1
|
Tao H, Peng J, Chen Y, Zhou L, Lin T. Migration of natural organic matter and Pseudomonas fluorescens-associated polystyrene on natural substrates in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174997. [PMID: 39053541 DOI: 10.1016/j.scitotenv.2024.174997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the migration behavior of microplastics (MPs) covered with natural organic matter (NOM) and biofilm on three substrates (silica, Pseudomonas fluorescent and Pseudomonas aeruginosa biofilms) in various ionic strengths, focusing on the alterations in surface properties based on surface energy theory that affected their deposition and release processes. Peptone and Pseudomonas fluorescens were employed to generate NOM-attached and biofilm-coated polystyrene (PS) (NOM-PS and Bio-PS). NOM-PS and Bio-PS both exhibited different surface properties, as increased roughness and particle sizes, more hydrophilic surfaces and altered zeta potentials which increased with ionic strength. Although the deposition of NOM-PS on biofilms were enhanced by higher ionic strengths and the addition of Ca2+, while Bio-PS deposited less on biofilms and more on the silica surface. Both types exhibited diffusion-driven adsorption on the silica surface, with Bio-PS also engaging in synergistic and competitive interactions on biofilm surfaces. Release tests revealed that NOM-PS and Bio-PS were prone to release from silica than from biofilms. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory furtherly demonstrated that mid-range electrostatic (EL) repulsion had significantly impacts on NOM-PS deposition, and structural properties of extracellular polymeric substances (EPS) and substrate could affect Bio-PS migration.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jingtong Peng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
2
|
Zhao E, Xiong X, Li X, Hu H, Wu C. Effect of Biofilm Forming on the Migration of Di(2-ethylhexyl)phthalate from PVC Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6326-6334. [PMID: 38551364 DOI: 10.1021/acs.est.3c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Plastic additives, represented by plasticizers, are important components of plastic pollution. Biofilms inevitably form on plastic surfaces when plastic enters the aqueous environment. However, little is known about the effect of biofilms on plastic surfaces on the release of additives therein. In this study, PVC plastics with different levels of di(2-ethylhexyl)phthalate (DEHP) content were investigated to study the effect of biofilm growth on DEHP release. The presence of biofilms promoted the migration of DEHP from PVC plastics to the external environment. Relative to biofilm-free controls, although the presence of surface biofilm resulted in 0.8 to 11.6 times lower DEHP concentrations in water, the concentrations of the degradation product, monoethylhexyl phthalate (MEHP) in water, were 2.3 to 57.3 times higher. When the total release amounts of DEHP in the biofilm and in the water were combined, they were increased by 0.6-73 times after biofilm growth. However, most of the released DEHP was adsorbed in the biofilms and was subsequently degraded. The results of this study suggest that the biofilm as a new interface between plastics and the surrounding environment can affect the transport and transformation of plastic additives in the environment through barrier, adsorption, and degradation. Future research endeavors should aim to explore the transport dynamics and fate of plastic additives under various biofilm compositions as well as evaluate the ecological risks associated with their enrichment by biofilms.
Collapse
Affiliation(s)
- E Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Xin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Road, Wuhan 430072, PR China
| |
Collapse
|
3
|
Yamini V, Shanmugam V, Rameshpathy M, Venkatraman G, Ramanathan G, Al Garalleh H, Hashmi A, Brindhadevi K, Devi Rajeswari V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. ENVIRONMENTAL RESEARCH 2023; 236:116776. [PMID: 37517486 DOI: 10.1016/j.envres.2023.116776] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
A steadily increasing production volume of nanoparticles reflects their numerous industrial and domestic applications. These economic successes come with the potential adverse effects on natural systems that are associated with their presence in the environment. Biological activities and effects of nanoparticles are affected by their entry method together with their specificities like their size, shape, charge, area, and chemical composition. Particles can be classified as safe or dangerous depending on their specific properties. As both aquatic and terrestrial systems suffer from organic and inorganic contamination, nanoparticles remain a sink for these contaminants. Researching the sources, synthesis, fate, and toxicity of nanoparticles has advanced significantly during the last ten years. We summarise nanoparticle pathways throughout the ecosystem and their interactions with beneficial microorganisms in this research. The prevalence of nanoparticles in the ecosystem causes beneficial microorganisms to become hazardous to their cells, which prevents the synthesis of bioactive molecules from undergoing molecular modifications and diminishes the microbe population. Recently, observed concentrations in the field could support predictions of ambient concentrations based on modeling methodologies. The aim is to illustrate the beneficial and negative effects that nanoparticles have on aqueous and terrestrial ecosystems, as well as the methods utilized to reduce their toxicity.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Venkatkumar Shanmugam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - M Rameshpathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology, Dahban, Jeddah, 21361, Saudi Arabia
| | - Ahmed Hashmi
- Architectural Engineering Department, College of Engineering, University of Business and Technology - Dahban, Jeddah, 21361, Saudi Arabia
| | - Kathirvel Brindhadevi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, 140103, India.
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Fu J, Gao B, Xu H, Hao S, Ren J, Wu J, Sun Y. Effects of biofilms on the retention and transport of PFOA in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130392. [PMID: 36444074 DOI: 10.1016/j.jhazmat.2022.130392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Understanding the fate and transport of perfluorooctanoic acid (PFOA) in soil and groundwater is essential to reliable assessments of its risks. This study investigated the impacts of Gram-positive Bacillus subtilis (BS), Gram-negative Pseudomonas aeruginosa (PA) and wild microbiota (WM) biofilm on the transport of PFOA in saturated sand columns at two ionic strengths (i.e., 1.0 and 20.0 mM NaCl). The retention of PFOA in biofilm-coated sand columns was higher than that in uncoated sand columns, due to biofilm-induced reinforced hydrophobic interactions and surface roughness, and decreased zeta potential. However, the retention effects varied among biofilm bacterial species with PFOA retardation factors in PA, WM and BS columns of 1.29-1.38, 1.21-1.29 and 1.11-1.15, respectively. Notably, PA biofilm had the most pronounced effect on PFOA retention. While increasing ionic strength promoted the retention of PFOA in BS biofilm-coated sand, it had no significant impact on PFOA transport in PA and WM biofilm-coated sand. This could be attributed to the differences in biofilm composition, deviating the ionic strengths effects on electrostatic double layer compression. The advection dispersion equation coupled with two-site kinetic retention model well described the transport of PFOA in all saturated columns. Our findings reveal that biofilm plays important roles in PFOA transport in porous media, instructive for risk assessment and remediation of PFOA contamination.
Collapse
Affiliation(s)
- Jiaju Fu
- School of Earth Sciences and Engineering, Hydrosciences Department, Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing University, Nanjing 210023, China
| | - Shefeng Hao
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Jinghua Ren
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Khan AUH, Naidu R, Dharmarajan R, Fang C, Shon H, Dong Z, Liu Y. The interaction mechanisms of co-existing polybrominated diphenyl ethers and engineered nanoparticles in environmental waters: A critical review. J Environ Sci (China) 2023; 124:227-252. [PMID: 36182134 DOI: 10.1016/j.jes.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 06/16/2023]
Abstract
This review focuses on the occurrence and interactions of engineered nanoparticles (ENPs) and brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) in water systems and the generation of highly complex compounds in the environment. The release of ENPs and BFRs (e.g. PBDEs) to aquatic environments during their usage and disposal are summarised together with their key interaction mechanisms. The major interaction mechanisms including electrostatic, van der Waals, hydrophobic, molecular bridging and steric, hydrogen and π-bonding, cation bridging and ligand exchange were identified. The presence of ENPs could influence the fate and behaviour of PBDEs through the interactions as well as induced reactions under certain conditions which increases the formation of complex compounds. The interaction leads to alteration of behaviour for PBDEs and their toxic effects to ecological receptors. The intermingled compound (ENPs-BFRs) would show different behaviour from the parental ENPs or BFRs, which are currently lack of investigation. This review provided insights on the interactions of ENPs and BFRs in artificial, environmental water systems and wastewater treatment plants (WWTPs), which are important for a comprehensive risk assessment.
