiao Hui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
32
|
Preparation sulfhydryl functionalized paramagnetic Ni0.25Zn0.75Fe2O4 microspheres for separating Pb(II) and Hg(II) ions from aqueous solution. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Manzoor K, Ahmad M, Ahmad S, Ikram S. Synthesis, Characterization, Kinetics, and Thermodynamics of EDTA-Modified Chitosan-Carboxymethyl Cellulose as Cu(II) Ion Adsorbent. ACS OMEGA 2019; 4:17425-17437. [PMID: 31656915 PMCID: PMC6812121 DOI: 10.1021/acsomega.9b02214] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
A new adsorbent derived from the naturally occurring biopolymers, chitosan (CS) and carboxymethyl cellulose (CMC) was prepared by cross-linking them using EDTA. EDTA having high affinity for metal ions can be used to enhance the chelation properties of the adsorbent enormously. The product obtained (chitosan-EDTA-CMC, CSECM) was characterized by different techniques: FTIR, XRD, SEM/EDAX, TGA, and XPS. The parameters for evaluation of the adsorption properties for removal of Cu(II) ions from the aqueous solution were determined using the batch adsorption method by studying the effect of pH, contact time, initial ion concentration, and temperature on adsorption. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models were applied to study the kinetics of the adsorption process, whereas Langmuir, Freundlich, Temkin, and D-R models were applied to evaluate the thermodynamics of the adsorption process. The kinetic adsorption parameters were in best agreement with the pseudo-second-order model, while thermodynamic parameters best fitted to the Langmuir isotherm at different temperatures for adsorption of Cu(II) ions from aqueous solution with a maximum adsorption capacity of 142.95 mg/g at pH 5.5. CSECM showed excellent regeneration capability and recovery of the Cu(II) ion up to five cycles without the loss of the adsorption efficiency, which is the best characteristic to select the appropriate choice of the adsorbent. The adsorbent was also employed in batch experiments to evaluate the adsorption of hardness, producing common metal ions in single and real wastewater solutions.
Collapse
Affiliation(s)
- Kaiser Manzoor
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Mudasir Ahmad
- Applied
Chemistry, School of Natural & Applied Science, Northwestern Polytechnical University, Xi’an 710072, P.R. China
| | - Suhail Ahmad
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
34
|
Tangtubtim S, Saikrasun S. Effective removals of copper (II) and lead (II) cations from aqueous solutions by polyethyleneimine-immobilized pineapple fiber. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Pakade VE, Tavengwa NT, Madikizela LM. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 2019; 9:26142-26164. [PMID: 35531021 PMCID: PMC9070541 DOI: 10.1039/c9ra05188k] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Chromium exists mainly in two forms in environmental matrices, namely, the hexavalent (Cr(vi)) and trivalent (Cr(iii)) chromium. While Cr(iii) is a micronutrient, Cr(vi) is a known carcinogen, and that warrants removal from environmental samples. Amongst the removal techniques reported in the literature, adsorption methods are viewed as superior to other methods because they use less chemicals; consequently, they are less toxic and easy to handle. Mitigation of chromium using adsorption methods has been achieved by exploiting the physical, chemical, and biological properties of Cr(vi) due to its dissolution tendencies in aqueous solutions. Many adsorbents, including synthetic polymers, activated carbons, biomass, graphene oxide, and nanoparticles as well as bioremediation, have been successfully applied in Cr(vi) remediation. Initially, adsorbents were used singly in their natural form, but recent literature shows that more composite materials are generated and applied. This review focused on the recent advances, insights, and project future directions for these adsorbents as well as compare and contrast the performances achieved by the mentioned adsorbents and their variants.
