1
|
Gradenegger A, Schachner JA, Belaj F, Mösch-Zanetti NC. An oxidorhenium(v) complex with an electron-withdrawing ligand: benefits and drawbacks for a dual role catalyst. RSC Adv 2024; 14:40058-40068. [PMID: 39717811 PMCID: PMC11664244 DOI: 10.1039/d4ra07391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
One very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO4 - and nitrate NO3 - as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)2] (1). Then, catalytic experiments were conducted showing that non-redox epoxidation activity is indeed enhanced, but redox catalysis via oxygen atom transfer (OAT) activity was reduced for ClO4 - and NO3 - reductions. From one nitrate reduction experiment, a small amount of the singly-oxidized dioxidorhenium(vi) complex [ReO2(L1)] (2) could be isolated, confirming the successful reduction sequence of nitrate to nitrite NO2 - (2e- reduction) to NO (1e- reduction). Furthermore, ligand L1 displayed a richer than usually observed coordination chemistry, allowing for the isolation of complexes [ReOCl2(SMe2)(L1)] (trans-3a), [ReOCl2(OPPh3)(L1)] (3b) and [ReCl3(OPPh3)(L1)] (3c). Complexes 1 and 3a-b were tested in cyclooctene epoxidation, 1 was additionally investigated as an oxyanion reduction catalyst of perchlorate and nitrate. All compounds HL1, 1, 2 and 3a-c could be characterized by single-crystal X-ray diffraction, besides other routine analyses.
Collapse
Affiliation(s)
- A Gradenegger
- Institute of Chemistry, University of Graz Schubertstraße 1 8010 Graz Austria
| | - J A Schachner
- Institute of Chemistry, University of Graz Schubertstraße 1 8010 Graz Austria
| | - F Belaj
- Institute of Chemistry, University of Graz Schubertstraße 1 8010 Graz Austria
| | - N C Mösch-Zanetti
- Institute of Chemistry, University of Graz Schubertstraße 1 8010 Graz Austria
| |
Collapse
|
2
|
Chen M, Moher D, Rogers J, Yatom S, Thimsen E, Parker KM. Effects of Halides on Organic Compound Degradation during Plasma Treatment of Brines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5139-5152. [PMID: 38446791 DOI: 10.1021/acs.est.3c07162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Plasma has been proposed as an alternative strategy to treat organic contaminants in brines. Chemical degradation in these systems is expected to be partially driven by halogen oxidants, which have been detected in halide-containing solutions exposed to plasma. In this study, we characterized specific mechanisms involving the formation and reactions of halogen oxidants during plasma treatment. We first demonstrated that addition of halides accelerated the degradation of a probe compound known to react quickly with halogen oxidants (i.e., para-hydroxybenzoate) but did not affect the degradation of a less reactive probe compound (i.e., benzoate). This effect was attributed to the degradation of para-hydroxybenzoate by hypohalous acids, which were produced via a mechanism involving halogen radicals as intermediates. We applied this mechanistic insight to investigate the impact of constituents in brines on reactions driven by halogen oxidants during plasma treatment. Bromide, which is expected to occur alongside chloride in brines, was required to enable halogen oxidant formation, consistent with the generation of halogen radicals from the oxidation of halides by hydroxyl radical. Other constituents typically present in brines (i.e., carbonates, organic matter) slowed the degradation of organic compounds, consistent with their ability to scavenge species involved during plasma treatment.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Dillon Moher
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jacqueline Rogers
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Shurik Yatom
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 , United States
| | - Elijah Thimsen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Aghabalaei V, Baghdadi M, Goharrizi BA, Noorimotlagh Z. A systematic review of strategies to overcome barrier for nitrate separation systems from drinking water: Focusing on waste streams treatment processes. CHEMOSPHERE 2024; 349:140757. [PMID: 38013022 DOI: 10.1016/j.chemosphere.2023.140757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
By 2030, the UN General Assembly issued the Sustainable Development Goal 6, which calls for the provision of safe drinking water. However, water resources are continuously decreasing in quantity and quality. NO3- is the most widespread pollutant worldwide, threatening both human health and ecosystems. NO3- separation systems (NSS) using IX and membrane-based techniques (MBT) are considered practical and efficient technologies, but the management of IX waste brine (IXWB) and concentrate streams for MBT (CSM), as well as the high salt requirements for IX regeneration, are challenging from both economic and environmental perspectives. It is essential to classify the different waste management strategies in order to examine the current state of research and identify the best option to address these issues. This review provides harmonized information on IXWB/CSM management strategies. This study is the first systematic review of all papers available in the Web of Science, Scopus, and PubMed databases published until February 2023. 75% of the studies focused on the use of biological denitrification (BD) and catalytic denitrification (CD). Although innovative technologies (bio-regeneration and direct CD) have advantages over indirect processes, they are not yet practical for large-scale plants because their reliability is unknown. Moreover, the generation of NH4+ is the major challenge for application large-scale of chemical reduction. An innovative work flow diagram, challenges, and future prospects are presented. The review shows that integrating modified NSS with IXWB/CSM treatment is a promising sustainable solution, as the combination could be economically and environmentally beneficial and remove barriers to NNS application.
