1
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
2
|
Balasundaram G, Gahlot P, Ahmed B, Biswas P, Tyagi VK, Svensson K, Kumar V, Kazmi AA. Advanced steam-explosion pretreatment mediated anaerobic digestion of municipal sludge: Effects on methane yield, emerging contaminants removal, and microbial community. ENVIRONMENTAL RESEARCH 2023; 238:117195. [PMID: 37758117 DOI: 10.1016/j.envres.2023.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Advanced steam explosion pretreatment, i.e., the Thermal hydrolysis process (THP) is applied mainly to improve the sludge solubilization and subsequent methane yield in the downstream anaerobic digestion (AD) process. However, the potential of THP in pretreating the high solids retention time (SRT) sludges, mitigating the risk of emerging organic micropollutants and effects on anaerobic microbiome in digester remains unclear. In this study, sludge from a sequencing batch reactor (SBR) system operating at a SRT of 40 days was subjected to THP using a 5 L pilot plant at the temperature ranges of 120-180 °C for 30-120 min. The effect of THP on organics solubilization, methane yield, organic micropollutant removal, and microbial community dynamics was studied. The highest methane yield of 507 mL CH4/g VSadded and volatile solids (VS) removal of 54% were observed at 160°C- 30min THP condition, i.e., 4.1 and 2.6 times higher than the control (123 mL CH4/gVSadded, 20.7%), respectively. The experimental values of hydrolysis coefficient and methane yield have been predicted using Modified Gompertz, First order, and Logistics models. The observed values fitted well with all three models showing an R2 value between 0.96 and 1.0. THP pretreated sludges showed >80% removal of Trimethoprim, Enrofloxacin, Ciprofloxacin, and Bezafibrate. However, Carbamazepine, 17α-ethinylestradiol, and Progesterone showed recalcitrant behavior, resulting in less than 50% removal. Microbial diversity analysis showed the dominance of Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, collectively accounting for >70-80% of bacterial reads. They are mainly responsible for the fermentation of complex biomolecules like polysaccharides, proteins, and lipids. The THP-mediated anaerobic digestion of sludge shows better performance than the control digestion, improved methane yield, higher VS and micropollutants removal, and a diverse microbiome in the digester.
Collapse
Affiliation(s)
- Gowtham Balasundaram
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pallavi Gahlot
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Banafsha Ahmed
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Pinakshi Biswas
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - A A Kazmi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
3
|
Frimodig J, Autio A, Lahtinen E, Haukka M. Recovery of 17β-Estradiol Using 3D Printed Polyamide-12 Scavengers. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1122-1129. [PMID: 37886421 PMCID: PMC10599425 DOI: 10.1089/3dp.2021.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Over the past decades, endocrine-disrupting compounds have been under active studies due to their potential environmental impact and increased usage. The actual hormones, especially estrogens, have shown to be one of the major contributors to hormonal waste in wastewater. Wastewater treatment facilities have variable capabilities to handle hormonal compounds and, therefore, different quantities of harmful compounds may end up in the environment. We introduce a simple technique to remove estrogens, such as 17β-estradiol (E2) from wastewater by using 3D printed polyamide-12 (PA12) filters. A selective laser sintering 3D printing was used to manufacture porous PA12 filters with accessible functional groups. Adsorption and desorption properties were studied using gas chromatography with flame ionization detector. The results showed that near quantitative removal of E2 was achieved. The 3D printed filters could also be regenerated and reused without losing their efficiency. During regeneration, E2 could be extracted from the filter without destroying the compound. This opens up possibilities to use the hormone scavenger filters also as concentration tools enabling accurate analyses of sources with trace concentrations of E2.