Collapse
Affiliation(s)
- Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology Private Bag X 021 Vanderbijlpark South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, University of Venda Private Bag X5050 Thohoyandou 0950 South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology PO Box 1334 Durban 4000 South Africa
| |
Collapse
|
36
|
Mechanisms of Adsorption of Heavy Metal Cations from Waters by an Amino Bio-Based Resin Derived from Rosin. Polymers (Basel) 2019; 11:polym11060969. [PMID: 31163621 PMCID: PMC6630295 DOI: 10.3390/polym11060969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022] Open
Abstract
Rosin derived from conifer trees is used as the basis for a novel environmentally-friendly adsorbent prepared from a sustainable resource. After treatment with ethylenediamine, ethylenediamine rosin-based resin (EDAR) is produced, which possesses cation exchange capacity that is comparable to that of the best commercial synthetic resins. This is demonstrated by its application to the removal of Pb, Cd, and Cu from water, in single and multicomponent systems. Maximum uptake was obtained at pH 5 and in the order Pb(II) > Cd(II) > Cu(II). The maximum adsorption of Pb was ~1.8 mmol/g, but the adsorption process resembled the Freundlich isotherm, whereas the adsorption of Cd(II) and Cu(II) followed the Langmuir isotherm. In the multicomponent systems, there was direct competition between Pb and Cd for sorption sites, whereas the results with Cu indicated it had a preference for different types of sites compared to Pb and Cd. The EDAR resin could be efficiently regenerated and used repeatedly with only a small decrease in performance. Characterization of EDAR, and investigations of its adsorption mechanisms using physical, spectroscopic, and theoretical techniques, including fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (13C NMR), scanning electron microscope (SEM), Brunauer Emmett Teller (BET) method, elemental analysis, thermogravimetric analysis (TGA), and molecular dynamics calculations, showed that amino groups have a critical role in determining the cation adsorption properties. We conclude that this new adsorbent derived from an abundant natural material has the potential to make valuable contributions to the routine removal of heavy metal ions (HMs) from drinking water and wastewater.
Collapse
|
37
|
Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int J Biol Macromol 2019; 129:68-77. [DOI: 10.1016/j.ijbiomac.2019.01.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
|
38
|
Han C, Yang T, Liu H, Yang L, Luo Y. Characterizations and mechanisms for synthesis of chitosan-coated Na-X zeolite from fly ash and As(V) adsorption study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10106-10116. [PMID: 30756353 DOI: 10.1007/s11356-019-04466-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Solid waste fly ash with low aluminum of Yunnan Province in China was used as pristine material to prepared chitosan-coated Na-X zeolite, and the obtained composite material was employed as As(V) adsorbent. Then, the prepared materials were characterized by XRD, FT-IR, and XPS. And the results suggested that the low aluminum fly ash was successfully convert into Na-X zeolite, and the mineralization between Si-OH of the obtained Na-X zeolite and C-OH of chitosan was the dominated mechanism for coated chitosan over the surface of Na-X zeolite. From the batch experiments of As(V) removal, it has been found that the coated chitosan could significantly improve As(V) performance of Na-X zeolite. The optimal working pH for removal As(V) by chitosan-coated Na-X zeolite was attained at pH 2.1 ± 0.1, and the maximum adsorption capacity was 63.23 mg/g. And the adsorption data at different interval time was excellent fitted by pseudo-second-order kinetic model. From the analyze of XPS, the results suggested that As(V) uptake over adsorbent by the bond of As-N and As-O and the surface hydroxyl group of Al-OH and -NH2 were involved in uptake As(V) from acid wastewater.
Collapse
Affiliation(s)
- Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Ting Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Liu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
39
|
Zhang Y, Zhu C, Liu F, Yuan Y, Wu H, Li A. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:265-279. [PMID: 30055489 DOI: 10.1016/j.scitotenv.2018.07.279] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 05/12/2023]
Abstract
Adsorption is one of the most widely used and effective wastewater treatment methods. The role of ionic strength (IS) in shaping the adsorption performances is much necessary due to the ubiquity of electrolyte ions in water body and industrial effluents. The influences of IS on adsorption are rather complex, because electrolyte ions affect both adsorption kinetics and thermodynamics by changing the basic characteristics of adsorbents and adsorbates. For a given adsorption system, multiple or even contradictory effects of IS may coexist under identical experimental conditions, rendering the dominant mechanism recognition and net effect prediction complicated. We herein reviewed the key advancement on the interaction and mechanisms of IS, including change in number of active sites for adsorbents, ion pair for metal ions, molecular aggregation and salting-out effect for organic compounds, site competition for both inorganic and organic adsorbates, and charge compensation for adsorbent-adsorbate reciprocal interactions. The corresponding fundamental theory was thoroughly described, and the efforts made by various researchers were explicated. The structural optimization of adsorbents affected by IS was detailed, also highlighting polyamine materials with exciting "salt-promotion" effects on heavy metal removal from high salinity wastewater. In addition, the research trends and prospects were briefly discussed.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Changqing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Fuqiang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China.