Collapse
Affiliation(s)
- Anwar Ul Haq Khan
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Raja Dharmarajan
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hokyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW 2007, Australia
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijging 100191, China
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Jing X, Wu Y, Wang D, Qu C, Liu J, Gao C, Mohamed A, Huang Q, Cai P, Ashry NM. Ionic Strength-Dependent Attachment of Pseudomonas aeruginosa PAO1 on Graphene Oxide Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16707-16715. [PMID: 36378621 DOI: 10.1021/acs.est.1c08672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO) is a widely used antimicrobial and antibiofouling material in surface modification. Although the antibacterial mechanisms of GO have been thoroughly elucidated, the dynamics of bacterial attachment on GO surfaces under environmentally relevant conditions remain largely unknown. In this study, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to examine the dynamic attachment processes of a model organism Pseudomonas aeruginosa PAO1 onto GO surface under different ionic strengths (1-600 mM NaCl). Our results show the highest bacterial attachment at moderate ionic strengths (200-400 mM). The quantitative model of QCM-D reveals that the enhanced bacterial attachment is attributed to the higher contact area between bacterial cells and GO surface. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and atomic force microscopy (AFM) analysis were employed to reveal the mechanisms of the bacteria-GO interactions under different ionic strengths. The strong electrostatic and steric repulsion at low ionic strengths (1-100 mM) was found to hinder the bacteria-GO interaction, while the limited polymer bridging caused by the collapse of biopolymer layers reduced cell attachment at a high ionic strength (600 mM). These findings advance our understanding of the ionic strength-dependent bacteria-GO interaction and provide implications to further improve the antibiofouling performance of GO-modified surfaces.
Collapse
Affiliation(s)
- Xinxin Jing
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Yichao Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Chenchen Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Jun Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Chunhui Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Abdelkader Mohamed
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Qiaoyun Huang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Peng Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
| | - Noha Mohamed Ashry
- College of Resources and Environment, Huazhong Agricultural University, Wuhan430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor, Qalubia13736, Egypt
| |
Collapse
|
8
|
Zhao W, Su Z, Geng T, Zhao Y, Tian Y, Zhao P. Effects of ionic strength and particle size on transport of microplastic and humic acid in porous media. CHEMOSPHERE 2022; 309:136593. [PMID: 36167207 DOI: 10.1016/j.chemosphere.2022.136593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
As an emerging pollutant, the transport behavior of colloidal microplastic particles (CMPs) in saturated porous media may be affected by the simultaneous presence of other substances in the natural environment. In this study, colloidal polystyrene microplastic particles (PSMPs) were selected as the representative of CMPs to investigate the cotransport behaviors of CMPs in the presence of humic acid (HA) under varied environmental conditions (ionic strength: 1, 100 mM KCl; HA concentration: 0, 5, 10, 20 mg⋅L-1) in porous media. The presence of HA with different concentrations was found to increase the mobility of 1.0-μm and 0.2-μm CMPs in porous media in a non-linear and non-monotonic manner. Furthermore, the HA-facilitated transport of CMPs occurred under both electrostatically unfavorable and favorable attachment conditions (limited to the conditions examined in this study, corresponding to 1 and 100 mM KCl, respectively). The transport behavior of the smaller-sized CMPs (0.2-μm CMPs) was more sensitive to the change of ionic strength and the presence of HA than that of the larger-sized CMPs (1.0-μm CMPs). The cotransport process of CMPs and HA was affected by many factors. Modeling results showed that a small amount of competitive blocking occurred during the cotransport process. Moreover, both the presence of HA and change in ionic strength could affect the surface properties of CMPs. Thus, the cotransport behavior of CMPs with HA was different from the transport of individual CMPs in porous media. Experimental results revealed that HA induced complexity in the transport behavior of CMPs in the aqueous environment. Therefore, undeniably, a lot more systematic explorations are further demanded to better comprehend the CMPs cotransport mechanism in the presence of other substances.
Collapse
Affiliation(s)
- Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhan Su
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tong Geng
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuwei Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Tao H, Yang L, Qi Y, Chen Y, Yu D, Zhou L, Lin T, Xu H, Song J. Deposition of polystyrene microplastics on bare or biofilm-coated silica analysed via QCM-D. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157661. [PMID: 35907535 DOI: 10.1016/j.scitotenv.2022.157661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The mobility of microplastics (MPs) in aqueous media is closely related to their environmental risk. The naturally occurring silica substrate surface in the aquatic environment is easily colonized by microorganisms and forms a biofilm, which may affect the migration and distribution of MPs. Herein, a typical MP, polystyrene (PS), and Pseudomonas fluorescens (P. fluorescens) biofilms were selected to study the deposition and release of pristine or ultraviolet (UV)-aged PS MPs on silica and biofilms under different ionic strengths using a quartz crystal microbalance dissipation (QCM-D) system. Statistical analyses of the deposition experiments revealed a significant impact of P. fluorescens biofilms on deposition (p = 0.0042). The deposition rate of weathered MPs on the biofilms was 4.0 ± 0.1 to 16.3 ± 0.6 times that on silica. A release experiment revealed that the biofilm reduced the release fraction (fr) of weathered MPs by 34.5 ± 0.3 % compared to bare silica. In addition, the UV-ageing treatment reduced the deposition mass of MPs on the surface of silica by 27.6 ± 0.21 % compared to pristine microspheres. The analysis of the deposition mechanism revealed that the promotion and inhibition of biofilm or UV-ageing treatment on the deposition of microspheres could be attributed to the non-Derjaguin-Landau-Verwey-Overbeek (DLVO) force and the decreased electrostatic repulsion or the increased hydration repulsion, respectively.
Collapse
Affiliation(s)
- Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.
| | - Lan Yang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Yiting Qi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Yiyang Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Duo Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Lingqin Zhou
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Jakhar AM, Aziz I, Kaleri AR, Hasnain M, Haider G, Ma J, Abideen Z. Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NANOIMPACT 2022; 27:100411. [PMID: 35803478 DOI: 10.1016/j.impact.2022.100411] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/19/2022] [Accepted: 06/26/2022] [Indexed: 05/21/2023]
Abstract
Excessive use of synthetic fertilizers cause economic burdens, increasing soil, water and atmospheric pollution. Nano-fertilizers have shown great potential for their sustainable uses in soil fertility, crop production and with minimum or no environmental tradeoffs. Nano-fertilizers are of submicroscopic sizes, have a large surface area to volume ratio, can have nutrient encapsulation, and greater mobility hence they may increase plant nutrient access and crop yield. Due to these properties, nano-fertilizers are regarded as deliverable 'smart system of nutrients'. However, the problems in the agroecosystem are broader than existing developments. For example, nutrient delivery in different physicochemical properties of soils, moisture, and other agro-ecological conditions is still a challenge. In this context, the present review provides an overview of various uses of nanotechnology in agriculture, preference of nano-fertilizers over the conventional fertilizers, nano particles formation, mobility, and role in heterogeneous soils, with special emphasis on the development and use of chitosan-based nano-fertilizers.
Collapse
Affiliation(s)
- Ali Murad Jakhar
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China; Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan
| | - Irfan Aziz
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Abdul Rasheed Kaleri
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jiahua Ma
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China.
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
11
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
12
|
Liu G, Li H, Liu Y, Jin R, Zhou J, Ren Z, Wang Z, Yan C. Extracellular electron transfer influences the transport and retention of ferrihydrite nanoparticles in quartz sand coated with Shewanella oneidensis biofilm. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126023. [PMID: 33992002 DOI: 10.1016/j.jhazmat.2021.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Microbial biofilm has been found to impact the mobility of nanoparticles in saturated porous media by altering physicochemical properties of collector surface. However, little is known about the influence of biofilm's biological activity on nanoparticle transport and retention. Here, the transport of ferrihydrite nanoparticles (FhNPs) was studied in quartz sands coated with biofilm of Shewanella oneidensis MR-1 that is capable of reducing Fe(III) through extracellular electron transfer (EET). It was found that MR-1 biofilm coating enhanced FhNPs' deposition under different pH/ionic strength conditions and humic acid concentrations. More importantly, when the influent electron donor (glucose) concentration was increased to promote biofilm's EET activity, the breakthrough of FhNPs in biofilm-coated sands was inhibited. A lack of continuous and stable supply of electron donor, on the contrary, led to remobilization and release of the originally retained FhNPs. Column experiments with biofilm of EET-deficient MR-1 mutants (ΔomcA/ΔmtrC and ΔcymA) further indicated that the impairment of EET activity decreased the retention of FhNPs. It is proposed that the effective surface binding and adhesion of FhNPs that is required by direct EET cannot be neglected when evaluating the transport of FhNPs in sands coated with electroactive biofilm.