Collapse
Affiliation(s)
- Vahid Aghabalaei
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | - Majid Baghdadi
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Iran.
| | | | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
4
|
Gao J, Chen G, Fu Q, Ren C, Tan C, Liu H, Wang Y, Liu J. Enhancing Aqueous Chlorate Reduction Using Vanadium Redox Cycles and pH Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20392-20399. [PMID: 37976223 DOI: 10.1021/acs.est.3c06519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chlorate (ClO3-) is a toxic oxyanion pollutant from industrial wastes, agricultural applications, drinking water disinfection, and wastewater treatment. Catalytic reduction of ClO3- using palladium (Pd) nanoparticle catalysts exhibited sluggish kinetics. This work demonstrates an 18-fold activity enhancement by integrating earth-abundant vanadium (V) into the common Pd/C catalyst. X-ray photoelectron spectroscopy and electrochemical studies indicated that VV and VIV precursors are reduced to VIII in the aqueous phase (rather than immobilized on the carbon support) by Pd-activated H2. The VIII/IV redox cycle is the predominant mechanism for the ClO3- reduction. Further reduction of chlorine intermediates to Cl- could proceed via VIII/IV and VIV/V redox cycles or direct reduction by Pd/C. To capture the potentially toxic V metal from the treated solution, we adjusted the pH from 3 to 8 after the reaction, which completely immobilized VIII onto Pd/C for catalyst recycling. The enhanced performance of reductive catalysis using a Group 5 metal adds to the diversity of transition metals (e.g., Cr, Mo, Re, Fe, and Ru in Groups 6-8) for water pollutant treatment via various unique mechanisms.
Collapse
Affiliation(s)
- Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Gongde Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qi Fu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Cheng Tan
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Aghabalaei V, Baghdadi M, Goharrizi BA, Noorimotlagh Z. Optimum anatase/rutile ratios of TiO 2 for photocatalytic denitrification from IX brine waste and real RO concentrate: RSM-CCD model and the use of an economical and efficient hole scavenger study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122200-122218. [PMID: 37966635 DOI: 10.1007/s11356-023-30877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Both ion exchange (IX) and reverse osmosis (RO) technologies are effective in removing NO3- from drinking water, but the disposal of waste streams and the large amount of salt needed for to prepare fresh brine in IX have become economic and environmental challenges. To overcome these barriers, photocatalytic denitrification (PD) using TiO2 nanoparticles in different anatase/rutile (A/R) ratios was applied to IX brine waste (IXWB) and real RO concentrate (real ROC). The synthesized samples were characterized by XRD, FESEM-EDX, and elemental mapping, BET, and UV-Vis absorption spectra. Experiments design, process optimization, and confirmation of results were performed using CCD-RSM. The study also investigated the use of glycerol, a by-product of biodiesel production, as an economic hole scavenger. The effect of different concentrations of SO4-2 on the removal efficiency of NO3- and the N2 selectivity was also investigated. The anatase phase converts to rutile with increasing calcination temperature, resulting in larger crystallites and particle sizes and narrower optical band gaps of TiO2 nanoparticles. Under optimal conditions, the mixed A (79%)/R (21%) phase of TiO2 with FA showed the highest photoactivity in conversion NO3- (89% and 95%) with N2 selectivity (83% and 85% for IXWB and real ROC, respectively). For real ROC, the use of glycerol as an economical hole scavenger resulted in 100% NO3- reduction. A possible mechanism involving glycerol and FA is discussed. Finally, optimized (A/R) ratios of TiO2 nanoparticles were successfully supported on the surface of GAC (GAC/TiO2). The composite sample can be easily recycled and reused from solution and exhibits high photoactivity even after five cycles.
