1
|
Guo F, Ren Y, Zhou Y, Sun S, Cui M, Khim J. Machine learning vs. statistical model for prediction modeling and experimental validation: Application in groundwater permeable reactive barrier width design. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133825. [PMID: 38430587 DOI: 10.1016/j.jhazmat.2024.133825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Permeable reactive barrier (PRB) is an effective in-situ technology for groundwater remediation. The important factors in PRB design are the width and reactive material. In this study, the beaded coal mine drainage sludge (BCMDS) was employed as the filling material to adsorb arsenic pollutants in groundwater, aiming to design the width of PRB. The design methods involving traditional continue column experiments and empirical formulas, as well as machine learning (ML) predictions and statistical methods, which are compared with each other. Traditional methods are determined based on breakthrough curves under several conditions. ML method has advantages in predicting the width of mass transfer zone (WMTZ), which simultaneously consider the characteristics of material, pollutant, and environmental conditions, with data collected from articles. After data preprocessing and model optimizing, selected the XGBoost algorithm based on the high accuracy, which shows good prediction for WMTZ (R2 = 0.97, RMSE = 0.15). The experimentally derived WMTZ values were also used to validate the predictions, demonstrating the ML low error rate of 7.04 % and the feasibility. Subsequent statistical analysis of multiple linear regression (MLR) showed the error rate of 39.43 %, interpret superiority of ML due to the complexity of influencing factors and the insufficient precision of math regression. Compared to traditional width design methods, ML can improve design efficiency and save experimental time and manpower. Further expansion of the dataset and optimization of algorithms could enhance the accuracy of ML, overcoming existing limitations and gaining broader applications.
Collapse
Affiliation(s)
- Fengshi Guo
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Yangmin Ren
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Yongyue Zhou
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Shiyu Sun
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea
| | - Mingcan Cui
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea.
| | - Jeehyeong Khim
- School of Civil, Environmental, and Architectural Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, the Republic of Korea.
| |
Collapse
|
2
|
El-Saadony MT, Saad AM, El-Wafai NA, Abou-Aly HE, Salem HM, Soliman SM, Abd El-Mageed TA, Elrys AS, Selim S, Abd El-Hack ME, Kappachery S, El-Tarabily KA, AbuQamar SF. Hazardous wastes and management strategies of landfill leachates: A comprehensive review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2023; 31:103150. [DOI: 10.1016/j.eti.2023.103150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Chidichimo F, De Biase M, Tursi A, Maiolo M, Straface S, Baratta M, Olivito F, De Filpo G. A model for the adsorption process of water dissolved elements flowing into reactive porous media: Characterization and sizing of water mining/filtering systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130554. [PMID: 36635918 DOI: 10.1016/j.jhazmat.2022.130554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study presents a mathematical model describing the adsorption-desorption process of water dissolved elements onto reactive porous materials during filtering operations performed under dynamic flow conditions. The developed model is based on a reversible second order adsorption kinetic featuring the progressive reduction of the purifying capacity of the filtering material due to the gradual exhaustion of the active sites available for solute retention. It enables the simulation of the performances of water filtering systems through the use of parameters having a clear chemical-physical significance or it can be used for the estimation of these parameters to characterize the adsorption properties of the reactive material. Starting from the same adsorptive conceptual model used for the filtering system marked by ongoing flowing conditions, an adaptation for static systems was performed on the mathematical framework in order to process the same chemical physical parameters in both schemes. Adsorption laboratory tests were carried out to validate the developed model. Results show that the kinetic constants and adsorption capacities (a maximum of about 45 mg g-1 was obtained for the tested material) are highly comparable, both within the same experimental system, and between different experimental setup. This confirms the validity of the developed model which is able to perfectly fit the observed concentration data in all tested configurations.
Collapse
Affiliation(s)
- Francesco Chidichimo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Michele De Biase
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mario Maiolo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Salvatore Straface
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
4
|
Wang Z, Yu Y, Roy K, Gao C, Huang L. The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1871. [PMID: 36767237 PMCID: PMC9915388 DOI: 10.3390/ijerph20031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The greenhouse effect is a severe global problem [...].
