1
|
Wang D, Jiang P, Yang X, Zhang J, Chen T, Hu M, Cacciò SM, Yin J, Zhu G. Novel strategy to quantify the viability of oocysts of Cryptosporidium parvum and C. hominis, a risk factor of the waterborne protozoan pathogens of public health concern. WATER RESEARCH 2024; 258:121788. [PMID: 38810599 DOI: 10.1016/j.watres.2024.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.
Collapse
Affiliation(s)
- Dongqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaoxuan Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jifei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jigang Yin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guan Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Deng H, He C, Worden AZ, Gong J. Employing a triple metabarcoding approach to differentiate active, dormant and dead microeukaryotes in sediments. Environ Microbiol 2024; 26:e16615. [PMID: 38501240 DOI: 10.1111/1462-2920.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Microbial communities are commonly characterised through the metabarcoding of environmental DNA. This DNA originates from both viable (including dormant and active) and dead organisms, leading to recent efforts to distinguish between these states. In this study, we further these approaches by distinguishing not only between viable and dead cells but also between dormant and actively growing cells. This is achieved by sequencing both rRNA and rDNA, in conjunction with propidium monoazide cross-linked rDNA, to partition the active, dormant and relic fractions in environmental samples. We apply this method to characterise the diversity and assemblage structure of these fractions of microeukaryotes in intertidal sediments during a wet-dry-rewet incubation cycle. Our findings indicate that a significant proportion of microeukaryotic phylotypes detected in the total rDNA pools originate from dormant and relic microeukaryotes in the sediments, both in terms of richness (dormant, 13 ± 2%; relic, 47 ± 5%) and read abundance (dormant, 20 ± 7%; relic, 14 ± 5%). The richness and sequence proportion of dormant microeukaryotes notably increase during the transition from wet to dry conditions. Statistical analyses suggest that the dynamics of diversity and assemblage structure across different activity fractions are influenced by various environmental drivers. Our strategy offers a versatile approach that can be adapted to characterise other microbes in a wide range of environments.
Collapse
Affiliation(s)
- Huiwen Deng
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Cui He
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jun Gong
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
3
|
Kim M, Rueda L, Packham A, Moore J, Wuertz S, Shapiro K. Molecular detection and viability discrimination of zoonotic protozoan pathogens in oysters and seawater. Int J Food Microbiol 2023; 407:110391. [PMID: 37742524 DOI: 10.1016/j.ijfoodmicro.2023.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023]
Abstract
The presence of foodborne protozoan pathogens including Cryptosporidium parvum, Giardia duodenalis, Toxoplasma gondii, and Cyclospora cayetanensis in commercial shellfish has been reported across diverse geographical regions. In the present study, a novel multiplex nested polymerase chain reaction (PCR) assay was validated to simultaneously detect and discriminate these four targeted parasites in oyster tissues including whole tissue homogenate, digestive gland, gills, and hemolymph, as well as seawater where shellfish grow. To differentiate viable and non-viable protozoan (oo)cysts, we further evaluated reverse transcription quantitative PCR (RT-qPCR) assays through systematic laboratory spiking experiments by spiking not only dilutions of viable parasites but also mixtures of viable and non-viable parasites in the oyster tissues and seawater. Results demonstrate that multiplex PCR can detect as few as 5-10 (oo)cysts in at least one oyster matrix, as well as in 10 L of seawater. All parasites were detected at the lowest spiking dilution (5 (oo)cysts per extract) in hemolymph, however the probability of detection varied across the difference matrices tested for each parasite. RT-qPCR further discriminated viable from non-viable (heat-inactivated) C. parvum and T. gondii in seawater and hemolymph but did not perform well in other oyster matrices. This systematic spiking study demonstrates that a molecular approach combining multiplex PCR for sensitive and affordable screening of protozoan DNA and subsequent RT-qPCR assay for viability discrimination presents an important advance for accurately determining the risk of protozoal illness in humans due to consumption of contaminated shellfish.