Collapse
Affiliation(s)
- Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment, Shenyang University, Shenyang 110000, China.
| | - Hanyi Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhen Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Crampon M, Hellal J, Mouvet C, Ollivier P. Degradation of tetrachloroethylene by zero valent iron nanoparticles in the presence of a natural groundwater bacterial biofilm in a sandy porous media. Heliyon 2021; 7:e05854. [PMID: 33474508 PMCID: PMC7803639 DOI: 10.1016/j.heliyon.2020.e05854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Biofilms are naturally present in aquifers and can interact with zero valent iron nanoparticles (nZVI) used as remediation agents in contaminated groundwater; thereby they may alter nZVI reactivity towards targeted contaminants in porous media. Laboratory scale experiments using columns filled with sand (50 cm long and 5.2 cm in diameter) were performed to investigate the impact of natural biofilms on nZVI reactivity towards tetrachloroethylene (PCE) in conditions simulating an unconsolidated sandy aquifer. Solutions containing PCE were injected through the sand columns in the presence or absence of biofilm and nZVI. Concentrations in PCE and its metabolites were monitored during 45 days in dissolved and gas phases. PCE concentrations decreased at the column outlets due both to its reductive dechlorination by nZVI (~30% of injected PCE) and its sorption or deposition (as PCE-DNAPL) on sand (~35% of injected PCE). No significant differences in PCE concentrations were found in presence or absence of biofilm. However, biofilm presence affected the nature of PCE metabolites. A higher release of ethene in the column containing biofilm was observed, whereas ethane was dominant in the absence of biofilm. Microbes consumed H2 released by the corrosion of nZVI limiting the hydrogenation of ethene to ethane. The consequences of biofilm development in porous media should be taken into account when considering treatment with nZVI, as it may affect the nature of produced metabolites.
Collapse
|
14
|
Zhao P, Cui L, Zhao W, Tian Y, Li M, Wang Y, Chen Z. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: The impact of ionic strength and cationic types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142064. [PMID: 32911172 DOI: 10.1016/j.scitotenv.2020.142064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The cotransport behaviors of colloidal polystyrene microplastic particles (PSMPs) and tetracycline (TC) (20 mg/L) were investigated in saturated porous media in KCl and CaCl2 solutions of various ionic strengths (1, 10, 50, 100 mM). Furthermore, the effects of TC concentration (0, 1, 5, 10, 20 mg/L) on the cotransport behaviors of PSMPs and TC in 100 mM KCl solution were assessed. The cotransport behaviors were analyzed by comparing the individual transport behaviors of PSMPs or TC. When cotransported, the presence of TC (20 mg/L) slightly inhibited PSMPs mobility in K+ solutions (the C/C0 decreased in the range of 0-5.9%), but facilitated it in Ca2+ solutions (the C/C0 increased in the range of 6.7-42.6%). In KCl solutions, although the presence of TC (PSMPs) did not significantly affect the transport behaviors of PSMPs (TC), the attachment efficiencies of both PSMPs and TC showed a non-linear and non-monotonic change with increase in ionic strength. However, in CaCl2 solutions, the effects of TC (PSMPs) on the transport behaviors of PSMPs (TC) were remarkable and a non-linear non-monotonic change was observed. The adsorption of TC on PSMPs might play a critical role during the cotransport. Thus, the balance between the transport-inhibiting (e.g., the reduction in electrostatic repulsive force) and transport-facilitating effects (e.g., the effects on hydrophilicity/hydrophobicity of PSMPs due to TC adsorption) may be responsible for the observed changes. Overall, the results demonstrated that the cotransport behaviors of PSMPs and TC were more complicated than their individual transport behaviors in porous media, which might vary considerably with environmental conditions. This work could greatly improve our understanding of complex cotransport behaviors and environmental risk of PSMPs.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Limin Cui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - YanYan Wang
- International Center of Nanoparticles and Nanosystem (TICNN), Tianjin University, Tianjin 300072, China
| | - Zixi Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111419. [PMID: 33126193 DOI: 10.1016/j.jenvman.2020.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia.
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| | - John L Hutson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| |
Collapse
|
16
|
Xu Y, Ou Q, Zhou X, He Q, Wu Z, Huang R, Song J, Ma J, Huangfu X. Impacts of carrier properties, environmental conditions and extracellular polymeric substances on biofilm formation of sieved fine particles from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139196. [PMID: 32417483 DOI: 10.1016/j.scitotenv.2020.139196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
To investigate the effect of properties of carriers, environmental conditions and extracellular polymeric substances (EPS) on the initial adhesion of biofilm formation in biofilm-based reactors, a quartz crystal microbalance with dissipation (QCM-D) was applied to monitor the deposition rates and viscoelastic properties of sieved sludge particles on model biocarriers. The results suggested that surface charge, hydrophobicity and surface coating of five representative carriers influenced deposition rates and viscoelastic properties of biofilm, whose variation with NaCl concentrations was controlled by not only the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction but also non-DLVO forces. On hydrophobic surface, the addition of cationic substances enhanced the deposition rates and the compaction of deposited layer due to strong "hydrophobizing effect". For examples, 10 mM Ca2+, 10 mM Mg2+ and 10 mg/L poly-l-lysine enhanced the deposition rates to nearly 3, 2 and 4 times, as well as reduced the softness of deposited layer to almost 35%, 60% and 35%. Conversely, 10 mg/L negatively charged alginate might cause water retainment and steric shielding, thereby reducing the deposition rates to 40% and increasing the softness of deposited film to 120%. The presence of EPS sub-fractions can modify surface properties of sludge particles, to distinct degrees, contributing to biofilm formation. Notably, compared to tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) was more conducive to microbial attachment, but the presence of LB-EPS promoted the formation of a soft layer on a hydrophobic surface. Overall, these results provide insights into intrinsic mechanisms of the variation of deposition rates and viscoelastic properties responding to critical factors, which are meaningful to predict and regulate the initial adhesion process in biofilm-based reactors.
Collapse
Affiliation(s)
- Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Qin Ou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Xiaojun Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Zhengsong Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Jiahui Song
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150001, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, 400044, China.
| |
Collapse
|
17
|
Ou Q, Xu Y, Li X, He Q, Liu C, Zhou X, Wu Z, Huang R, Song J, Huangfu X. Interactions between activated sludge extracellular polymeric substances and model carrier surfaces in WWTPs: A combination of QCM-D, AFM and XDLVO prediction. CHEMOSPHERE 2020; 253:126720. [PMID: 32464762 DOI: 10.1016/j.chemosphere.2020.126720] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/23/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
To understand the biofilm formation of biofilm-based processes in wastewater treatment plants (WWTPs), the interaction mechanisms between extracted extracellular polymeric substances (EPS) and three model carrier surfaces (i.e., negatively charged hydrophilic silica, positively charged hydrophilic alumina, and neutral charged hydrophobic polystyrene) were investigated employing a laboratory quartz crystal microbalance with dissipation monitoring equipment (QCM-D) and an atomic force microscope (AFM). The data suggested that surface charge and hydrophobicity of both EPS and carriers played significant roles in the interaction behaviors. Moreover, increases in ionic strength could lead to the increasing zeta potential and hydrophobicity of EPS. It is worth noting that long-range DLVO forces dominated the EPS deposition on carriers in lower ionic strength while short-range Lewis acid-base (AB) interaction controlled the adhesion behaviors in higher ionic strength. Besides, the presence of calcium ions contributed to the adhesion behaviors because of strong charge neutralization and hydrophobic effect. Bound EPS (BEPS) showed higher affinity to model carriers than dissolved EPS (DEPS), which conformed to XDLVO prediction rather than classical DLVO model. Overall, these results provide insights into the influence mechanisms of carrier characteristics, ionic strength, calcium ion and EPS components on the interaction between EPS and representative carriers, contributing to predict and regulate biofilm formation in biofilm-based processes.
Collapse
Affiliation(s)
- Qin Ou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Xiaoling Li
- School of Civil Engineering, Key Laboratory of Water Supply & Sewage Engineering (Ministry of Housing and Urban-Rural Development), Chang'an University, Xi'an, 710054, PR China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Xiaojun Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Zhengsong Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Jiahui Song
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University, 400044, China.