Collapse
Affiliation(s)
- Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China
| | - Yunjun Yu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China
| | - Kallol Roy
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, 51009 Tartu, Estonia
| | - Cheng Gao
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Hamisi R, Renman A, Renman G, Wörman A, Thunvik R. Long-term phosphorus sorption and leaching in sand filters for onsite treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155254. [PMID: 35429567 DOI: 10.1016/j.scitotenv.2022.155254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/27/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The sorption capacities of sand filters used for onsite wastewater treatment and their associated risks of phosphorus (P) leaching on contact with rainwater were investigated in column experiments and with modelling tool for over 300 days. Columns packed with sand were exposed to real domestic wastewater of different characteristics and hydraulic loading modes. The wastewater fed into the columns was effluent collected from three different treatment units in the field: a septic tank (ST), biofiltration tank (BF) and Polonite® filter bag (PO). The risk of P leaching to groundwater and surface water was also assessed, by exposing the same sand columns to natural rainwater. Overall results indicated that sand soils can exhibit different adsorption and desorption capacities for electrical conductivity (EC), Total-P, phosphate-P and total suspended solids, depending on the characteristics of influent wastewater, loading rate and total operation time. The removal efficiencies of the sand columns increased in the order ST (98.16%) > PO (93.36%) > BF (81.57%) for PO4-P and slightly decreased ST (97.11%) > PO (92.06%) > BF (76.76%) for Total-P columns. All sand columns loaded with actual wastewater solutions from septic tanks and biofiltration tank have demonstrated high risks of phosphorus leaching (>99.99%) to the groundwater. The modelling was successful captured behavior of EC tracer and adsorption of PO4-P with acceptable prediction uncertainty in the PO < 8% columns. The modelling results indicated that the decrease of loading rate from 83.3 mL d-1 to 20.83 mL d-1 led to an average increase of removal efficiency and prolong operational lifetime and mass of adsorbed Total-P in the sand soil. This study concludes that sand is a valuable filter medium at low loading rate for phosphorus removal in full-scale operations of onsite treatment systems, however very vulnerable for leaching P when in contact with rainwater.
Collapse
Affiliation(s)
- Rajabu Hamisi
- Department of Sustainable Development, Environmental Science & Engineering, Division of Water and Environmental Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Agnieszka Renman
- Department of Sustainable Development, Environmental Science & Engineering, Division of Water and Environmental Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gunno Renman
- Department of Sustainable Development, Environmental Science & Engineering, Division of Water and Environmental Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Anders Wörman
- Department of Sustainable Development, Environmental Science & Engineering, Division of Water and Environmental Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Roger Thunvik
- Department of Sustainable Development, Environmental Science & Engineering, Division of Water and Environmental Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
6
|
Bai S, Li J, Ding W, Chen S, Ya R. Removal of boron by a modified resin in fixed bed column: Breakthrough curve analysis using dynamic adsorption models and artificial neural network model. CHEMOSPHERE 2022; 296:134021. [PMID: 35189189 DOI: 10.1016/j.chemosphere.2022.134021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Continuous removal of toxic element boron from aqueous solution was investigated with new phenolic hydroxyl modified resin (T-resin) using a fixed bed column reactor operated under various flow rates, bed height and influent concentrations. The breakthrough time, exhaustion time and uptake capacity of the column bed increased with increasing column bed height, whereas decreased with increasing influent flow rate. The breakthrough time and exhaustion time decreased, but uptake capacity increased with increasing influent concentration, and actual uptake capacity was obtained as 6.52 mg/g at a concentration of 7.64 mg/L. The three conventional models of bed depth service time (BDST), Thomas and Yoon-Nelson were used to appropriately predict the whole breakthrough behavior of the column and to estimate the characteristic model parameters for boron removal. However, artificial neural network (ANN) model was more accurate than the conventional models with the least relative error and the highest correlation coefficients. By the relative importance of the operational parameters obtained from ANN model, the sequence is as follows: total effluent time > initial concentration > flow rate > column height. The adsorption capacity of boron was changed between 5.24 and 1.74 mg/g during the five time regeneration. From the life factor calculation, it is suggested that the column bed could avoid the breakthrough time of t = 0 for 6.8 cycles, whereas, the uptake capacity would be zero after 7.8 cycles.