Collapse
Affiliation(s)
- Vahid Aghabalaei
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Graduate Faculty of Environment, Department of Environmental Engineering, University of Tehran, Tehran, Iran.
| | | | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
6
|
Gao J, Xie S, Liu F, Liu J. Preparation and Synergy of Supported Ru 0 and Pd 0 for Rapid Chlorate Reduction at pH 7. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3962-3970. [PMID: 36808945 PMCID: PMC9996829 DOI: 10.1021/acs.est.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Chlorate (ClO3-) is a common water pollutant due to its gigantic scale of production, wide applications in agriculture and industry, and formation as a toxic byproduct in various water treatment processes. This work reports on the facile preparation, mechanistic elucidation, and kinetic evaluation of a bimetallic catalyst for highly active ClO3- reduction into Cl-. Under 1 atm H2 and 20 °C, PdII and RuIII were sequentially adsorbed and reduced on a powdered activated carbon support, affording Ru0-Pd0/C from scratch within only 20 min. The Pd0 particles significantly accelerated the reductive immobilization of RuIII as >55% dispersed Ru0 outside Pd0. At pH 7, Ru-Pd/C shows a substantially higher activity of ClO3- reduction (initial turnover frequency >13.9 min-1 on Ru0; rate constant at 4050 L h-1 gmetal-1) than reported catalysts (e.g., Rh/C, Ir/C, Mo-Pd/C) and the monometallic Ru/C. In particular, Ru-Pd/C accomplished the reduction of concentrated 100 mM ClO3- (turnover number > 11,970), whereas Ru/C was quickly deactivated. In the bimetallic synergy, Ru0 rapidly reduces ClO3- while Pd0 scavenges the Ru-passivating ClO2- and restores Ru0. This work demonstrates a simple and effective design for heterogeneous catalysts tailored for emerging water treatment needs.
Collapse
Affiliation(s)
- Jinyu Gao
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Shaohua Xie
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Fudong Liu
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida 32816, United States
| | - Jinyong Liu
- Department
of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Reznicek J, Bednarik V, Filip J. PERCHLORATE SENSING – CAN ELECTROCHEMISTRY MEET THE SENSITIVITY OF STANDARD METHODS? Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Gao J, Zhao Q, Tan C, Xie S, Yin Y, Liu F, Liu H, Chen B, Liu J. Accelerating Catalytic Oxyanion Reduction with Inert Metal Hydroxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1479-1486. [PMID: 36633933 PMCID: PMC9878714 DOI: 10.1021/acs.est.2c06468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Adding CrIII or AlIII salts into the water suspension of platinum group metal (PGM) catalysts accelerated oxyanion pollutant reduction by up to 600%. Our initial attempts of adding K2CrVIO4, K2CrVI2O7, or KCrIII(SO4)2 into Pd/C enhanced BrO3- reduction with 1 atm H2 by 6-fold. Instrument characterizations and kinetic explorations collectively confirmed the immobilization of reduced CrVI as CrIII(OH)3 on the catalyst surface. This process altered the ζ-potentials from negative to positive, thus substantially enhancing the Langmuir-Hinshelwood adsorption equilibrium constant for BrO3- onto Pd/C by 37-fold. Adding AlIII(OH)3 from alum at pH 7 achieved similar enhancements. The Cr-Pd/C and Al-Pd/C showed top-tier efficiency of catalytic performance (normalized with Pd dosage) among all the reported Pd catalysts on conventional and nanostructured support materials. The strategy of adding inert metal hydroxides works for diverse PGMs (palladium and rhodium), substrates (BrO3- and ClO3-), and support materials (carbon, alumina, and silica). This work shows a simple, inexpensive, and effective example of enhancing catalyst activity and saving PGMs for environmental applications.