Collapse
Affiliation(s)
- Janne Frimodig
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Aino Autio
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Elmeri Lahtinen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Yang J, Zhang H, Liu H, Zhang J, Pei Y, Zang L. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 351:127027. [PMID: 35314310 DOI: 10.1016/j.biortech.2022.127027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Low hydrogen (H2) yield via dark fermentation often occurs, being mainly due to H2 generation pathway shift. In this study, lanthanum-iron oxide nanoparticles (LaFeO3 NPs) were prepared to investigate their effects on bioH2 production. The highest H2 yield of 289.8 mL/g glucose was found at 100 mg/L of LaFeO3, being 47.6% higher than that from the control (196.3 mL/g glucose). The relative abundance of Firmicutes increased from 54.2% to 67.5%. The large specific surface area of LaFeO3 provided sufficient sites for the colonization of Firmicutes and increased the bacterial access to nutrients. Additionally, the La3+ gradually released from LaFeO3 NPs raised microbial transmembrane transport capacity, promoting glycolytic efficiency and Fe availability, thereby increasing hydrogenase content, and shifting the bioH2 evolution to butyrate pathway for more H2. This provides the novelty for biochemical utilization of La and new insights into the improved H2 yield amended with LaFeO3.
Collapse
Affiliation(s)
- Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Huiwen Zhang
- College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hui Liu
- Shandong Bluetown Analysis & Test Co., Ltd., Jinan 250101, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China.
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| |
Collapse
|
5
|
Congilosi JL, Aga DS. Review on the fate of antimicrobials, antimicrobial resistance genes, and other micropollutants in manure during enhanced anaerobic digestion and composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:123634. [PMID: 33153790 DOI: 10.1016/j.jhazmat.2020.123634] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
While manure has been used as nutrient-rich fertilizer for centuries, anaerobic digestion (AD) of manure has only been recognized recently as a promising renewable energy source for producing methane-rich biogas. Various forms of AD have been evaluated for the removal of manure contaminants, such as antimicrobials, antimicrobial resistance genes (ARGs), hormones, and pesticides that pose risks to human health and the environment. Increasing demand for cleaner energy prompts examination of the fate of manure contaminants in conventional and advanced AD techniques. This review reveals that removal of contaminants differs based on type (e.g. antimicrobials vs hormones) or class (e.g. tetracyclines vs sulfonamides) of chemicals being treated. Increasingly, pre-treatment techniques are incorporated into AD systems to enhance biogas production and degrade manure contaminants. For instance, activated carbon with microwave pretreatment removed 87-95% of ARGs. Advanced anaerobic digestion and solid-state anaerobic digestion reduced various ARGs associated with sulfonamides, macrolides, and tetracyclines. Further, total hormone reduction improved using high-temperature pretreatment prior to mesophilic AD. Finally, several studies revealed partial removal of antimicrobials and ARGs during managed composting. Although AD can independently decrease manure contaminants prior to use as fertilizer, augmenting AD with composting and other physical treatment processes can further enhance their removal.
Collapse
Affiliation(s)
- Jena L Congilosi
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Comparative Analysis of Bacterial and Archaeal Community Structure in Microwave Pretreated Thermophilic and Mesophilic Anaerobic Digesters Utilizing Mixed Sludge under Organic Overloading. WATER 2020. [DOI: 10.3390/w12030887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The effects of microwave (MW) pretreatment were investigated by six anaerobic digesters operated under thermophilic and mesophilic conditions at high organic loading rates (4.9–5.7 g volatile solids/L/d). The experiments and analyses were mainly designed to reveal the impact of MW pretreatment and digester temperatures on the process stability and microbial community structure by correlating the composition of microbial populations with volatile fatty acid (VFA) concentrations. A slight shift from biogas production (with a reasonable methane content) to VFA accumulation was observed in the thermophilic digesters, especially in the MW-irradiated reactors. Microbial population structure was assessed using a high-throughput sequencing of 16S rRNA gene on the MiSeq platform. Microbial community structure was slightly affected by different MW pretreatment conditions, while substantially affected by the digester temperature. The phylum Bacteroidetes proliferated in the MW-irradiated mesophilic digesters by resisting high-temperature MW (at 160 °C). Hydrogenotrophic methanogenesis (mostly the genus of Methanothermobacter) was found to be a key route of methane production in the thermophilic digesters, whereas aceticlastic methanogenesis (mostly the genus of Methanosaeta) was the main pathway in the mesophilic digesters.