Collapse
Affiliation(s)
- Shuqin Bai
- Green Intelligence Environmental School, Yangtze Normal University, No. 16 Juxian Road, Fuling, Chongqing, 408100, China; School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan, Hohhot, 010021, China.
| | - Jiaxin Li
- School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan, Hohhot, 010021, China
| | - Wei Ding
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuxuan Chen
- School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan, Hohhot, 010021, China
| | - Ru Ya
- School of Ecology and Environment, Inner Mongolia University, No. 235 West University Road, Saihan, Hohhot, 010021, China
| |
Collapse
|
7
|
Gentiana straminea Maxim. polysaccharide decolored via high-throughput graphene-based column and its anti-inflammatory activity. Int J Biol Macromol 2021; 193:1727-1733. [PMID: 34774595 DOI: 10.1016/j.ijbiomac.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Gentiana straminea Maxim. exhibits various biological activities. However, the purification and functions of polysaccharides in Gentiana straminea Maxim. have never been reported. Herein, by proposing a flexible 3D graphene-based decoloration column (3DD column), Gentiana straminea Maxim. polysaccharide (GMP) was high-throughput obtained and its anti-inflammatory activity was investigated. Benefiting from the large macroporous network of 3D NH2-graphene oxide hydrogel with selective adsorption towards pigments, the 3DD column exhibits high decoloration ratio (96.41%). In addition, the 3DD column provides superior practical functionality as compared to the traditional approaches, which are time-consuming and need toxic solvents, and exhibiting widespread-application for the purification of polysaccharide from other common plant species. More importantly, the decolored GMP as a natural product has promising anti-inflammatory activity on RAW264.7 cells without negative impact on cell viability. Overall, this work reveals a new functional polysaccharides and provides a flexible approach for polysaccharide decoloration, exhibiting a promising prospect for natural polysaccharides in practical application of pharmaceutical.
Collapse
|
8
|
Anionic Dye Removal by Polypyrrole-Modified Red Mud and Its Application to a Lab-Scale Column: Adsorption Performance and Phytotoxicity Assessment. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/7694783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, polypyrrole-modified red mud (PRM) was prepared for the efficient removal of anionic dyes (methyl orange and Congo red) from aqueous solutions. The phytotoxicity (bean sprouts) of the dye solution before and after dye removal was investigated. Adsorption kinetics confirmed that the adsorption of methyl orange (MO) and Congo red (CR) on PRM was controlled by chemical reactions between the functional groups of polypyrrole and dyes. From Langmuir isotherm fitting, we found the theoretical adsorption capacities of MO and CR on PRM were 194.1 and 314.9 mg/g, respectively. The adsorption progress of MO and CR on PRM was found to be spontaneous and endothermic. The column studies demonstrated that, under dynamic flow, the PRM can efficiently remove MO and CR from aqueous solution, with adsorption capacities of 31.08 and 55.04 mg/g, respectively. In the toxicity test, the phytotoxicity of the column effluents (after dye removal) was significantly lowered compared to the initial dye influents. After the removal of MO and CR, the average root length of bean sprouts was increased from 3.30 cm to 5.18 cm and from 3.01 cm to 7.00 cm, respectively. These findings highlighted the efficient removal of dyes by PRM from aqueous solution, demonstrating the possible application of PRM for the removal of dye from dye-contaminated wastewaters.
Collapse
|
9
|
Wu B, Ifthikar J, Oyekunle DT, Jawad A, Chen Z, Chen Z, Sellaoui L, Bouzid M. Interpret the elimination behaviors of lead and vanadium from the water by employing functionalized biochars in diverse environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148031. [PMID: 34323844 DOI: 10.1016/j.scitotenv.2021.148031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Wide-ranging researches have been executed to treat groundwater from different mining areas, although complex behaviors of diverse metal ion species in the groundwater have not been illustrated clearly. This research study explored the mechanisms through which Pb(II) and V(V) are eliminated in single and binary-metal removal processes by oxygen, nitrogen, and sulfur-doped biochars also considering the kinetic and characterization techniques. The adsorption efficiency of V (V) was enhanced by oxygen-doped biochar at pH 4 with an adsorption capacity of ~70 mg/g. However, Pb (II) was rapidly removed at pH 6 with a higher adsorption capacity of ~180 mg/g by the nitrogen and sulfur-doped biochar forming PbCO3 and V(CO)6 crystals along the single-metal removal process. These results could be explained by the Hard Soft Acid Base theory. The hard Lewis acid vanadium was attracted by the hard Lewis base oxygen, and the intermediate Lewis acid lead was attracted by the intermediate and soft Lewis base nitrogen and sulfur. Besides, the removal ability of Pb(II) and V(V) in the binary-metal removal process showed a similar phenomenon for all types of biochars at pH 4 with the adsorption capacity of ~400 mg/g for Pb(II) and 175 mg/g for V(V), but the composition of vanadium species remains unclear on the surface of the biochars. Initially, H3V2O7-, H2VO4-, and HVO42- species were electrostatically attracted by the oxygen-based functionalities, then V(V) species was partially reduced to VO2+ by the oxygen, nitrogen, and sulfur functionalities in different ratios. Finally, H3V2O7-, H2VO4-, and HVO42- species produced Pb5(VO4)3Cl and Pb2V2O7 which co-precipitate with Pb(II), but VO2+ does not generate any form of precipitates. The above-explained technique supports the treatment of vanadium mining groundwater with valuable vanadinite (Pb5(VO4)3Cl) mineral.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jerosha Ifthikar