| |
Collapse
|
18
|
He L, Rong H, Wu D, Li M, Wang C, Tong M. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand. WATER RESEARCH 2020; 178:115808. [PMID: 32371288 DOI: 10.1016/j.watres.2020.115808] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 05/20/2023]
Abstract
Biofilm, community of bacteria ubiquitously present in natural environment, may interact with plastic particles and affect the transport of plastic particles in environment. The significance of biofilm (Escherichia coli) on the transport and deposition behaviors of three different sized plastic particles (0.02 μm NPs, 0.2 μm MP and 2 μm MP) were examined under both 10 mM and 50 mM NaCl solutions by comparing the breakthrough curves and retained profiles of plastic particles in bare sand versus those in biofilm-coated sand. Regardless of ionic strengths, the presence of biofilm increases the deposition of all three sized plastic particles in porous media. Via employing X-ray microtomography imaging (XMT) and Scanning electron microscope (SEM), we find that the presence of biofilm could narrow the flow path especially near to the inlet of the column and increase the surface roughness of porous media (by decreasing DLVO repulsive interaction), which contributes to the enhanced the deposition of plastic particles. Extracellular polymeric substances (EPS) present on the biofilm are found to contribute to the enhanced deposition of plastic particles. Packed column experiments, quartz crystal microbalance with dissipation (QCM-D) as well as parallel plate flow chamber experiments all show that three major components of EPS, proteins, polysaccharide, and humic substances all contribute to the enhanced deposition of plastic particles. O-H and N-H groups present on cell surfaces are highly likely to form hydrogen bond with plastic particles and increase the deposition plastic particles. Elution experiments show that decreasing solution ionic strength could release small portion of plastic particles from both bare and biofilm-coated sand columns especially from the segments near to the column inlet (with slighter lower percentage from biofilm-coated columns based on the total mass of retained plastics). In contrast, increasing flow rate does not obviously detach the plastic particles that already deposited onto porous media. The results of this study clearly show that the presence of biofilm in natural environment could enhance the deposition and decrease the transport of plastic particles.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Dan Wu
- Beijing Institute of Metrology, Beijing, 100029, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Chengyi Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
19
|
Wang J, Liu Q, Dong D, Hu H, Wu B, Ren H. In-situ monitoring of the unstable bacterial adhesion process during wastewater biofilm formation: A comprehensive study. ENVIRONMENT INTERNATIONAL 2020; 140:105722. [PMID: 32474216 DOI: 10.1016/j.envint.2020.105722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 05/06/2023]
Abstract
The initial bacterial adhesion phase is a pivotal and unstable step in the formation of biofilms. The initiation of biofilm formation is an unstable process caused by the reversible adhesion of bacteria, which is always time-consuming and yet to be elucidated. In this study, impedance-based real time cell analysis (RTCA) was employed to comprehensively investigate the initial bacterial adhesion process. Results showed that the time required for the unstable adhesion process was significantly (p < 0.05) reduced by increasing the initial concentration of bacteria, which is mainly attributed to the large deposition rate of bacteria at high concentrations. In addition, the unstable adhesion process is also regulated by shear stress, derived in this work from orbital shaking. Shear stress improves the reversibility of unstable bacterial attachment. Furthermore, attachment characteristics during the unstable phase vary between different species of bacteria (Sphingomonas rubra, Nakamurella multipartita and mixed bacteria). The S. rubra strain and mixed culture were more prone to adhere to the substratum surface during the unstable process, which was attributed to the smaller xDLVO energy barrier and motility of species in comparison with N. multipartita. Meanwhile, the molecular composition of extracellular polymeric substances (EPS) in the initial attachment phase presented a significant difference in expressed proteins, indicating the important role of proteins in EPS that strengthen bacterial adhesion. Overall, these findings suggest that during the biofilm reactor start-up process, seed sludge conditions, including the bacterial concentration, composition and hydraulics, need to be carefully considered.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Deyuan Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
20
|
Zhang M, Yi K, Zhang X, Han P, Liu W, Tong M. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121822. [PMID: 31837936 DOI: 10.1016/j.jhazmat.2019.121822] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 05/26/2023]
Abstract
The rapid aggregation/sedimentation and decreased transport of nanoscale zero-valent iron (nZVI) particles limit their application in groundwater remediation. To decrease the aggregation/sedimentation and increase the transport of nZVI, sodium alginate (a natural polysaccharide) and bentonite (one type of ubiquitous clay) were employed to modify nZVI. Different techniques were utilized to characterize the modified nZVI. We found that modification with either sodium alginate or bentonite could disperse nZVI and shifted their zeta potentials from positive to negative. Comparing with the bare nZVI, the sedimentation rates of modified nZVI either by sodium alginate or bentonite are greatly decreased and their transport are significantly increased. The transport of modified nZVI can be greatly increased by increasing flow rate. Furthermore, Cr(VI) can be efficiently removed by the modified nZVI (both sodium alginate and bentonite modified nZVI). Comparing with bare nZVI, the two types of modified nZVI contain lower toxicities to Escherichia coli. The results of this study indicate that both sodium alginate and bentonite can be employed as potential stabilizers to disperse nZVI and improve their application feasibility for in situ groundwater remediation.
Collapse
Affiliation(s)
- Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
21
|
Song P, Mao X, Ren Y, Zeng H, Lu Q. Buckling Effect of Sole Zeolitic Imidazolate Framework-8 Nanoparticles Adsorbed at the Water/Oil Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2322-2329. [PMID: 32050078 DOI: 10.1021/acs.langmuir.9b03459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The buckling phenomenon of sole zeolitic imidazolate framework-8 (ZIF-8) particles adsorbed at the water/oil interface was systematically studied. The droplet of ZIF-8 water dispersion was pended in oil for a certain time period and manually extracted to decrease the volume. With the reduction of interfacial area, the ZIF-8 particles were jammed together to form a wrinkling solid film at the water/oil interface, which could withstand the extraction of the droplet and be regenerated. The size and concentration of the particles affected the assembly kinetics. The rapidest assembly was observed for the medium-sized ZIF-8 particles (m-ZIF-8) among the three sizes tested (1.81 μm, 258 nm, and 51 nm). The droplet of 0.91 wt % m-ZIF-8 reached a nearly full surface coverage in 13 min, faster than those with the lower concentration of 0.46 or 0.28 wt %. The pH of the solution, ranging between 6 and 10.7, affected both the assembly kinetics and film stability. Cryo-scanning electron microscopy images of frozen m-ZIF-8-stabilized Picking emulsions showed a monolayer of ZIF-8 wetted by both oil and water phases. The observed buckling effect could be attributed to the stable adsorption of ZIF-8 at the water/oil interface and the interparticle interactions, related to the unique surface chemistry and polyhedral shape of the ZIF-8 crystals. This work provided some understanding on the interfacial property of ZIF-8 and the mechanism of sole ZIF-8-stabilized Pickering emulsions.
Collapse
Affiliation(s)
- Ping Song
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yuxuan Ren
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
22
|
Wang X, Liu B, Pan X, Gadd GM. Transport and retention of biogenic selenium nanoparticles in biofilm-coated quartz sand porous media and consequence for elemental mercury immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1116-1124. [PMID: 31539943 DOI: 10.1016/j.scitotenv.2019.07.309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Bacterial biofilms are structured cell communities embedded in a matrix of extracellular polymeric substances (EPS) and a ubiquitous growth form of bacteria in the environment. A wide range of interactions between biofilms and nanoparticles have been reported. In the present study, the influence of a mixed bacterial biofilm on retention of biogenic selenium nanoparticles (BioSeNPs) and consequences for immobilization of elemental mercury (Hg0) in a porous quartz sand system were examined. BioSeNPs were significantly retained in the presence of a biofilm through electrical double layer effects, hydrogen bonding, and hydrophobic, steric and bridging interactions. Moreover, enhanced surface roughness, pore clogging, sieving and entrapment effects mediated by the biofilm also contributed to deposition of BioSeNPs. Whereas, thiol groups associated with the biofilm is a little helpful for the capture of Hg0. It is proposed that oxidative complexation between Hg0 and thiol compounds or S containing organic matter in the biofilm may result in the formation of Hg2+-thiolate complexes and HgS during the binding of Hg0 with BioSeNPs. The formation of mercury selenide was also involved in Hg0 immobilization in the porous quartz sand system.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bingshen Liu
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
23
|
Fulaz S, Vitale S, Quinn L, Casey E. Nanoparticle–Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol 2019; 27:915-926. [DOI: 10.1016/j.tim.2019.07.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
|
24
|
Huangfu X, Xu Y, Liu C, He Q, Ma J, Ma C, Huang R. A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates. CHEMOSPHERE 2019; 219:766-783. [PMID: 30572231 DOI: 10.1016/j.chemosphere.2018.12.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/18/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Engineered nanoparticles (ENPs) will inevitably enter wastewater treatment plants (WWTPs) due to their widespread application; thus, it is necessary to study the migration and transformation of nanoparticles in sewage treatment systems. Extracellular polymeric substances (EPSs) such as polysaccharides, proteins, nucleic acids, humic acids and other polymers are polymers released by microorganisms under certain conditions. Intracellular polymeric substances (IPSs) are microbial substances contained in the body with compositions similar to those of extracellular polymers. In this review, we summarize the characteristics of EPSs and IPSs from sewage-collecting microbial aggregates containing pure bacteria, activated sludge, granular sludge and biofilms. We also further investigate the dissolution, adsorption, aggregation, deposition, oxidation and other chemical transformation processes of nanoparticles, such as metals, metal oxides, and nonmetallic oxides. In particular, the review deeply analyzes the migration and transformation mechanisms of nanoparticles in EPS and IPS matrices, including physical, chemical, biological interactions mechanisms. Moreover, various factors, such as ionic strength, ionic valence, pH, light, oxidation-reduction potential and dissolved oxygen, influencing the interaction mechanisms are discussed. In recent years, studies on the interactions between EPSs/IPSs and nanoparticles have gradually increased, but the mechanisms of these interactions are seldom explored. Therefore, developing a systematic understanding of the migration and transformation mechanisms of ENPs is significant.