Collapse
|
7
|
Kor-Bicakci G, Abbott T, Ubay-Cokgor E, Eskicioglu C. Occurrence of the Persistent Antimicrobial Triclosan in Microwave Pretreated and Anaerobically Digested Municipal Sludges under Various Process Conditions. Molecules 2020; 25:molecules25020310. [PMID: 31940954 PMCID: PMC7024389 DOI: 10.3390/molecules25020310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Treatment of emerging contaminants, such as antimicrobials, has become a priority topic for environmental protection. As a persistent, toxic, and bioaccumulative antimicrobial, the accumulation of triclosan (TCS) in wastewater sludge is creating a potential risk to human and ecosystem health via the agricultural use of biosolids. The impact of microwave (MW) pretreatment on TCS levels in municipal sludge is unknown. This study, for the first time, evaluated how MW pretreatment (80 and 160 °C) itself and together with anaerobic digestion (AD) under various sludge retention times (SRTs: 20, 12, and 6 days) and temperatures (35 and 55 °C) can affect the levels of TCS in municipal sludge. TCS and its potential transformation products were analyzed with ultra-high-performance liquid chromatography and tandem mass spectrometry. Significantly higher TCS concentrations were detected in sludge sampled from the plant in colder compared to those in warmer temperatures. MW temperature did not have a discernible impact on TCS reduction from undigested sludge. However, AD studies indicated that compared to controls (no pretreatment), MW irradiation could make TCS more amenable to biodegradation (up to 46%), especially at the elevated pretreatment and digester temperatures. At different SRTs studied, TCS levels in the thermophilic digesters were considerably lower than that of in the mesophilic digesters.
Collapse
Affiliation(s)
- Gokce Kor-Bicakci
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (G.K.-B.); (T.A.)
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (G.K.-B.); (T.A.)
| | - Emine Ubay-Cokgor
- Civil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, BC V1V 1V7, Canada; (G.K.-B.); (T.A.)
- Correspondence: ; Tel.: +1-250-807-8544
| |
Collapse
|
8
|
Chen Q, Allgeier A, Yin D, Hollert H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. ENVIRONMENT INTERNATIONAL 2019; 130:104938. [PMID: 31234003 DOI: 10.1016/j.envint.2019.104938] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs) and mesoplastics are able to sorb harmful substances and often contain additives, e.g., endocrine disrupting chemicals (EDCs), that can cause adverse effects to organisms. The present study aims to determine EDC concentrations and their endocrine activities in leachates of field-collected marine MPs and mesoplastics under stress conditions that are known to occur during the plastic life cycle. Estrogens were the dominant EDCs on plastic particles and were either concentrated from the surrounding water or originated from plastic manufacturing. Bisphenol A had the highest detection frequency (75%) with an average concentration of 475 ± 882 μg/kg, followed by bisphenol S, octylphenol and nonylphenol. Moreover, smaller marine MPs leached greater quantities of EDCs because the sorption from surrounding seawater is more efficient for smaller particles. It was found that normal life stresses such as microwaving (MW) and autoclaving (AC) can decrease EDC concentrations, but solar irradiation (solar) can increase EDC concentrations in leachates. Even though organisms with higher metabolic ability exhibited greater estrogenic effects, the comprehensive toxicity of plastic leachates after common life treatments was still limited (below the EC10 value) if 0.1% is taken as the EDC uptake from plastic. In future studies, the accurate contribution of plastic bound EDCs needs to be further explored, and the monitoring of MPs and mesoplastics in the human diet remains important because the concentrations of these plastics may change in the future.