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Daniel T Oyekunle
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ali Jawad
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhulei Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lotfi Sellaoui
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mohamed Bouzid
- Laboratory of Quantum and Statistical Physics LR18 ES18, Faculty of Sciences of Monastir, Environnement Street, 5019 Monastir, Tunisia
| |
Collapse
|
10
|
Benzing S, Couceiro F, Barnett S, Williams JB, Pearce P, Stanford C. Impact of hydraulic retention time on phosphorus removal from wastewater using reactive media. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2920-2928. [PMID: 33341781 DOI: 10.2166/wst.2020.526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) discharge from wastewater treatment plants into the environment contributes to eutrophication issues. Reactive media filters represent an effective, simple and cost-effective solution to decrease the P content. Previous research used various experimental designs and often synthetic wastewater, making assessment of real-world performance difficult. This study assesses the impact of the hydraulic retention time (HRT) on P removal using real wastewater to refine design criteria for full-scale installations. Four media were compared in column experiments for >200 days. Different HRTs were applied and initially the media achieved low P effluent concentrations of >0.1 mg/L PO4-P, increasing over time. Best P removal was observed for the highest HRT with on average >99%. HRT was seen to be the driving factor for P removal rather than media capacity. Three of the four materials showed pH levels above 12 initially, decreasing over time. Water quality parameters, including organics, solids and metals, were monitored. In-depth analysis confirmed formation of calcium phosphate precipitation on the media's surface. The results suggest the importance of an optimal HRT to achieve high P removal and show that the reactive media application is an appropriate technology for P removal on small sites if the elevated pH is addressed.
Collapse
Affiliation(s)
- S Benzing
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, Hampshire PO3 1AH, UK E-mail:
| | - F Couceiro
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, Hampshire PO3 1AH, UK E-mail:
| | - S Barnett
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, Hampshire PO3 1AH, UK E-mail:
| | - J B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, Portland Building, Portland St, Portsmouth, Hampshire PO3 1AH, UK E-mail:
| | - P Pearce
- Farmiloe Fisher Environment Ltd, Tregatherall Farm, Minster, Boscastle, Cornwall PL35 0EQ, UK
| | - C Stanford
- Southern Water Services, Southern House, Yeoman Road, Worthing, West Sussex, BN13 3NX, UK
| |
Collapse
|
11
|
Guimarães Neto JOA, Aguiar TR. Evaluation of the efficiency of three different mineral adsorbents in the removal of pollutants in samples from a tropical spring in Northeastern Brazil. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1195-1207. [PMID: 32090402 DOI: 10.1002/wer.1314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human water sources are increasingly threatened around the world due to various sources of pollution such as agriculture and industry. The objective of this study was to evaluate three new adsorbents as pollutant remedies for subsequent application in the Joanes River located in the State of Bahia in Brazil. The specific pollutants were nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins. Initially, studies (pH 7 and 22°C) were performed with samples contaminated in the laboratory with phosphorus (P), nitrate ( NO 3 - ), and ammonia (NH3 ), to select the most efficient adsorbent and to determine the equilibrium time. Pumice bituminous coal was found to have the best efficiencies (≥70%) at 360 min (equilibration time). The experimental data did not fit the Langmuir and Freundlich model. The bituminous coal with pumice stone was then applied to water samples from a designated capture point of the Joanes springs, a river system that is responsible for supplying the city of Salvador and the metropolitan region, located on the northern coast of Bahia. The removal efficiency analyses were performed on a DR6000 UV/VIS SPECTROPHOTOMETER, using the methodology defined in the Standard Methods 2017, after which this adsorbent was subjected to scanning electron microscopy. As a result, removal efficiencies (≥98%) were obtained for all contaminants (nitrogen, phosphorus (P), aluminum (Al), iron (Fe), cyanobacteria, and saxitoxins) as well as a highly heterogeneous layer pointed by SEM images, further demonstrating the adsorbent potential as a efficient alternative in environmental control after additional studies. PRACTITIONER POINTS: Pumice bituminous coal has proven to be an excellent adsorbent for a wide range of pollutants such as phosphorus, nitrogen, ammonia, toxins, cyanobacteria, and metals. The adsorbent promoted a high reduction in phosphorus concentrations (3.40 mg/L to 0.01 mg/L), about 98% and 81% for cyanobacteria (12,850 Cel/ml to 2,560 Cel/ml). The adsorbent promoted a high reduction in concentrations of 98% saxitoxins (4.32 µg/L to 0.2 µg/L).