Collapse
Affiliation(s)
- Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Yanghui Xu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, China
| | - Chengxue Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| | - Ruixing Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Faculty of Urban Construction and Environmental Engineering, Chongqing University 400044, China
| |
Collapse
|
25
|
Crampon M, Hellal J, Mouvet C, Wille G, Michel C, Wiener A, Braun J, Ollivier P. Do natural biofilm impact nZVI mobility and interactions with porous media? A column study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:709-719. [PMID: 28822938 DOI: 10.1016/j.scitotenv.2017.08.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NP) used as remediation agents for groundwater treatment may interact with biofilms naturally present, altering NP mobility and/or reactivity and thereby NP effectiveness. The influence of the presence of a multi species biofilm on the mobility of two types of zero-valent iron NP (nZVI; NANOFER 25S and optimized NANOFER STAR, NanoIron s.r.o. (Czech Republic)) was tested in laboratory experiments with columns mimicking aquifer conditions. Biofilms were grown in columns filled with sand in nitrate reducing conditions using groundwater from an industrial site as inoculum. After two months growth, they were composed of several bacterial species, dominated by Pseudomonas stutzeri. Biofilm strongly affected the physical characteristics of the sand, decreasing total porosity from ~30% to ~15%, and creating preferential pathways with high flow velocities. nZVI suspensions were injected into the columns at a seepage velocity of 10mday-1. Presence of biofilm did not impact the concentrations of Fe at the column outlet nor the amount of total Fe retained in the sand, as attested by the measurement of magnetic susceptibility. However, it had a significant impact on NP size sorting as well as on total Fe distribution along the column. This suggests nZVI-biofilm interactions that were confirmed by microscopic observations using SEM/STEM coupled with energy-dispersive X-ray spectroscopy. Our study shows that biofilm modifies the water flow velocity in the porous media, favoring the transport of large aggregates and decreased NP mobility due to physical and chemical interactions.
Collapse
Affiliation(s)
- Marc Crampon
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France.
| | - Jennifer Hellal
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Christophe Mouvet
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Guillaume Wille
- BRGM, LAB, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Caroline Michel
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Anke Wiener
- University of Stuttgart, IWS, VEGAS, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Juergen Braun
- University of Stuttgart, IWS, VEGAS, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Patrick Ollivier
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| |
Collapse
|
26
|
He JZ, Wang DJ, Fang H, Fu QL, Zhou DM. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. CHEMOSPHERE 2017; 169:1-8. [PMID: 27855326 DOI: 10.1016/j.chemosphere.2016.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Increasing production and use of graphene oxide nanoparticles (GONPs) boost their wide dissemination in the subsurface environments where biofilms occur ubiquitously, representative of the physical and chemical heterogeneities. This study aimed at investigating the influence of Gram-positive Bacillus subtilis (BS) and Gram-negative Pseudomonas putida (PP) biofilms on the transport of GONPs under different ionic strengths (0.1, 0.5, and 1.0 mM CaCl2) at neutral pH 7.2 in water-saturated porous media. Particularly, the X-ray micro-computed tomography was used to quantitatively characterize the pore structures of sand columns in the presence and absence of biofilms. Our results indicated that the presence of biofilms reduced the porosity and narrowed down the pore sizes of packed columns. Transport experiments in biofilm-coated sand showed that biofilms, irrespective of bacterial species, significantly inhibited the mobility of GONPs compared to that in cleaned sand. This could be due to the Ca2+ complexation, increased surface roughness and charge heterogeneities of collectors, and particularly enhanced physical straining caused by biofilms. The two-site kinetic retention model-fitted value of maximum solid-phase concentration (Smax2) for GONPs was higher for biofilm-coated sand than for cleaned sand, demonstrating that biofilms act as favorable sites for GONPs retention. Our findings presented herein are important to deepen our current understanding on the nature of particle-collector interactions.
Collapse
Affiliation(s)
- Jian-Zhou He
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng-Jun Wang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Huan Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
27
|
Tanzil AH, Sultana ST, Saunders SR, Shi L, Marsili E, Beyenal H. Biological synthesis of nanoparticles in biofilms. Enzyme Microb Technol 2016; 95:4-12. [DOI: 10.1016/j.enzmictec.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
|
28
|
Kumari J, Chandrasekaran N, Nagarajan R, Mukherjee A. Individual, co-transport and deposition of TiO2 and ZnO nanoparticles over quartz sand coated with consortium biofilm. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2016; 4:3954-3960. [DOI: 10.1016/j.jece.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
|
29
|
Wang H, Huang Y, Shen C, Wu J, Yan A, Zhang H. Co-transport of Pesticide Acetamiprid and Silica Nanoparticles in Biochar-Amended Sand Porous Media. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1749-1759. [PMID: 27695763 DOI: 10.2134/jeq2016.02.0073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The role of biochar as a soil amendment on the transport of acetamiprid, a widely used neonicotinoid pesticide, is little known. We conducted saturated column experiments to examine cotransport of acetamiprid and silica nanoparticles (NPs) in pure and biochar-amended sands. Retention of acetamiprid was minor in the pure sand, whereas application of biochar in the sand significantly increased retention. Retention was greater at lower ionic strengths and near neutral pH values and was attributed to biodegradation and sorption through π-π interaction and pore filling. The convection-diffusion equation with inclusion of first-order sorption, desorption, and degradation well described the transport of acetamiprid in the biochar-amended sand. The simulation results show that the sorption rate did not change with pH. This is because the acetamiprid is nonionic and cannot be bonded with the biochar by protonation or deprotonation. The desorption rate was independent of variation of solution chemistry, indicating that desorption was a physical process (i.e., pore diffusion). Application of biochar in the sand had little influence on the transport of silica NPs in NaCl but caused complete attachment in CaCl. Energy dispersive X-ray spectroscopy suggested that the enhanced attachment was due to cation bridging between silica NPs and functional groups in biochar by the Ca. The co-presence of acetamiprid and silica NPs in the solutions enhanced transport of acetamiprid and NPs in the biochar-amended sand by competing for the binding sites on the biochar surfaces.
Collapse
|
30
|
|
31
|
Walden C, Zhang W. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8417-8431. [PMID: 27437755 DOI: 10.1021/acs.est.6b01282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.
Collapse
Affiliation(s)
- Connie Walden
- Graduate Research Assistant, Department of Civil Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| | - Wen Zhang
- Assistant Professor, Department of Civil Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States
| |
Collapse
|
32
|
Strutz TJ, Hornbruch G, Dahmke A, Köber R. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 191:54-65. [PMID: 27244572 DOI: 10.1016/j.jconhyd.2016.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1m/h and elemental iron input concentrations (Fe(0)in) of 0.6, 10, and 17g/L. Concentrations of Fe(0) in the sand were determined by magnetic susceptibility scans, which provide detailed Fe(0) distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe(0) concentrations of about 14-18g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a significant role for attachment, mainly at lower injection velocities. Since the injection of fluids at real sites leads to descending flow velocities with increasing radial distance from the injection point, the simulation of particle transport requires accounting for all deposition processes mentioned above. Thus, the derived mean parameter set can be used as a basis for quantitative and predictive simulations of particle distributions and clogging effects at both lab and field scale. Since decreases in K can change the flow system, which may have positive as well as negative implications for the in situ remediation technology at a contaminated site, a reliable simulation is thus of great importance for NZVI injection and prediction.