Collapse
Affiliation(s)
- Jinyu Gao
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Qiang Zhao
- Department
of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Cheng Tan
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Shaohua Xie
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida32816, United States
| | - Yadong Yin
- Department
of Chemistry, University of California, Riverside, California92521, United States
| | - Fudong Liu
- Department
of Civil, Environmental, and Construction Engineering, Catalysis Cluster
for Renewable Energy and Chemical Transformations (REACT), NanoScience
Technology Center (NSTC), University of
Central Florida, Orlando, Florida32816, United States
| | - Haizhou Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| | - Baoliang Chen
- Department
of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| | - Jinyong Liu
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California92521, United States
| |
Collapse
|
9
|
Kumar KS, Kavitha S, Parameswari K, Sakunthala A, Sathishkumar P. Environmental occurrence, toxicity and remediation of perchlorate - A review. CHEMOSPHERE 2023; 311:137017. [PMID: 36377118 DOI: 10.1016/j.chemosphere.2022.137017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Perchlorate (ClO4-) comes under the class of contaminants called the emerging contaminants that will impact environment in the near future. A strong oxidizer by nature, perchlorate has received significant observation due to its occurrence, reactive nature, and persistence in varied environments such as surface water, groundwater, soil, and food. Perchlorate finds its use in number of industrial products ranging from missile fuel, fertilizers, and fireworks. Perchlorate exposure occurs when naturally occurring or manmade perchlorate in water or food is ingested. Perchlorate ingestion affects iodide absorption into the thyroid, thereby causing a decrease in the synthesis of thyroid hormone, a very crucial component needed for metabolism, neural development, and a number of other physiological functions in the body. Perchlorate remediation from ground water and drinking water is carried out through a series of physical-chemical techniques like ion (particle) transfer and reverse osmosis. However, the generation of waste through these processes are difficult to manage, so the need for alternative treatment methods occur. This review talks about the hybrid technologies that are currently researched and gaining momentum in the treatment of emerging contaminants, namely perchlorate.
Collapse
Affiliation(s)
- Krishnan Suresh Kumar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Subbiah Kavitha
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India.
| | - Kalivel Parameswari
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Ayyasamy Sakunthala
- Solid State Ionics Lab, Department of Applied Physics, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India.
| |
Collapse
|
10
|
Almassi S, Ren C, Liu J, Chaplin BP. Electrocatalytic Perchlorate Reduction Using an Oxorhenium Complex Supported on a Ti 4O 7 Reactive Electrochemical Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3267-3276. [PMID: 35175742 DOI: 10.1021/acs.est.1c08220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.
Collapse
Affiliation(s)
- Soroush Almassi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
- Institute of Environmental Science and Policy, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, Illinois 60612, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes (Basel) 2022. [DOI: 10.3390/pr10030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The remediation of bromate in water is a concern due to the reported health issues caused by its ingestion. Catalytic processes, wherein bromate is reduced to non-hazardous bromide, have been studied. In the present work, catalysts of 1% palladium supported in electrospun carbon fibers (Pd-CFs) using different methods for palladium incorporation were prepared. The textural properties, morphology, crystalline structure, and hydrogenation capacity by H2 chemisorption analysis of the Pd-CFs catalysts were characterized. The catalytic tests were performed in a semi-batch reactor, and the obtained results showed different catalytic activity by each prepared Pd-CFs catalyst. The catalysts prepared by incipient wetness impregnation—1% Pd/CF1 and 1% Pd/CF2, using CFs obtained with electrospinning flow rates of 0.5 mL h−1 and 2 mL h−1, respectively—achieved total bromate reduction after 120 min of operation; however, 1% Pd/CF1 obtained total reduction as early as 30 min. Taking into account the catalyst properties, 1% Pd/CF1 showed a good catalytic activity due to CFs morphology obtained using a low electrospinning flow rate, while the Pd incorporation method allowed a high availability of active sites with hydrogenation properties for bromate reduction.