Collapse
Affiliation(s)
| | - Terencio Rebello Aguiar
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
12
|
Cairns S, Robertson I, Sigmund G, Street-Perrott A. The removal of lead, copper, zinc and cadmium from aqueous solution by biochar and amended biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21702-21715. [PMID: 32279265 DOI: 10.1007/s11356-020-08706-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The exponential growth in the use of motor vehicles is a key contributor to freshwater degradation. Current remediation techniques require prohibitively expensive contaminant treatment and extraction. Biochar represents an inexpensive option to ameliorate contaminants from motorway runoff. Biochar from Norway spruce (Picea abies (L.) Karst.) was produced under fast pyrolysis-gasification (450-500 °C for 90 s) and amended with wood ash and basaltic rock dust to evaluate sorption of Pb, Cu, Zn and Cd. The column study, designed to mimic field conditions, confirmed that unamended biochar can bind contaminants for short periods, but that the addition of amendments, particularly wood ash, significantly improves contaminant removal. Wood ash-amended biochar removed 98-100% of all contaminants during the study, driven by pH (r = 0.73-0.74; p < 0.01 dependent on metal species) and phosphorus levels causing precipitation (r = 0.47-0.59; p < 0.01, dependent on metal species). The contaminants' progression through the biochar subsections in the column indicated that increasing the thickness of the biochar layer increased contaminant residence time and removal.
Collapse
Affiliation(s)
- Stuart Cairns
- Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Iain Robertson
- Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, CH-8046, Zurich, Switzerland
| | | |
Collapse
|
13
|
Liu X, Zhong H, Yang Y, Yuan L, Liu S. Phosphorus removal from wastewater by waste concrete: influence of P concentration and temperature on the product. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10766-10777. [PMID: 31942720 DOI: 10.1007/s11356-019-07577-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the feature of phosphorus uptake by low-cost waste concrete. Adsorption isotherms, metal dissolution, influence of P concentration and temperature, as well as adsorbent regeneration were investigated. Chemical extraction, SEM, XRD, FTIR, and XPS were employed to determine the products of P sequestration. Results demonstrated that phosphate adsorption fitted the Langmuir isotherm model well, with estimated maximum phosphate adsorption capacity of 80.5 mg/g (10 °C). Of adsorbed phosphate, 72.1% could be desorbed when 0.1 M citrate buffer was used as eluant, and waste concrete could be recovered and reused for 4 times by the combination of eluting and roasting. Mechanisms including Ca/alkali dissolution, surface adsorption, and chemical precipitation are involved in the sequestration of phosphorus from wastewater by waste concrete. Weakly adsorptive phosphorus and Ca-P precipitate were the main products. P concentration was the major factor that affected P removal capacity and the product types, while temperature had certain effect at low P concentration. The dominant product was weakly adsorptive phosphorus for low P concentration at low temperature, which was substituted by Ca-P precipitate as temperature or P concentration increased. The increase of P concentration assisted both the increase of P removal potential and the formation of Ca-P precipitate to crystal DCPD.
Collapse
Affiliation(s)
- Xiao Liu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, China.
| | - Huiyuan Zhong
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Yong Yang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Linan Yuan
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, China
| | - Shibo Liu
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, China
| |
Collapse
|
14
|
Removal of High-Strength Ammonia Nitrogen in Biofilters: Nitrifying Bacterial Community Compositions and Their Effects on Nitrogen Transformation. WATER 2020. [DOI: 10.3390/w12030712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing attention has been given to the treatment of livestock and poultry wastewater because of its high ammonium nitrogen (NH4+-N) content and low carbon/nitrogen ratio (C/N). Ceramic filter medium (CFM) and dewatered aluminum sludge (DAS), which are products from cast-off materials, are used as small-scale combined biological filters (CFM-DAS) for wastewater treatment. The high and stale removal efficiency of chemical oxygen demand (COD), NH4+-N, and total nitrogen (TN) in the DAS filter indicate that DAS plays a major role in pollutant removal. Although significant differences are found between the composition of nitrifying bacteria in CFM and DAS, the structures of nitrifying communities are evenly distributed in each layer of CFM or DAS irrespective of the running time. Microbial compositions are attributed to the comprehensive effect of various environmental factors such as pH and TN at effluents. In the DAS, Nitrosospira shows significant negative correlation with the concentrations of NH4+-N in effluents, whereas it has positive correlation with NO3−-N, and Nitrososphaera has a significant negative correlation with NO3−-N in effluents. Pearson correlation test reveals that certain genera may be used in estimating or predicting NH4+-N consumption and NO3−-N accumulation in CFM-DAS for treating sewage with a high NH4+-N content.