Collapse
Affiliation(s)
- Tessa J Strutz
- University of Kiel, Institute of Geoscience, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Götz Hornbruch
- University of Kiel, Institute of Geoscience, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Andreas Dahmke
- University of Kiel, Institute of Geoscience, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Ralf Köber
- University of Kiel, Institute of Geoscience, Olshausenstraße 40, 24098 Kiel, Germany.
| |
Collapse
|
33
|
Han P, Zhou D, Tong M, Kim H. Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:895-903. [PMID: 27038577 DOI: 10.1016/j.envpol.2016.03.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The influence of bacteria on the transport and deposition behaviors of carbon nanotubes (CNTs) in quartz sand was examined in both NaCl (5 and 25 mM ionic strength) and CaCl2 (0.3 and 1.2 mM ionic strength) solutions at unadjusted pH (5.6-5.8) by direct comparison of both breakthrough curves and retained profiles in both the presence and absence of bacteria. Two types of widely utilized CNTs, i.e., carboxyl- and hydroxyl-functionalized multi-walled carbon nanotubes (MWCNT-COOH and MWCNT-OH, respectively), were employed as model CNTs and Escherichia coli was utilized as the model bacterium. The results showed that, for both types of MWCNTs under all examined conditions, the breakthrough curves were higher in the presence of bacteria, while the retained profiles were lower, indicating that the co-presence of bacteria in suspension increased the transport and decreased the deposition of MWCNTs in porous media, regardless of ionic strength or ion valence. Complementary characterizations and extra column tests demonstrated that competition by bacteria for deposition sites on the quartz sand surfaces was a major (and possibly the sole) contributor to the enhanced MWCNTs transport in porous media.
Collapse
Affiliation(s)
- Peng Han
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Dan Zhou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Meiping Tong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea.
| |
Collapse
|
34
|
Mitzel MR, Sand S, Whalen JK, Tufenkji N. Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. WATER RESEARCH 2016; 92:113-120. [PMID: 26845456 DOI: 10.1016/j.watres.2016.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Engineered nanoparticles (ENPs) are used in the manufacture of over 2000 industrial and consumer products to enhance their material properties and functions or to enable new nanoparticle-dependent functions. The widespread use of ENPs will result in their release to the subsurface and aquatic environments, where they will interact with indigenous biota. Laboratory column experiments were designed to understand the influence of two different Pseudomonas aeruginosa biofilms on the mobility of polystyrene latex nanoparticles in granular porous media representative of groundwater aquifers or riverbank filtration settings. The transport behavior of 20 nm carboxylate-modified (CLPs) and sulfate (SLPs) polystyrene latex ENPs suspended in NaCl or CaCl2 (1 and 10 mM ionic strength, pH 7) was studied in columns packed with quartz sand coated with biofilms formed by two P. aeruginosa strains that differed in cell surface hydrophobicity (P. aeruginosa 9027™, relatively hydrophilic and P. aeruginosa PAO1, relatively hydrophobic). Biofilm-coated quartz sand retained more of the electrostatically-stabilized latex ENPs than clean, uncoated sand, regardless of the serotype. As IS increased, clear differences in the shape of the ENP breakthrough curves were observed for each type of biofilm coating. ENP breakthrough in the P. aeruginosa PAO1 biofilm-coated sand was generally constant with time whereby breakthrough in the P. aeruginosa 9027 biofilm-coated sand showed dynamic behavior. This indicates a fundamental difference in the mechanisms of ENP deposition onto hydrophilic or hydrophobic biofilm coatings due to the hydration properties of these biofilms. The results of this study demonstrate the importance of considering the surface properties of aquifer grain coatings when evaluating ENP fate in natural subsurface environments.
Collapse
Affiliation(s)
- Michael R Mitzel
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Stefanie Sand
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada; Department of Water Science, Universität Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5, Canada.
| |
Collapse
|
35
|
Han Y, Hwang G, Kim D, Bradford SA, Lee B, Eom I, Kim PJ, Choi SQ, Kim H. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. WATER RESEARCH 2016; 90:247-257. [PMID: 26741396 DOI: 10.1016/j.watres.2015.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the initial rate and amount of dissolution and the subsequent transport of Zn(2+) due to the strong Zn(2+) re-adsorption to the biofilm. Our study indicates that dissolution will eventually lead to the complete removal of retained ZnO-NPs and the transport of toxic Zn(2+) ions in groundwater environments with pH ranges of 5-9.
Collapse
Affiliation(s)
- Yosep Han
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Gukhwa Hwang
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Donghyun Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | | | - Byoungcheun Lee
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Igchun Eom
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Pil Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
36
|
Jian-Zhou H, Cheng-Cheng L, Deng-Jun W, Zhou DM. Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2015. [PMID: 26223021 DOI: 10.1016/j.jhazmat.2015.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Understanding the fate and transport of graphene oxide nanoparticles (GONPs) in the subsurface environments is of crucial importance since they may pose potential risks to the environment and human health. However, little is known about the significance of biofilm on mobility of GONPs in the subsurface. Here we investigated the transport of GONPs in saturated sand coated with Bacillus subtilis (Gram-positive) and Pseudomonas putida (Gram-negative) biofilms, and their secreted extracellular polymeric substances (EPS) under environmentally relevant ionic strengths (1-50mM NaCl) at pH 7.2. Our results showed that irrespective of bacteria type, greater retention of GONPs occurred in biofilm-coated sand compared to clean sand, likely attributed to the increased surface roughness and physical straining. However, EPS showed negligible influence on GONPs transport, which was inconsistent with the findings in the presence of biofilms, while they exhibited comparable ζ-potentials. The different retention phenotype of GONPs in the presence of EPS was induced by hydration effect and steric repulsion. A two-site kinetic retention model well-described the transport of GONPs in porous media covered with different surface coatings, which proves the applicability of mathematical model in predicting nanoparticles' mobility in the subsurface environments, when considering the potential effects of biofilm and EPS.
Collapse
Affiliation(s)
- He Jian-Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cheng-Cheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Deng-Jun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
37
|
The impact of cellulose nanocrystals on the aggregation and initial adhesion to a solid surface of Escherichia coli K12: Role of solution chemistry. Colloids Surf B Biointerfaces 2015; 136:570-6. [DOI: 10.1016/j.colsurfb.2015.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/28/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023]
|
38
|
Shi Z, Fan D, Johnson RL, Tratnyek PG, Nurmi JT, Wu Y, Williams KH. Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 181:17-35. [PMID: 25841976 DOI: 10.1016/j.jconhyd.2015.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 05/20/2023]
Abstract
The emplacement of nano zerovalent iron (nZVI) for groundwater remediation is usually monitored by common measurements such as pH, total iron content, and oxidation-reduction potential (ORP) by potentiometry. However, the interpretation of such measurements can be misleading because of the complex interactions between the target materials (e.g., suspensions of highly reactive and variably aggregated nanoparticles) and aquifer materials (sediments and groundwater), and multiple complications related to sampling and detection methods. This paper reviews current practice for both direct and indirect characterizations of nZVI during groundwater remediation and explores prospects for improving these methods and/or refining the interpretation of these measurements. To support our recommendations, results are presented based on laboratory batch and column studies of nZVI detection using chemical, electrochemical, and geophysical methods. Chemical redox probes appear to be a promising new method for specifically detecting nZVI, based on laboratory tests. The potentiometric and voltammetric detections of iron nanoparticles, using traditional stationary disc electrodes, rotating disc electrodes, and flow-through cell disc electrodes, provide insight for interpreting ORP measurements, which are affected by solution chemistry conditions and the interactions between iron nanoparticles and the electrode surface. The geophysical methods used for characterizing ZVI during groundwater remediation are reviewed and its application for nZVI detection is assessed with results of laboratory column experiments.
Collapse
Affiliation(s)
- Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| | - Dimin Fan
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Richard L Johnson
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Paul G Tratnyek
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - James T Nurmi
- Engineering Science Department, Clackamas Community College, 19600 Molalla Ave., Oregon City, OR 97045, United States
| | - Yuxin Wu
- Earth Sciences Division, Lawrence Berkeley National Laboratory, #1 Cyclotron Road, MS 74R0316C, Berkeley, CA 94720, United States
| | - Kenneth H Williams
- Earth Sciences Division, Lawrence Berkeley National Laboratory, #1 Cyclotron Road, MS 74R0316C, Berkeley, CA 94720, United States
| |
Collapse
|
39
|
Kurlanda-Witek H, Ngwenya BT, Butler IB. The influence of biofilms on the mobility of bare and capped zinc oxide nanoparticles in saturated sand and glass beads. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 179:160-170. [PMID: 26140853 DOI: 10.1016/j.jconhyd.2015.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/26/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Biofilms are a common constituent of the subsurface and are known to influence contaminant transport; however only a few studies to date have addressed microbial controls on nanoparticle mobility in porous media. The impact of a 3-day Pantoea agglomerans biofilm on the mobility of zinc oxide (ZnO) nanoparticles was studied in column experiments containing sand and glass beads at near-neutral pH and constant ionic strength. Bare ZnO nanoparticles (bZnO-NPs) and ZnO nanoparticles capped with tri-aminopropyltriethoxysilane (cZnO-NPs) were used in the experiments. Breakthrough curves demonstrate that the biofilm particularly slowed nanoparticle migration of bZnO-NPs in glass bead columns and cZnO-NPs in sand columns. With the exception of bZnO-NPs in sand columns, biofilm-coated porous media retained more nanoparticles than those of controls without biofilm. The biofilm may bear an impact on the surface charge of the porous medium, nullifying porous medium-specific effects. Although viable cell counts (VCCs) decreased after the introduction of electrolyte and before nanoparticle transport experiments, SEM and CLSM imaging of porous medium samples taken from columns after nanoparticle transport experiments, as well as total organic carbon (TOC) measurements reveal that biofilm was present in the columns throughout the experiments. Hence, it can be concluded that even a thin amount of biofilm can hinder nanoparticle migration in small-scale porous medium experiments. Moreover, nanoparticle mobility is dependent on the binding capacity of biofilms, rather than the type of porous media.