Collapse
|
12
|
Liu Z, Haddad M, Sauvé S, Barbeau B. Alleviating the burden of ion exchange brine in water treatment: From operational strategies to brine management. WATER RESEARCH 2021; 205:117728. [PMID: 34619606 DOI: 10.1016/j.watres.2021.117728] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange (IX) using synthetic resins is a cost-efficient technology to cope with a wide range of contaminants in water treatment. However, implementing IX processes is constrained by the regeneration of IX resins that generates a highly concentrated brine (i.e., IX brine), the disposal of which is costly and detrimental to ecosystems. In an effort to make the application of IX resins more sustainable in water treatment, substantial research has been conducted on the optimization of IX resins operation and the management of IX brine. The present review critically evaluates the literature surrounding IX operational strategies and IX brine management which can be used to limit the negative impacts arising from IX brine. To this end, we first analyzed the physicochemical characteristics of brines from the regeneration of IX resins. Then, we critically evaluated IX operational strategies that facilitate brine management, including resin selection, contactor selection, operational modes, and regeneration strategies. Furthermore, we analyzed IX brine management strategies, including brine reuse and brine disposal (without or with treatment). Finally, a novel workflow for the IX water treatment plant design that integrates IX operational strategies and IX brine management is proposed, thereby highlighting the areas that make IX technology more sustainable for water treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| | - Maryam Haddad
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, United States.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| | - Benoit Barbeau
- NSERC-Industrial Chair on Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
13
|
Ren C, Yang P, Sun J, Bi EY, Gao J, Palmer J, Zhu M, Wu Y, Liu J. A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction. J Am Chem Soc 2021; 143:7891-7896. [PMID: 34003633 DOI: 10.1021/jacs.1c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perchlorate (ClO4-) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4- reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo-Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4- into Cl- with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon-water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx- substrates reached 165 h-1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4-. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4- for water purification and space exploration.
Collapse
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jiaonan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric Y Bi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States.,Martin Luther King High School, Riverside, California 92508, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jacob Palmer
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Ren C, Liu J. Bioinspired Catalytic Reduction of Aqueous Perchlorate by One Single-Metal Site with High Stability against Oxidative Deactivation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
15
|
|
16
|
Park J, An S, Jho EH, Bae S, Choi Y, Choe JK. Exploring reductive degradation of fluorinated pharmaceuticals using Al 2O 3-supported Pt-group metallic catalysts: Catalytic reactivity, reaction pathways, and toxicity assessment. WATER RESEARCH 2020; 185:116242. [PMID: 32758791 DOI: 10.1016/j.watres.2020.116242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Recently, an increasing number of pharmaceutical compounds has become fluorinated. Owing to their pharmacological efficacy, the use of these fluorinated pharmaceuticals continues to grow, and they constitute 20% of the drugs on the current market. However, only a few studies have investigated the fate and transformation of these emerging contaminants in natural and engineered aquatic environments. In the present study, the H2-based reductive transformation of three fluorinated pharmaceutical compounds (levofloxacin, sitagliptin, and fluoxetine) were investigated using alumina-supported monometallic and bimetallic catalysts of the Pt-group noble metals (i.e., Ru, Rh, Pd, and Pt) under ambient temperature and pressure conditions. Degradation of all three compounds was observed with catalytic reactivity ranging from 4.0 × 10-3 to 2.14 × 102 L/(min·gcat), in which fluoxetine generally showed the highest reactivity, followed by sitagliptin and levofloxacin. The fluorination yields and transformation products were characterized for each fluorinated compound and three different degradation mechanisms were elucidated: 1) hydrodefluorination of C-F bond to CH bond, 2) hydrogenation of aromatic ring, and 3) reductive cleavage of CO bond from phenyl ether. Toxicity assessment using Aliivibrio fischeri showed there were no significant changes in toxicity over levofloxacin and sitagliptin degradation, suggesting the formation of no highly toxic by-products during catalytic reduction. For fluoxetine, an increased toxicity was observed during its degradation while ECOSAR-predicted toxicity values of all identified intermediates were lower than that of fluoxetine, suggesting the formation of unidentified secondary by-products that contribute to the overall toxicity. The study showed that catalytic reduction is a promising remediation process for treating and defluorinating the fluorinated pharmaceutical compounds.
Collapse
Affiliation(s)
- Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 35-402, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonyoung An
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 35-402, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Eun Hea Jho
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 35-402, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 35-402, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Ren C, Yang P, Gao J, Huo X, Min X, Bi EY, Liu Y, Wang Y, Zhu M, Liu J. Catalytic Reduction of Aqueous Chlorate With MoOx Immobilized on Pd/C. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Eric Y. Bi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Martin Luther King High School, Riverside, California 92508, United States
| | - Yiming Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
18
|
Marks R, Seaman J, Kim J, Doudrick K. Activity and stability of the catalytic hydrogel membrane reactor for treating oxidized contaminants. WATER RESEARCH 2020; 174:115593. [PMID: 32086133 DOI: 10.1016/j.watres.2020.115593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO2-) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO2- reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H2) delivery method to the CHMR, the initial H2 and NO2- concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H+, Na+, Ca2+) and a mixture of ions in a hard groundwater. Delivering H2 to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H2 consumption efficiency and catalytic activity. The overall reaction rate of NO2- was dependent on relative concentrations of H2 and NO2- at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na+, Ca2+) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.