| | - Yuan Yuan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haide Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023, PR China
| |
Collapse
|
40
|
Sutirman ZA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA, Jume BH. Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. Int J Biol Macromol 2018; 116:255-263. [DOI: 10.1016/j.ijbiomac.2018.05.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/02/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
|
41
|
Gore PM, Khurana L, Siddique S, Panicker A, Kandasubramanian B. Ion-imprinted electrospun nanofibers of chitosan/1-butyl-3-methylimidazolium tetrafluoroborate for the dynamic expulsion of thorium (IV) ions from mimicked effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3320-3334. [PMID: 29150802 DOI: 10.1007/s11356-017-0618-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The present study explores the innocuous, biocompatible, and extremely competent molecularly imprinted chitosan/RTIL electrospun nanofibers having average diameter of 30 nm for the expulsion of thorium (IV) ions from the mimicked effluent waste. The extended Flory-Huggins theory and three-dimensional molecular modeling have been effectively premeditated via Materials Studio software for enumerating the inter-miscibility and compatibility (Chi parameter (χ) = 1.019, mixing energy (Emix) = 0.603 kcal/mol) of the chitosan/RTIL (1-butyl-3-methylimidazolium tetrafluoroborate). The maximum adsorption efficiency is found to be 90% at a neutral pH of 7, and a temperature of 298 K within 120 min. The adsorption process was extensively studied by two-parameter adsorption isotherms like Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) and three-parameter models like Redlich-Paterson and Sips isotherm. Pseudo-second-order kinetics model (R2 = 0.982) and Langmuir isotherm (R2 = 0.994) bestowed the best fitting on chitosan/RTIL nanofibers for the adsorption of Th (IV) ions. The thermodynamic study reveals the spontaneity and exothermic nature of the reaction. The experimental analysis conjoint with isotherm and kinetic models, and simulation study establish the applicability of chitosan/RTIL nanofibers for the expulsion of Th (IV) and other toxic metal ions from the effluents. Graphical abstract Ion-imprinted electrospun nanofiber for expulsion of thorium (IV) ion.
Collapse
Affiliation(s)
- Prakash Macchindra Gore
- Department of Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India
| | - Latika Khurana
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Suhail Siddique
- Center for Biopolymer Science and Technology, a unit of CIPET, Cochin, Kerala, 683501, India
| | - Anjana Panicker
- Center for Biopolymer Science and Technology, a unit of CIPET, Cochin, Kerala, 683501, India
| | - Balasubramanian Kandasubramanian
- Department of Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, Maharashtra, 411025, India.
| |
Collapse
|
42
|
Xie R, Jin Y, Chen Y, Jiang W. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3022-3034. [PMID: 29210688 DOI: 10.2166/wst.2017.471] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N2/77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.
Collapse
Affiliation(s)
- Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Yan Jin
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail:
| | - Wenju Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China E-mail: ; National Engineering Research Center for Flue Gas Desulfurization, Chengdu 610065, China
| |
Collapse
|
43
|
Kong A, He B, Liu G, Lu X, Hao Y, Bao X, Yan F, Li J. A novel green biosorbent from chitosan modified by sodium phytate for copper (II) ion removal. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aiqun Kong
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Guangrui Liu
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Xiaosong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Yingdong Hao
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Xinyao Bao
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
| | - Feng Yan
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Environment and Chemical Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes; Tianjin Polytechnic University; Tianjin 300387 China
- School of Materials Science and Engineering; Tianjin Polytechnic University; Tianjin 300387 China
| |
Collapse
|
44
|
Huang D, Tang Z, Peng Z, Lai C, Zeng G, Zhang C, Xu P, Cheng M, Wan J, Wang R. Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Feng Y, Liu Y, Xue L, Sun H, Guo Z, Zhang Y, Yang L. Carboxylic acid functionalized sesame straw: A sustainable cost-effective bioadsorbent with superior dye adsorption capacity. BIORESOURCE TECHNOLOGY 2017; 238:675-683. [PMID: 28494410 DOI: 10.1016/j.biortech.2017.04.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
This study prepared a carboxylic functionalized bioadsorbent that met the "4-E" criteria: Efficient, Economical, Environmentally friendly, and Easily-produced. Sesame straw (Sesamum indicum L.) was functionalized through treatment with citric acid (SSCA) and tartaric acid (SSTA). The products were examined for adsorption capacity and mechanisms. Langmuir model gave the best fit for the isotherm data, and the maximum monolayer adsorption capacity of SSCA was 650mgg-1 for methylene blue (MB). The excellent dye adsorption capacity of SSCA can be attributed to the introduction of ester groups during citric-acid modification and the tube-like structures (i.e., sesame straw cell wall remnants). At last, the cost of carboxylic acid functionalized bioadsorbents was evaluated, which showed that SSCA would be the most cost-effective bioadsorbent. Additionally, this study presents a thermo-decomposition methodology for contaminant-loaded bioadsorbent. Results showed that SSCA is probably one of the few bioadsorbents that can be produced and applied in industrial scale.