Collapse
Affiliation(s)
- Minji Kim
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Lezlie Rueda
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Andrea Packham
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - James Moore
- California Department of Fish and Wildlife, Bodega Marine Laboratory, Bodega Bay, CA 94923, USA; Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University (NTU), Singapore 637551, Singapore; School of Civil and Environmental Engineering, NTU, Singapore 639798, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Ladeia WA, Martins FDC, Nino BDSL, Silvério ADC, da Silva AC, Ossada R, da Silva DA, Garcia JL, Freire RL. High occurrence of viable forms of Cryptosporidium and Giardia in domestic sewage from an agricultural region of Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:1405-1415. [PMID: 36170194 DOI: 10.2166/wh.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cryptosporidium and Giardia are the main etiologies of waterborne outbreaks caused by protozoa. These parasites are commonly detected in wastewater; however, there is little knowledge about the concentration of viable forms in treated sewage, mainly in small communities. To understand more about the presence of viable oocysts and cysts in domestic sewage, we monitored the affluent and effluent of a wastewater treatment plant (WWTP) in inner-city Brazil. Ten samplings and seven follow-ups were performed in 2020. Samples were concentrated by centrifugation, filtration and purified by fluctuation. Viability was accessed by propidium-monoazide (PMA) associated with nPCR and qPCR. Both viable protozoa were detected in all raw sewage samples (average: 438.5 viable oocysts/L). Regarding treated sewage, Cryptosporidium was detected in all of the samples (average: 92.8 viable oocysts/L) and Giardia was detected in 70% with viable cysts in 30%. Considering the follow-ups, 31.17% of Cryptosporidium viable oocysts remained in the effluent after the treatment. High amounts of Cryptosporidium and a high frequency of Giardia were detected, therefore both arrived at WWTP and were discharged into the river. These alert the presence of agro-industrial effluents into domestic sewage and demonstrated the effectiveness of the concentration technique for monitoring protozoa in wastewater.
Collapse
Affiliation(s)
- Winni Alves Ladeia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Felippe Danyel Cardoso Martins
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Beatriz de Souza Lima Nino
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Arielle da Cunha Silvério
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Ana Clécia da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Raul Ossada
- Preventive Veterinary Medicine and Animal Health Department, Veterinary Medicine and Zootechnics College, São Paulo University, Professor Orlando M de Paiva Avenue, 87, São Paulo 05508-270, Brazil
| | - Douglas Aparecido da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - João Luis Garcia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Roberta Lemos Freire
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| |
Collapse
|
6
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Optimization of Propidium Monoazide qPCR (Viability-qPCR) to Quantify the Killing by the Gardnerella-Specific Endolysin PM-477, Directly in Vaginal Samples from Women with Bacterial Vaginosis. Antibiotics (Basel) 2022; 11:antibiotics11010111. [PMID: 35052988 PMCID: PMC8773202 DOI: 10.3390/antibiotics11010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Quantification of the number of living cells in biofilm or after eradication treatments of biofilm, is problematic for different reasons. We assessed the performance of pre-treatment of DNA, planktonic cells and ex vivo vaginal biofilms of Gardnerella with propidium monoazide (PMAxx) to prevent qPCR-based amplification of DNA from killed cells (viability-qPCR). Standard PMAxx treatment did not completely inactivate free DNA and did not affect living cells. While culture indicated that killing of planktonic cells by heat or by endolysin was complete, viability-qPCR assessed only log reductions of 1.73 and 0.32, respectively. Therefore, we improved the standard protocol by comparing different (combinations of) parameters, such as concentration of PMAxx, and repetition, duration and incubation conditions of treatment. The optimized PMAxx treatment condition for further experiments consisted of three cycles, each of: 15 min incubation on ice with 50 µM PMAxx, followed by 15 min-long light exposure. This protocol was validated for use in vaginal samples from women with bacterial vaginosis. Up to log2.2 reduction of Gardnerella cells after treatment with PM-477 was documented, despite the complex composition of the samples, which might have hampered the activity of PM-477 as well as the quantification of low loads by viability-qPCR.
Collapse
|
8
|
Kim M, Shapiro K, Rajal VB, Packham A, Aguilar B, Rueda L, Wuertz S. Quantification of viable protozoan parasites on leafy greens using molecular methods. Food Microbiol 2021; 99:103816. [PMID: 34119101 DOI: 10.1016/j.fm.2021.103816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022]
Abstract
Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.