Collapse
Affiliation(s)
- H Kurlanda-Witek
- Mott MacDonald Polska Sp. z o.o., ul. Waliców 11, 00-851 Warsaw, Poland.
| | - B T Ngwenya
- School of GeoSciences, University of Edinburgh Kings Buildings, West Mains Rd, EH9 3JW Edinburgh, United Kingdom
| | - I B Butler
- School of GeoSciences, University of Edinburgh Kings Buildings, West Mains Rd, EH9 3JW Edinburgh, United Kingdom
| |
Collapse
|
40
|
Ikuma K, Decho AW, Lau BLT. When nanoparticles meet biofilms-interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol 2015; 6:591. [PMID: 26136732 PMCID: PMC4468922 DOI: 10.3389/fmicb.2015.00591] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/29/2015] [Indexed: 02/02/2023] Open
Abstract
Bacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as biofilms, where cells are attached and surrounded by a secreted matrix of “sticky” extracellular polymeric substances. Recent investigations have established that significant accumulation of nanoparticles (NPs) occurs in aquatic biofilms. These studies point to the emerging roles of biofilms for influencing partitioning and possibly transformations of NPs in both natural and engineered systems. While attached biofilms are efficient “sponges” for NPs, efforts to elucidate the fundamental mechanisms guiding interactions between NPs and biofilms have just begun. In this mini review, special attention is focused on NP–biofilm interactions within the aquatic environment. We highlight key physical, chemical, and biological processes that affect interactions and accumulation of NPs by bacterial biofilms. We posit that these biofilm processes present the likely possibility for unique biological and chemical transformations of NPs. Ultimately, the environmental fate of NPs is influenced by biofilms, and therefore requires a more in-depth understanding of their fundamental properties.
Collapse
Affiliation(s)
- Kaoru Ikuma
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst , Amherst, MA, USA
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina , Columbia, SC, USA
| | - Boris L T Lau
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst , Amherst, MA, USA
| |
Collapse
|
41
|
Dual Roles of Capsular Extracellular Polymeric Substances in Photocatalytic Inactivation of Escherichia coli: Comparison of E. coli BW25113 and Isogenic Mutants. Appl Environ Microbiol 2015; 81:5174-83. [PMID: 26002903 DOI: 10.1128/aem.00775-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
The dual roles of capsular extracellular polymeric substances (EPS) in the photocatalytic inactivation of bacteria were demonstrated in a TiO2-UVA system, by comparing wild-type Escherichia coli strain BW25113 and isogenic mutants with upregulated and downregulated production of capsular EPS. In a partition system in which direct contact between bacterial cells and TiO2 particles was inhibited, an increase in the amount of EPS was associated with increased bacterial resistance to photocatalytic inactivation. In contrast, when bacterial cells were in direct contact with TiO2 particles, an increase in the amount of capsular EPS decreased cell viability during photocatalytic treatment. Taken together, these results suggest that although capsular EPS can protect bacterial cells by consuming photogenerated reactive species, it also facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO2 particles to the cell surface. Fluorescence microscopy and scanning electron microscopy analyses further confirmed that high capsular EPS density led to more TiO2 particles attaching to cells and forming bacterium-TiO2 aggregates. Calculations of interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, suggested that the presence of capsular EPS enhances the attachment of TiO2 particles to bacterial cells via acid-base interactions. Consideration of these mechanisms is critical for understanding bacterium-nanoparticle interactions and the photocatalytic inactivation of bacteria.
Collapse
|
42
|
Sun X, Lu Q, Boluk Y, Liu Y. The impact of cellulose nanocrystals on the aggregation and initial adhesion of Pseudomonas fluorescens bacteria. SOFT MATTER 2014; 10:8923-8931. [PMID: 25283690 DOI: 10.1039/c4sm00946k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Deposition on silica surfaces of two Pseudomonas fluorescens strains (CHA0 and CHA19-WS) having different extracellular polymeric substance (EPS) producing capacities was studied in the absence and presence of cellulose nanocrystals (CNCs). Batch (batch soaking) and continuous flow (quartz crystal microbalance with dissipation) methods were used to evaluate the impact of CNCs on bacterial initial adhesion. This study demonstrated that bacterial initial adhesion to solid surfaces can be significantly hindered by CNCs using both methods. In the presence of CNCs, it was observed that bacteria with more EPS aggregated more significantly compared to bacteria with less EPS, and that bacterial deposition under this condition decreased to a greater extent. The classic DLVO theory failed to predict bacterial adhesion behavior in this study. A detailed discussion is provided regarding potential antibacterial adhesion mechanisms of CNCs.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada.
| | | | | | | |
Collapse
|
43
|
Wang Y, Becker MD, Colvin VL, Abriola LM, Pennell KD. Influence of residual polymer on nanoparticle deposition in porous media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10664-10671. [PMID: 25133851 DOI: 10.1021/es500523p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although surface coatings and free polymers are known to affect the mobility of nanoparticles in water-saturated porous media, the influence of these compounds on nanoparticle deposition behavior has received limited attention. A series of column experiments was conducted to evaluate the transport and retention of quantum dots (QDs) coated with a synthetic polymer, polyacrylic acid-octylamine (PAA-OA). Initial column studies, conducted with three size fractions of Ottawa sand, resulted in unusual solid-phase retention profiles, characterized by low QD deposition near the column inlet and increasing solid-phase concentrations along the column until a plateau or limiting capacity was reached near the column midpoint. Mathematical modeling studies indicated that the observed retention behavior could not be reproduced using one-dimensional simulators based on either clean-bed filtration theory or a modified filtration theory (MFT) model that incorporated a maximum retention capacity. Additional column studies demonstrated that changes in the inlet end plate configuration designed to ensure uniform flow did not alter the observed effluent breakthrough curves (BTCs) or shape of the retention profile. Subsequent QD transport experiments, pretreated by flushing with a pulse of PAA-OA solution, resulted in almost complete QD breakthrough with minimal retention. It is postulated that free polymer was preferentially adsorbed onto the solid surface near the column inlet, thereby preventing QD attachment, whereas in the down-gradient portion of the column, QDs attached to the solid phase without competition from the polymer. These findings reveal the importance of accounting for the influence of coconstituents on nanoparticle deposition and demonstrate the need to simulate both transport and retention data when assessing nanoparticle mobility in porous media.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Civil and Environmental Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | | | | | | | | |
Collapse
|
44
|
Kurlanda-Witek H, Ngwenya BT, Butler IB. Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 162-163:17-26. [PMID: 24796515 DOI: 10.1016/j.jconhyd.2014.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 06/03/2023]
Abstract
Zinc oxide (ZnO) nanoparticles are one of the most frequently used nanoparticles in industry and hence are likely to be introduced to the groundwater environment. The mobility of these nanoparticles in different aquifer materials has not been assessed. While some studies have been published on the transport of ZnO nanoparticles in individual porous media, these studies do not generally account for varying porous medium composition both within and between aquifers. As a first step towards understanding the impact of this variability, this paper compares the transport of bare ZnO nanoparticles (bZnO-NPs) and capped ZnO nanoparticles, coated with tri-aminopropyltriethoxysilane (cZnO-NPs), in saturated columns packed with glass beads, fine grained sand and fine grained calcite, at near-neutral pH and groundwater salinity levels. With the exception of cZnO-NPs in sand columns, ZnO nanoparticles are highly immobile in all three types of studied porous media, with most retention taking place near the column inlet. Results are in general agreement with DLVO theory, and the deviation in experiments with cZnO-NPs flowing through columns packed with sand is linked to variability in zeta potential of the capped nanoparticles and sand grains. Therefore, differences in surface charge of nanoparticles and porous media are demonstrated to be key drivers in nanoparticle transport.