Collapse
Affiliation(s)
- Randal Marks
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA
| | - Joseph Seaman
- University of Notre Dame, Department of Chemical and Biomolecular Engineering, USA
| | - Junyeol Kim
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA
| | - Kyle Doudrick
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, USA.
| |
Collapse
|
19
|
|
20
|
He L, Zhong Y, Yao F, Chen F, Xie T, Wu B, Hou K, Wang D, Li X, Yang Q. Biological perchlorate reduction: which electron donor we can choose? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16906-16922. [PMID: 31020520 DOI: 10.1007/s11356-019-05074-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Biological reduction is an effective method for removal of perchlorate (ClO4-), where perchlorate is transformed into chloride by perchlorate-reducing bacteria (PRB). An external electron donor is required for autotrophic and heterotrophic reduction of perchlorate. Therefore, plenty of suitable electron donors including organic (e.g., acetate, ethanol, carbohydrate, glycerol, methane) and inorganic (e.g., hydrogen, zero-valent iron, element sulfur, anthrahydroquinone) as well as the cathode have been used in biological reduction of perchlorate. This paper reviews the application of various electron donors in biological perchlorate reduction and their influences on treatment efficiency of perchlorate and biological activity of PRB. We discussed the criteria for selection of appropriate electron donor to provide a flexible strategy of electron donor choice for the bioremediation of perchlorate-contaminated water.
Collapse
Affiliation(s)
- Li He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Yu Zhong
- Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha, 410004, People's Republic of China.
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Fei Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Bo Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| |
Collapse
|
21
|
Hutchison JM, Guest JS, Zilles JL. Evaluating the Development of Biocatalytic Technology for the Targeted Removal of Perchlorate from Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7178-7186. [PMID: 28497961 DOI: 10.1021/acs.est.7b00831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Removing micropollutants is challenging in part because of their toxicity at low concentrations. A biocatalytic approach could harness the high affinity of enzymes for their substrates to address this challenge. The potential of biocatalysis relative to mature (nonselective ion exchange, selective ion exchange, and whole-cell biological reduction) and emerging (catalysis) perchlorate-removal technologies was evaluated through a quantitative sustainable design framework, and research objectives were prioritized to advance economic and environmental sustainability. In its current undeveloped state, the biocatalytic technology was approximately 1 order of magnitude higher in cost and environmental impact than nonselective ion exchange. Biocatalyst production was highly correlated with cost and impact. Realistic improvement scenarios targeting biocatalyst yield, biocatalyst immobilization for reuse, and elimination of an electron shuttle could reduce total costs to $0.034 m-3 and global warming potential (GWP) to 0.051 kg CO2 eq m-3: roughly 6.5% of cost and 7.3% of GWP of the background from drinking water treatment and competitive with the best performing technology, selective ion exchange. With less stringent perchlorate regulatory limits, ion exchange technologies had increased cost and impact, in contrast to biocatalytic and catalytic technologies. Targeted advances in biocatalysis could provide affordable and sustainable treatment options to protect the public from micropollutants.