Collapse
Affiliation(s)
- Minji Kim
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Verónica B Rajal
- Facultad de Ingeniería and Instituto de Investigaciones para la Industria Química (INIQUI), CONICET - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta, 4400, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore (NTU), 60 Nanyang Drive, 637551, Singapore
| | - Andrea Packham
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Beatriz Aguilar
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Lezlie Rueda
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore (NTU), 60 Nanyang Drive, 637551, Singapore; School of Civil and Environmental Engineering, NTU, 50 Nanyang Avenue, 649798, Singapore.
| |
Collapse
|
9
|
Preventing Chagas disease: A new RT-qPCR method for rapid and specific quantification of viable Trypanosoma cruzi for food safety. Food Res Int 2021; 144:110368. [PMID: 34053561 DOI: 10.1016/j.foodres.2021.110368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
Without standardized methods for rapidly detecting in food matrices viable T. cruzi, foodborne outbreaks remain neglected. In this work, a reverse-transcriptase real-time PCR (RT-qPCR) mRNA-based technique was developed for the rapid and specific detection and quantification of viable Trypanosoma cruzi in açai fruits and juice. The method uses specific primer targeting region on the cyt b gene. The maximum recovery rate of T. cruzi from inoculated açai juice was 82.50%. The limit of detection and quantification in açai juice was 10 parasites/mL for RT-qPCR (mRNA-based) and qPCR (DNA-based). The RT-qPCR efficiency was estimated at 97.27% with an R2 of 0.994. The RT-qPCR was shown to be able to discriminate between viable and nonviable cells. This method provides a useful tool for rapid assessment of low concentrations of viable T. cruzi in naturally contaminated food samples, and can be applied industrially as a quality and security method.
Collapse
|
10
|
Rajkovic A, Jovanovic J, Monteiro S, Decleer M, Andjelkovic M, Foubert A, Beloglazova N, Tsilla V, Sas B, Madder A, De Saeger S, Uyttendaele M. Detection of toxins involved in foodborne diseases caused by Gram‐positive bacteria. Compr Rev Food Sci Food Saf 2020; 19:1605-1657. [DOI: 10.1111/1541-4337.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Andreja Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Jelena Jovanovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Silvia Monteiro
- Laboratorio Analises, Instituto Superior TecnicoUniversidade de Lisboa Lisbon Portugal
| | - Marlies Decleer
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mirjana Andjelkovic
- Operational Directorate Food, Medicines and Consumer SafetyService for Chemical Residues and Contaminants Brussels Belgium
| | - Astrid Foubert
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Natalia Beloglazova
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
- Nanotechnology Education and Research CenterSouth Ural State University Chelyabinsk Russia
| | - Varvara Tsilla
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| | - Annemieke Madder
- Laboratorium for Organic and Biomimetic Chemistry, Department of Organic and Macromolecular ChemistryGhent University Ghent Belgium
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical SciencesGhent University Ghent Belgium
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent University Ghent Belgium
| |
Collapse
|
11
|
de Oliveira AC, Soccol VT, Rogez H. Prevention methods of foodborne Chagas disease: Disinfection, heat treatment and quality control by RT-PCR. Int J Food Microbiol 2019; 301:34-40. [PMID: 31082698 DOI: 10.1016/j.ijfoodmicro.2019.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
The most important mode of transmission causing outbreaks of Chagas disease in the Amazon region is the oral route due to the ingestion of contaminated food. Herein, prevention methods for foodborne diseases caused by Trypanosoma cruzi, namely, sanitization, thermal treatment were investigated and the use of reverse transcription PCR (RT-PCR) amplification for the mRNA-based detection of viable T. cruzi in açai, was developed. Three T. cruzi strains (T. cruzi I, T. cruzi III and Y) were used in the present study. The Amazonian strains T. cruzi I (425) and T. cruzi III (370) showed higher resistance to sodium hypochlorite treatment and heat treatment than the reference strain Y. The blanching of fruits (70 ± 1 °C for 10 s) and pasteurization of juice (82.5 °C for 1 min) efficiently eliminated T. cruzi in food matrices. Additionally, a method that uses RT-PCR amplification of mRNA was developed for the detection of viable T. cruzi in açai, which could play a role in examining food samples, ensuring consumer health, and reducing this foodborne disease.