Collapse
Affiliation(s)
- Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, PR China; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Annika Allgeier
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Daqiang Yin
- State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| | - Henner Hollert
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, PR China
| |
Collapse
|
9
|
Hamid H, Li LY. Fate of perfluorooctanoic acid (PFOA) in sewage sludge during microwave-assisted persulfate oxidation treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10126-10134. [PMID: 29484619 DOI: 10.1007/s11356-018-1576-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
The fate of perfluorooctanoic acid (PFOA) has been investigated for an emerging sludge treatment technique using microwave heating-assisted persulfate (PS) oxidation. The effect of heating temperature (20, 50, and 70 °C) and PS dose (PS1: 0.01; PS2: 0.1; PS3: 0.2 g/g wet sludge) was studied in sludge spiked with PFOA at an environmentally relevant concentration (200 ng/g wet weight). Control degradation experiments using spiked sludge without PS addition and background sludge (no PFOA spike) with PS addition were also conducted at each temperature. Sludge samples were analyzed for eight perfluorocarboxylic acids (PFCAs) (C4 - C11) using LC-MS/MS. At 20 °C (PS2 dose), minimal (~ 5%) removal of the spiked PFOA was observed after 72 h, suggesting the need for elevated treatment temperature. For the same PS dose (0.1 g /g sludge), treatment at 50 and 70 °C showed a decrease in PFOA concentration with increasing temperature, with ~ 28 and ~ 42% removal following 4 h of treatment. No significant increase in degradation was observed for the highest dose (PS3) after 2 h, possibly indicating self-scavenging of PS at high dosage. Due to the low initial spiking concentration of PFOA and low extraction recovery, all shorter-chain PFCAs (< C8), the degradation products of PFOA, were below quantification limits in all sludge samples.
Collapse
Affiliation(s)
- Hanna Hamid
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Semblante GU, Hai FI, Huang X, Ball AS, Price WE, Nghiem LD. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:1-17. [PMID: 26151380 DOI: 10.1016/j.jhazmat.2015.06.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/10/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity of sludge due to bioconversion to more potent metabolites. Application of advanced oxidation or thermal pre-treatment may minimise TrOCs in biosolids by increasing the bioavailability of TrOCs, converting TrOCs into more biodegradable products, or inducing complete mineralisation of TrOCs. Treatment of sludge by bioaugmentation using various bacteria, yeast, or fungus has the potential to reduce TrOC levels in biosolids.
Collapse
Affiliation(s)
- Galilee U Semblante
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Andrew S Ball
- School of Applied Sciences, RMIT University, Bundoora 3083, Australia
| | - William E Price
- Strategic Water Infrastructure Laboratory, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Long D Nghiem
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Hom-Diaz A, Llorca M, Rodríguez-Mozaz S, Vicent T, Barceló D, Blánquez P. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 155:106-113. [PMID: 25785785 DOI: 10.1016/j.jenvman.2015.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Selenastrum capricornutum and Chlamydomonas reinhardtii were tested for possible biodegradation of the hormones β-estradiol (E2) and 17α-ethinylestradiol (EE2) when cultured in anaerobic digester centrate (ADC). Neither ADC nor the hormones had a negative or toxic effect on the microalgae growth but enhanced it. E2 and EE2 biodegradation was evaluated under different culture conditions. After 7 days of treatment, between 88% and 100% of E2 was removed by S. capricornutum. Overall, 42 and 54% of the removal was attributed to biodegradation processes, while the rest of the removal was due to adsorption onto the algae biomass. For EE2, removals between 60 and 95%, depending on the culture conditions, were achieved, with biodegradation accounting for 20-54% of the removal. E2 and EE2 were completely removed in the experiments performed with C. reinhardtii, except for EE2 in the presence of ADC, which decreased to 76%. However, C. reinhardtii presented higher adsorption percentages: 86% and 71% after 7 days for E2 and EE2, respectively. Transformation products (TPs) of E2 and EE2 generated in each treatment were also monitored. Two TPs were tentatively proposed as degradation products of E2 and EE2 by the algae. In addition, the removal of 26 endocrine disruptors and related pollutants present in the centrate was also monitored: bisphenol A was completely removed, whereas tris(2-butoxyethyl)phosphate was only removed in the absence of hormones.
Collapse
Affiliation(s)
- Andrea Hom-Diaz
- Chemical Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marta Llorca
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101-E17003 Girona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101-E17003 Girona, Spain
| | - Teresa Vicent
- Chemical Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, C/Emili Grahit, 101-E17003 Girona, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Paqui Blánquez
- Chemical Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|