Collapse
Affiliation(s)
- Justin M Hutchison
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Julie L Zilles
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Xie Y, Yi Y, Qin Y, Wang L, Liu G, Wu Y, Diao Z, Zhou T, Xu M. Perchlorate degradation in aqueous solution using chitosan-stabilized zero-valent iron nanoparticles. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Liu J, Wu D, Su X, Han M, Kimura SY, Gray DL, Shapley JR, Abu-Omar MM, Werth CJ, Strathmann TJ. Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis. Inorg Chem 2016; 55:2597-611. [DOI: 10.1021/acs.inorgchem.5b02940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dimao Wu
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoge Su
- Pure Storage Inc., Mountain View, California 94041, United States
| | | | | | | | | | - Mahdi M. Abu-Omar
- Department of Chemistry and School of Chemical
Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charles J. Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
24
|
Liu J, Chen X, Wang Y, Strathmann TJ, Werth CJ. Mechanism and Mitigation of the Decomposition of an Oxorhenium Complex-Based Heterogeneous Catalyst for Perchlorate Reduction in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12932-12940. [PMID: 26422179 DOI: 10.1021/acs.est.5b03393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A biomimetic heterogeneous catalyst combining palladium nanoparticles and an organic ligand-coordinated oxorhenium complex on activated carbon, Re(hoz)2-Pd/C, was previously developed and shown to reduce aqueous perchlorate (ClO4-) with H2 at a rate ∼100 times faster than the first generation ReOx-Pd/C catalyst prepared from perrhenate (ReO4-). However, the immobilized Re(hoz)2 complex was shown to partially decompose and leach into water as ReO4-, leading to an irreversible loss of catalytic activity. In this work, the stability of the immobilized Re(hoz)2 complex is shown to depend on kinetic competition between three processes: (1) ReV(hoz)2 oxidation by ClO4- and its reduction intermediates ClOx-, (2) ReVII(hoz)2 reduction by Pd-activated hydrogen, and (3) hydrolytic ReVII(hoz)2 decomposition. When ReV(hoz)2 oxidation is faster than ReVII(hoz)2 reduction, the ReVII(hoz)2 concentration builds up and leads to hydrolytic decomposition to ReO4- and free hoz ligand. Rapid ReV(hoz)2 oxidation is mainly promoted by highly reactive ClOx- formed from the reduction of ClO4-. To mitigate Re(hoz)2 decomposition and preserve catalytic activity, ruthenium (Ru) and rhodium (Rh) were evaluated as alternative H2 activators to Pd. Rh showed superior activity for reducing the ClO3- intermediate to Cl-, thereby preventing ClOx- buildup and lowering Re complex decomposition in the Re(hoz)2-Rh/C catalyst. In contrast, Ru showed the lowest ClO3- reduction activity and resulted in the most Re(hoz)2 decomposition among the Re(hoz)2-M/C catalysts. This work highlights the importance of using mechanistic insights from kinetic and spectroscopic tests to rationally design water treatment catalysts for enhanced performance and stability.
Collapse
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53211, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
25
|
Choe JK, Bergquist AM, Jeong S, Guest JS, Werth CJ, Strathmann TJ. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. WATER RESEARCH 2015; 80:267-280. [PMID: 26005787 DOI: 10.1016/j.watres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/22/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Salt used to make brines for regeneration of ion exchange (IX) resins is the dominant economic and environmental liability of IX treatment systems for nitrate-contaminated drinking water sources. To reduce salt usage, the applicability and environmental benefits of using a catalytic reduction technology to treat nitrate in spent IX brines and enable their reuse for IX resin regeneration were evaluated. Hybrid IX/catalyst systems were designed and life cycle assessment of process consumables are used to set performance targets for the catalyst reactor. Nitrate reduction was measured in a typical spent brine (i.e., 5000 mg/L NO3(-) and 70,000 mg/L NaCl) using bimetallic Pd-In hydrogenation catalysts with variable Pd (0.2-2.5 wt%) and In (0.0125-0.25 wt%) loadings on pelletized activated carbon support (Pd-In/C). The highest activity of 50 mgNO3(-)/(min - g(Pd)) was obtained with a 0.5 wt%Pd-0.1 wt%In/C catalyst. Catalyst longevity was demonstrated by observing no decrease in catalyst activity over more than 60 days in a packed-bed reactor. Based on catalyst activity measured in batch and packed-bed reactors, environmental impacts of hybrid IX/catalyst systems were evaluated for both sequencing-batch and continuous-flow packed-bed reactor designs and environmental impacts of the sequencing-batch hybrid system were found to be 38-81% of those of conventional IX. Major environmental impact contributors other than salt consumption include Pd metal, hydrogen (electron donor), and carbon dioxide (pH buffer). Sensitivity of environmental impacts of the sequencing-batch hybrid reactor system to sulfate and bicarbonate anions indicate the hybrid system is more sustainable than conventional IX when influent water contains <80 mg/L sulfate (at any bicarbonate level up to 100 mg/L) or <20 mg/L bicarbonate (at any sulfate level up to 100 mg/L) assuming 15 brine reuse cycles. The study showed that hybrid IX/catalyst reactor systems have potential to reduce resource consumption and improve environmental impacts associated with treating nitrate-contaminated water sources.