Collapse
Affiliation(s)
- Ana Caroline de Oliveira
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará, Av. Perimetral da Ciência km 01, 66.095-780, Belém, Pará, Brazil
| | - Vanete Thomaz Soccol
- Universidade Federal do Paraná, Department of Bioprocess Engineering and Biotechnology, Molecular Biology Laboratory, Curitiba, Paraná, Brazil
| | - Hervé Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará, Av. Perimetral da Ciência km 01, 66.095-780, Belém, Pará, Brazil.
| |
Collapse
|
12
|
Rousseau A, Villena I, Dumètre A, Escotte-Binet S, Favennec L, Dubey JP, Aubert D, La Carbona S. Evaluation of propidium monoazide–based qPCR to detect viable oocysts of Toxoplasma gondii. Parasitol Res 2019; 118:999-1010. [DOI: 10.1007/s00436-019-06220-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
|
13
|
de Souza MS, O'Brien C, Santin M, Jenkins M. A highly sensitive method for detecting Cryptosporidium parvum oocysts recovered from source and finished water using RT-PCR directed to Cryspovirus RNA. J Microbiol Methods 2018; 156:77-80. [PMID: 30508558 DOI: 10.1016/j.mimet.2018.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
Sensitive detection of Cryptosporidium oocysts is important because the protozoan can cause clinical infection in humans at extremely low numbers. In the present study, 1.5 × 102, 1.0 × 103, or 1.0 × 104C. parvum oocysts were spiked into 10 l of source or finished water in triplicate followed by recovery using Envirochek HV sampling capsules. One subsample of the recovered oocysts was analyzed by commercial immunofluorescence assay (IFA), while a second subsample was subjected to DNA-RNA extraction, followed by RT-PCR using primers directed to the gene encoding Cryspovirus capsid. IFA analysis of Envirochek filter eluates of finished water detected oocysts at all 3 C. parvum oocyst doses, but only at the 1.0 × 103 and 1.0 × 104 doses in source water. Cryspovirus RT-PCR appeared to offer greater sensitivity than IFA because C. parvum oocysts were detected using this molecular technique in both source and finished water concentrates at all 3 spiking levels. A linear relationship was observed between log oocysts spiking dose and the relative intensity of the Cryspovirus RT-PCR signal for finished water, but not for source water. These data indicate that Cryspovirus RT-PCR is a sensitive method for detecting C. parvum oocysts in source and finished water.
Collapse
Affiliation(s)
- Milena Sato de Souza
- Universidade Estadual Paulista, College of Veterinary Medicine, Department of Clinic, Surgery and Animal Reproduction, Clóvis Pestana, 793, Araçatuba 16050-680, São Paulo, Brazil
| | - Celia O'Brien
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, USDA, Beltsville 20705, MD
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, USDA, Beltsville 20705, MD
| | - Mark Jenkins
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, USDA, Beltsville 20705, MD.
| |
Collapse
|
14
|
Narciso-da-Rocha C, Rocha J, Vaz-Moreira I, Lira F, Tamames J, Henriques I, Martinez JL, Manaia CM. Bacterial lineages putatively associated with the dissemination of antibiotic resistance genes in a full-scale urban wastewater treatment plant. ENVIRONMENT INTERNATIONAL 2018; 118:179-188. [PMID: 29883764 DOI: 10.1016/j.envint.2018.05.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 05/25/2023]
Abstract
Urban wastewater treatment plants (UWTPs) are reservoirs of antibiotic resistance. Wastewater treatment changes the bacterial community and inevitably impacts the fate of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Some bacterial groups are major carriers of ARGs and hence, their elimination during wastewater treatment may contribute to increasing resistance removal efficiency. This study, conducted at a full-scale UWTP, evaluated variations in the bacterial community and ARGs loads and explored possible associations among them. With that aim, the bacterial community composition (16S rRNA gene Illumina sequencing) and ARGs abundance (real-time PCR) were characterized in samples of raw wastewater (RWW), secondary effluent (sTWW), after UV disinfection (tTWW), and after a period of 3 days storage to monitoring possible bacterial regrowth (tTWW-RE). Culturable enterobacteria were also enumerated. Secondary treatment was associated with the most dramatic bacterial community variations and coincided with reductions of ~2 log-units in the ARGs abundance. In contrast, no significant changes in the bacterial community composition and ARGs abundance were observed after UV disinfection of sTWW. Nevertheless, after UV treatment, viability losses were indicated ~2 log-units reductions of culturable enterobacteria. The analysed ARGs (qnrS, blaCTX-M, blaOXA-A, blaTEM, blaSHV, sul1, sul2, and intI1) were strongly correlated with taxa more abundant in RWW than in the other types of water, and which associated with humans and animals, such as members of the families Campylobacteraceae, Comamonadaceae, Aeromonadaceae, Moraxellaceae, and Bacteroidaceae. Further knowledge of the dynamics of the bacterial community during wastewater treatment and its relationship with ARGs variations may contribute with information useful for wastewater treatment optimization, aiming at a more effective resistance control.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal; Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Felipe Lira
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain
| | - Javier Tamames
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Isabel Henriques
- Biology Department, CESAM, University of Aveiro, Aveiro, Portugal.