Collapse
Affiliation(s)
- Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Yang Liu
- Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihong Xue
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China
| | - Haijun Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi Guo
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China
| | - Yingying Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China
| | - Linzhang Yang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, Nanjing 210014, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
46
|
Luo X, Zhong W, Luo J, Yang L, Long J, Guo B, Luo S. Lithium ion-imprinted polymers with hydrophilic PHEMA polymer brushes: The role of grafting density in anti-interference and anti-blockage in wastewater. J Colloid Interface Sci 2017; 492:146-156. [DOI: 10.1016/j.jcis.2016.12.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/26/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
|
47
|
The synthesis and adsorption performance of polyamine Cu2+ imprinted polymer for selective removal of Cu2+. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-1905-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Luo X, Yu H, Xi Y, Fang L, Liu L, Luo J. Selective removal Pb(ii) ions form wastewater using Pb(ii) ion-imprinted polymers with bi-component polymer brushes. RSC Adv 2017. [DOI: 10.1039/c7ra03536e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ion imprinted polymers (IIPs) are very difficult to apply in actual wastewater containing solid particles and floccules due to the imprinting hole blockage of losing adsorption performance.
Collapse
Affiliation(s)
- Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P.R. China
| | - Haiyan Yu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P.R. China
| | - Yu Xi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P.R. China
| | - Lili Fang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P.R. China
| | - Lingling Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P.R. China
| | - Jinming Luo
- School of Civil and Environmental Engineering and Brook Byers Institute for Sustainable Systems
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
49
|
Li H, Ge Y, Zhang X. High efficient removal of lead from aqueous solution by preparation of novel PPG-nZVI beads as sorbents. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
E A K N, S D, Narayanan V, A S. Chitosan stabilized Ag-Au nanoalloy for colorimetric sensing and 5-Fluorouracil delivery. Int J Biol Macromol 2016; 95:862-872. [PMID: 27773838 DOI: 10.1016/j.ijbiomac.2016.10.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 01/28/2023]
Abstract
Fluorescent CS/Ag-Au (chitosan/silver-gold) nanocomposite containing different weight percentage of Ag and Au was synthesized using the chemical reduction method. 5-Fluorouracil (5-FU) encapsulated nanocomposite was also synthesized and its cytotoxicity towards breast cancer cell lines (MCF-7) studied. The XRD pattern of the nanocomposite shows peaks of chitosan, silver and gold. The peaks corresponding to gold and silver indicate the face centered cubic structure of silver and gold nanoparticles. The polymer matrix nanocomposite structure with chitosan as the matrix and silver-gold as the filler phase is evident from the high resolution transmission electron microscopy (HRTEM) images and an increase in particle size from∼5nm to about 12nm is noticeable on encapsulation of 5-Fluorouracil (5-FU). The presence of fluorine in the case of 5-FU encapsulated nanocomposite and the presence of reflections corresponding to 5-FU in the SAED pattern confirms the encapsulation of 5-FU into the nanocomposite, which is also confirmed by elemental mapping. The presence of a single surface plasmon resonance (SPR) peak in the case of the nanocomposite in a position in between the SPR bands of pure silver and gold nanoparticles confirms the formation of Ag-Au alloy and the elemental mapping results obtained for the nanocomposite also supports the UV-vis results. The photoluminescence (PL) spectrum clearly shows an emission peak in the near infrared region (700-900nm), which makes the nanocomposite suitable for use in cellular imaging. The application of the nanocomposite as a colorimetric sensor was also studied and it was found to be useful for the specific detection of mercury (Hg) without much interference and the detection limit was found to be 5.0×10-8M.
Collapse
Affiliation(s)
- Nivethaa E A K
- Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-25, India
| | - Dhanavel S
- Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-25, India
| | - V Narayanan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Stephen A
- Material Science Centre, Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-25, India.
| |
Collapse
|