Collapse
Affiliation(s)
- Jong Kwon Choe
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Allison M Bergquist
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sangjo Jeong
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Charles J Werth
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1517-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Gamburg YD, Drovosekov AB, Puryaeva TP. Electrodeposition of rhenium-palladium alloy coatings and their structure. RUSS J ELECTROCHEM+ 2015. [DOI: 10.1134/s1023193515040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Fu F, Cheng Z, Lu J. Synthesis and use of bimetals and bimetal oxides in contaminants removal from water: a review. RSC Adv 2015. [DOI: 10.1039/c5ra13067k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper gives an overview of the recent advances of the synthesis methods of bimetals and bimetal oxides and applying them in contaminant removal from water.
Collapse
Affiliation(s)
- Fenglian Fu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Zihang Cheng
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| | - Jianwei Lu
- School of Environmental Science and Engineering
- Guangdong University of Technology
- Guangzhou 510006
- PR China
| |
Collapse
|
29
|
Liu J, Choe JK, Wang Y, Shapley JR, Werth CJ, Strathmann TJ. Bioinspired Complex-Nanoparticle Hybrid Catalyst System for Aqueous Perchlorate Reduction: Rhenium Speciation and Its Influence on Catalyst Activity. ACS Catal 2014. [DOI: 10.1021/cs501286w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jinyong Liu
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jong Kwon Choe
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yin Wang
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John R. Shapley
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles J. Werth
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy J. Strathmann
- Department
of Civil and Environmental Engineering and ‡Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Wang Y, Liu J, Wang P, Werth CJ, Strathmann TJ. Palladium Nanoparticles Encapsulated in Core–Shell Silica: A Structured Hydrogenation Catalyst with Enhanced Activity for Reduction of Oxyanion Water Pollutants. ACS Catal 2014. [DOI: 10.1021/cs500971r] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yin Wang
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jinyong Liu
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Peng Wang
- Water
Desalination and Reuse Center, Biological and Environmental Sciences
and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Charles J. Werth
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy J. Strathmann
- Department
of Civil and Environmental Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Chen H, Zhang P, Tan W, Jiang F, Tang R. Palladium supported on amino functionalized magnetic MCM-41 for catalytic hydrogenation of aqueous bromate. RSC Adv 2014. [DOI: 10.1039/c4ra05593d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pd supported on amino functionalized magnetic MCM-41 was synthesized by deposition–precipitation (DP) and impregnation (IMP) methods.
Collapse
Affiliation(s)
- Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environmental & Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094, PR China
| | - Peng Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environmental & Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094, PR China
| | - Wenhui Tan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environmental & Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094, PR China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse
- School of Environmental & Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094, PR China
| | - Rong Tang
- Jiangsu Open University
- Nanjing 210036, PR China
| |
Collapse
|
32
|
Choe JK, Mehnert MH, Guest JS, Strathmann TJ, Werth CJ. Comparative assessment of the environmental sustainability of existing and emerging perchlorate treatment technologies for drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4644-4652. [PMID: 23484880 DOI: 10.1021/es3042862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmental impacts of conventional and emerging perchlorate drinking water treatment technologies were assessed using life cycle assessment (LCA). Comparison of two ion exchange (IX) technologies (i.e., nonselective IX with periodic regeneration using brines and perchlorate-selective IX without regeneration) at an existing plant shows that brine is the dominant contributor for nonselective IX, which shows higher impact than perchlorate-selective IX. Resource consumption during the operational phase comprises >80% of the total impacts. Having identified consumables as the driving force behind environmental impacts, the relative environmental sustainability of IX, biological treatment, and catalytic reduction technologies are compared more generally using consumable inputs. The analysis indicates that the environmental impacts of heterotrophic biological treatment are 2-5 times more sensitive to influent conditions (i.e., nitrate/oxygen concentration) and are 3-14 times higher compared to IX. However, autotrophic biological treatment is most environmentally beneficial among all. Catalytic treatment using carbon-supported Re-Pd has a higher (ca. 4600 times) impact than others, but is within 0.9-30 times the impact of IX with a newly developed ligand-complexed Re-Pd catalyst formulation. This suggests catalytic reduction can be competitive with increased activity. Our assessment shows that while IX is an environmentally competitive, emerging technologies also show great promise from an environmental sustainability perspective.
Collapse
Affiliation(s)
- Jong Kwon Choe
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|