| | - José Luis Martinez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, Madrid, Spain.
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| |
Collapse
|
15
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
16
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
17
|
Vande Burgt NH, Auer A, Zintl A. Comparison of in vitro viability methods for Cryptosporidium oocysts. Exp Parasitol 2018. [DOI: 10.1016/j.exppara.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
19
|
Paziewska-Harris A, Schoone G, Schallig HDFH. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture. J Parasitol 2018; 104:96-100. [PMID: 29095102 DOI: 10.1645/16-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The long-term storage of Cryptosporidium life-cycle stages is a prerequisite for in vitro culture of the parasite. Cryptosporidium parvum oocysts, sporozoites, and intracellular forms inside infected host cells were stored for 6-12 mo in liquid nitrogen utilizing different cryoprotectants (dimethyl sulfoxide [DMSO], glycerol and fetal calf serum [FCS]), then cultured in vitro. Performance in vitro was quantified by estimating the total Cryptosporidium copy number with quantitative polymerase chain reaction (qPCR) in 3- and 7-day-old cultures. Although few parasites were recovered either from stored oocysts or from infected host cells, sporozoites stored in liquid nitrogen recovered from freezing successfully. More copies of parasite DNA were obtained from culturing those sporozoites than sporozoites excysted from oocysts kept at 4 C for the same period. The best performance was observed for sporozoites stored in Roswell Park Memorial Institute (RPMI) medium with 10% FCS and 5% DMSO, which generated 240% and 330% greater number of parasite DNA copies (on days 3 and 7 post-infection, respectively) compared to controls. Storage of sporozoites in liquid nitrogen is more effective than oocyst storage at 4 C and represents a more consistent approach for storage of viable infective Cryptosporidium aliquots for in vitro culture.
Collapse
Affiliation(s)
- A Paziewska-Harris
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - G Schoone
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - H D F H Schallig
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| |
Collapse
|
20
|
RT-PCR specific for Cryspovirus is a highly sensitive method for detecting Cryptosporidium parvum oocysts. Food Waterborne Parasitol 2016. [DOI: 10.1016/j.fawpar.2015.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and Challenges in Viability Detection of Foodborne Pathogens. Front Microbiol 2016; 7:1833. [PMID: 27920757 PMCID: PMC5118415 DOI: 10.3389/fmicb.2016.01833] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR), sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology [conventional and real-time PCR (qPCR)] is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide and propidium monoazide (PMA) to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR), scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound) may eventually become a common methodology for the rapid, sensitive, and accurate detection of foodborne pathogens. In this review, we summarize the development in the field including progress and challenges and give our perspective in this area.
Collapse
Affiliation(s)
- Dexin Zeng
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zi Chen
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China
| | - Yuan Jiang
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China; Shanghai Entry-Exit Inspection and Quarantine BureauShanghai, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel MD, USA
| |
Collapse
|
22
|
An easy 'one tube' method to estimate viability of Cryptosporidium oocysts using real-time qPCR. Parasitol Res 2016; 115:2873-7. [PMID: 27095569 DOI: 10.1007/s00436-016-5044-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Viability estimation of the highly resistant oocysts of Cryptosporidium remains a key issue for the monitoring and control of this pathogen. We present here a simple 'one tube' quantitative PCR (qPCR) protocol for viability estimation using a DNA extraction protocol which preferentially solubilizes excysted sporozoites rather than oocysts. Parasite DNA released from excysted sporozoites was quantified by real-time qPCR using a ribosomal DNA marker. The qPCR signal was directly proportional to the number of oocysts excysted, and a power-law relationship was noted between oocyst age and the proportion excysting. Unexcysted oocysts released negligible amounts of DNA making the method suitable for estimating viability of as few as 10 oocysts.