Collapse
Affiliation(s)
| | - B T Ngwenya
- School of GeoSciences, University of Edinburgh, Kings Buildings, West Mains Rd, EH9 3JW Edinburgh, United Kingdom
| | - I B Butler
- School of GeoSciences, University of Edinburgh, Kings Buildings, West Mains Rd, EH9 3JW Edinburgh, United Kingdom
| |
Collapse
|
45
|
Meesters JAJ, Koelmans A, Quik JTK, Hendriks AJ, van de Meent D. Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5726-36. [PMID: 24766433 PMCID: PMC6863596 DOI: 10.1021/es500548h] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 05/25/2023]
Abstract
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
Collapse
Affiliation(s)
- Johannes A. J. Meesters
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Albert
A. Koelmans
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- IMARES
− Institute for Marine Resources & Ecosystem Studies, Wageningen UR, P.O. Box
68, 1970 AB IJmuiden, The Netherlands
| | - Joris T. K. Quik
- Aquatic
Ecology and Water Quality Management Group, Department of Environmental
Sciences, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - A. Jan Hendriks
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| | - Dik van de Meent
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands
| |
Collapse
|
46
|
Perni S, Preedy EC, Prokopovich P. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Colloid Interface Sci 2014; 206:265-74. [PMID: 24342736 DOI: 10.1016/j.cis.2013.11.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
Abstract
Biofilms are communities of cells attached to surfaces, their contributions to biological process may be either a benefit or a threat depending on the microorganism involved and on the type of substrate and environment. Biofilm formation is a complex series of steps; due to the size of microorganisms, the initial phase of biofilm formation, the bacterial adhesion to the surface, has been studied and modeled using theories developed in colloidal science. In this review the application of approaches such as Derjaguin, Landau, Verwey, Overbeek (DLVO) theory and its extended version (xDLVO), to bacterial adhesion is described along with the suitability and applicability of such approaches to the investigation of the interface phenomena regulating cells adhesion. A further refinement of the xDLVO theory encompassing the brush model is also discussed. Finally, the evidences of phenomena neglected in colloidal approaches, such as surface heterogeneity and fluid flow, likely to be the source of failure are defined.
Collapse
|
47
|
Mitzel MR, Tufenkji N. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2715-2723. [PMID: 24552618 DOI: 10.1021/es404598v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the environmental fate and transport of engineered nanoparticles (ENPs) is of paramount importance for the formation and validation of regulatory guidelines regarding these new and increasingly prevalent materials. The present study assessed the transport of an industrial formulation of poly(vinylpyrrolidone)-stabilized silver nanoparticle (PVP-nAg) in columns packed with water-saturated quartz sand and the same sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age (i.e., growth period). Physicochemical characterization studies indicate that the PVP-nAg is stable in suspension and exhibits little change in size or electrophoretic mobility with changing ionic strength (IS) in either NaNO3 or Ca(NO3)2. The collector surface had a relatively homogeneous biofilm coating, as determined by CLSM, and a near uniform distribution of biomass and biofilm thickness following column equilibration. Transport experiments in clean sand revealed changes in the particle deposition behavior only at and above 10 mM IS Ca(NO3)2 and showed no discernible change in PVP-nAg transport behavior in the presence of 1 to 100 mM NaNO3. Transport experiments in P. aeruginosa-coated sand indicated significantly reduced retention of PVP-nAg at low IS compared to clean sand, irrespective of biofilm age. Nanoparticle retention was also generally reduced in the biofilm-coated sand at the higher IS, but to a lesser extent. The decreased retention of PVP-nAg in biofilm-coated sand compared to clean sand is likely due to repulsive electrosteric forces between the PVP coatings and extracellular polymeric substances (EPS) of the biofilm. Additionally, the slope of the rising portion of the PVP-nAg breakthrough curve was noticeably steeper in biofilm conditions than in clean sand. More mature biofilm coating also resulted in earlier breakthrough of PVP-nAg compared to younger biofilm coatings, or to the clean sand, which may be an indication of the effect of repulsive surface forces combined with selective pore size exclusion from the pores of denser, more developed biofilm. These results, when considered with other literature, indicate the importance in considering the flow dynamics, pore network and structure, the effective particle size, and particle permeability with regard to the biofilm matrix when considering the possible influence of biofilms on ENP transport.
Collapse
Affiliation(s)
- Michael R Mitzel
- Department of Chemical Engineering and ‡Department of Natural Resource Sciences, McGill University , Montreal, Quebec H3A 0C5, Canada
| | | |
Collapse
|
48
|
Virkutyte J, Al-Abed SR, Choi H, Bennett-Stamper C. Distinct structural behavior and transport of TiO 2 nano- and nanostructured particles in sand. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Liu T, Yang X, Wang ZL, Yan X. Enhanced chitosan beads-supported Fe(0)-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers. WATER RESEARCH 2013; 47:6691-6700. [PMID: 24075723 DOI: 10.1016/j.watres.2013.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/21/2013] [Accepted: 09/01/2013] [Indexed: 06/02/2023]
Abstract
The removal of heavy metals from electroplating wastewater is a matter of paramount importance due to their high toxicity causing major environmental pollution problems. Nanoscale zero-valent iron (NZVI) became more effective to remove heavy metals from electroplating wastewater when enhanced chitosan (CS) beads were introduced as a support material in permeable reactive barriers (PRBs). The removal rate of Cr (VI) decreased with an increase of pH and initial Cr (VI) concentration. However, the removal rates of Cu (II), Cd (II) and Pb (II) increased with an increase of pH while decreased with an increase of their initial concentrations. The initial concentrations of heavy metals showed an effect on their removal sequence. Scanning electron microscope images showed that CS-NZVI beads enhanced by ethylene glycol diglycidyl ether (EGDE) had a loose and porous surface with a nucleus-shell structure. The pore size of the nucleus ranged from 19.2 to 138.6 μm with an average aperture size of around 58.6 μm. The shell showed a tube structure and electroplating wastewaters may reach NZVI through these tubes. X-ray photoelectron spectroscope (XPS) demonstrated that the reduction of Cr (VI) to Cr (III) was complete in less than 2 h. Cu (II) and Pb (II) were removed via predominant reduction and auxiliary adsorption. However, main adsorption and auxiliary reduction worked for the removal of Cd (II). The removal rate of total Cr, Cu (II), Cd (II) and Pb (II) from actual electroplating wastewater was 89.4%, 98.9%, 94.9% and 99.4%, respectively. The findings revealed that EGDE-CS-NZVI-beads PRBs had the capacity to remediate actual electroplating wastewater and may become an effective and promising technology for in situ remediation of heavy metals.
Collapse
Affiliation(s)
- Tingyi Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, PR China
| | | | | | | |
Collapse
|
50
|
Su C, Puls RW, Krug TA, Watling MT, O'Hara SK, Quinn JW, Ruiz NE. Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years. WATER RESEARCH 2013; 47:4095-106. [PMID: 23562563 DOI: 10.1016/j.watres.2012.12.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 12/03/2012] [Accepted: 12/18/2012] [Indexed: 05/20/2023]
Abstract
Nanoscale zerovalent iron (NZVI) such as Toda Kogyo RNIP-10DS has been used for site remediation, yet information is lacking regarding how far injected NZVI can travel, how long it lasts, and how it transforms to other minerals in a groundwater system. Previously we reported effective mass destruction of chlorinated ethenes dominated by tetrachloroethene (PCE) using emulsified zerovalent iron (EZVI) nanoparticles of RNIP-10DS in a shallow aquifer (1-6 m below ground surface, BGS) at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina, USA. Here we report test results on transport and transformation of injected EZVI in the subsurface. We employed two EZVI delivery methods: pneumatic injection and direct injection. Effective delivery of EZVI to the targeted zone was achieved with pneumatic injection showing a travel distance from injection points of up to 2.1 m and direct injection showing a travel distance up to 0.89 m. X-ray diffraction and scanning electron microscopy studies on particles harvested from well purge waters indicated that injected black colored NZVI (α-Fe(0)) was transformed largely to black colored cube-like and plate-like magnetites (Fe3O4, 0.1-1 μm, 0-9 months), then to orange colored irregularly shaped lepidocrocite (γ-FeOOH, 0.1-1 μm, 9 months to 2.5 years), then to yellowish lath-like goethite (α-FeOOH, 2-5 μm, 2.5 years) and ferrihydrite-like spherical particles (0.05-0.1 μm) in the top portion of the aquifer (1-2 m BGS). No α-Fe(0) was found in most monitoring wells three months after injection. The formed iron oxides appeared to have a wider range of particle size (submicron to 5 μm) than the pristine NZVI (35-140 nm). Injected NZVI was largely transformed to magnetite (0.1-1 μm) during two and half years in the lower portion of the aquifer (3-6 m).
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| | | | | | | | | | | | | |
Collapse
|