Collapse
|
23
|
Heise J, Nega M, Alawi M, Wagner D. Propidium monoazide treatment to distinguish between live and dead methanogens in pure cultures and environmental samples. J Microbiol Methods 2015; 121:11-23. [PMID: 26656002 DOI: 10.1016/j.mimet.2015.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/02/2015] [Accepted: 12/02/2015] [Indexed: 11/16/2022]
Abstract
In clinical trials investigating human health and in the analysis of microbial communities in cultures and natural environments, it is a substantial challenge to differentiate between living, potentially active communities and dead cells. The DNA-intercalating dye propidium monoazide (PMA) enables the selective masking of DNA from dead, membrane-compromised cells immediately before DNA extraction. In the present study, we evaluated for the first time a PMA treatment for methanogenic archaea in cultures and particle-rich environmental samples. Using microscopic analyses, we confirmed the applicability of the LIVE/DEAD(®) BacLight™ kit to methanogenic archaea and demonstrated the maintenance of intact cell membranes of methanogens in the presence of PMA. Although strain-specific differences in the efficiency of PMA treatment to methanogenic archaea were observed, we developed an optimal procedure using 130 μM PMA and 5min of photo-activation with blue LED light. The results showed that the effectiveness of the PMA treatment strongly depends on the texture of the sediment/soil: silt and clay-rich sediments represent a challenge at all concentrations, whereas successful suppression of DNA from dead cells with compromised membranes was possible for low particle loads of sandy soil (total suspended solids (TSS)≤200 mg mL(-1)). Conclusively, we present two strategies to overcome the problem of insufficient light activation of PMA caused by the turbidity effect (shielding) in particle-rich environmental samples by (i) dilution of the particle-rich sample and (ii) detachment of the cells and the free DNA from the sediment prior to a PMA treatment. Both strategies promise to be usable options for distinguishing living cells and free DNA in complex environmental samples.
Collapse
Affiliation(s)
- Janine Heise
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Marcella Nega
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
| |
Collapse
|
24
|
Barbau-Piednoir E, Mahillon J, Pillyser J, Coucke W, Roosens NH, Botteldoorn N. Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. J Microbiol Methods 2014; 103:131-7. [DOI: 10.1016/j.mimet.2014.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 11/25/2022]
|
25
|
Abstract
Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology.
Collapse
|
26
|
Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitol Res 2014; 113:2671-8. [DOI: 10.1007/s00436-014-3922-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
27
|
Agulló-Barceló M, Moss J, Green J, Gillespie S, Codony F, Lucena F, Nocker A. Quantification of relative proportions of intact cells in microbiological samples using the example of Cryptosporidium parvum
oocysts. Lett Appl Microbiol 2013; 58:70-8. [DOI: 10.1111/lam.12157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- M. Agulló-Barceló
- Department of Microbiology; Faculty of Biology; Universitat de Barcelona; Barcelona Spain
| | - J.A. Moss
- Center for Environmental Diagnostics and Bioremediation; University of West Florida; Pensacola FL USA
| | - J. Green
- Scottish Water; Juniper House; Heriot Watt Research Park; Edinburgh UK
| | - S. Gillespie
- Scottish Water; Juniper House; Heriot Watt Research Park; Edinburgh UK
| | - F. Codony
- Laboratori de Microbiologia Sanitària i Mediambiental (MSM-Lab); Universitat Politècnica de Catalunya; Terrassa Barcelona Spain
| | - F. Lucena
- Department of Microbiology; Faculty of Biology; Universitat de Barcelona; Barcelona Spain
| | - A. Nocker
- Cranfield Water Science Institute; Cranfield University; Cranfield Bedfordshire UK
| |
Collapse
|
28
|
Xing-long X, Cong-cong L, Yang Q, Yi-gang Y, Hui W. Molecular monitoring of Escherichia coli
O157: H7 sterilization rate using qPCR and propidium monoazide treatment. Lett Appl Microbiol 2013; 56:333-9. [DOI: 10.1111/lam.12052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Affiliation(s)
- X. Xing-long
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
| | - L. Cong-cong
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
| | - Q. Yang
- Dongguan entry-exit inspection and quarantine bureau of China; Dongguan China
| | - Y. Yi-gang
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
| | - W. Hui
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou China
| |
Collapse
|