Collapse
|
15
|
Ifthikar J, Chen Z, Chen Z, Jawad A. A self-gating proton-coupled electron transfer reduction of hexavalent chromium by core-shell SBA-Dithiocarbamate chitosan composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121257. [PMID: 31585284 DOI: 10.1016/j.jhazmat.2019.121257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
We have proposed a novel strategy for the reduction plus adsorption process for hexavalent chromium elimination by thiol functional hybrid materials through a self-gating process. Namely, we exploit that coating dithiocarbamate chitosan at the surface of SBA-15 affords a core-shell composite that undergoes reversible shape transformations while thiol functional groups acted as proton-coupled electron donor for [Cr2O7]2-. The reduction of [Cr2O7]2- to Cr3+ was highly efficient and exceptionally rapid, occurred within 5 min with the reduction amount of 899.66 mg of [Cr2O7]2- / 1 g of nanocomposite as a record high value. During the reduction of [Cr2O7]2-, thiol functional groups (-SH) were oxidized into disulfide linkages (SS), and simultaneously chitosan matrix turned into shrunken structure because of the consuming of protons, preventing any release of Cr3+. Disulfides can also be reversely reduced to thiols by thiosulphates (S2O32-), which was attractive for regeneration and recyclability of the nanocomposite. Moreover, the [Cr2O7]2- elimination through self-gating process was highly selective against a huge concentration of background electrolytes. This alternative strategy ensures the outstanding and stable performance in applied fields, and could be conducted in various pollution control techniques like permeable reactive barriers.
Collapse
Affiliation(s)
- Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zhulei Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ali Jawad
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
16
|
Ngambia A, Ifthikar J, Shahib II, Jawad A, Shahzad A, Zhao M, Wang J, Chen Z, Chen Z. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(II) composite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:306-321. [PMID: 31323576 DOI: 10.1016/j.scitotenv.2019.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
A rod-like SDBC-Mg(II) composite was synthesized and optimized in the conditions of 25% Mg(II) loading and 500 °C calcination temperature. As-prepared SDBC-25%Mg(II)-500 adsorbent attained equilibrium in 30 min, with an extraordinary capacity of 2931.76 mg g-1 (Pb(II)) and 861.11 mg g-1 (Cd(II)), revealing a promising adsorbent for the removal of such metals so far. The adsorption kinetics was well described by the pseudo-second-order model while the adsorption isotherm could be fitted by Redlich-Peterson model. Furthermore, SDBC-25%Mg(II)-500 has a high anti-interference and selectivity in the presence of competing ions/other environmental factors and, also effectively eliminates >99% of Pb2+, Cd2+, Ag+ and Cu2+ ions from pond water, lake water and tap water. The adsorption process demonstrated a synergetic adsorption mechanism comprised of ion exchange with Mg(II), coordination with surface and inner carboxylic or carbonyl functional groups and co-precipitations as metal silicates, which is responsible for its superb adsorption performance. Besides, surface carvings of Mg(II) and tunnels on the rods resulting from the sludge carbonization provided a high surface area (91.57 m2 g-1), extra sorption sites and room for easy pollutant diffusion which contributed to surface physical adsorption. Furthermore, this technique demonstrate an alternative pathway that will relieve the burdens of sewage sludge treatment process and turn this solid waste into highly efficient adsorbent for eliminating heavy metal ions from wastewater. This can be considered as a feasible waste resource utilization to meet with the requirement from both ecology and economy for auspicious applications in industries.
Collapse
Affiliation(s)
- Audrey Ngambia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jerosha Ifthikar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Irshad Ibran Shahib
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ali Jawad
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ajmal Shahzad
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mengmeng Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jia Wang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhulei Chen
- Department of Environmental Engineering, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
17
|
Guimarães Neto JOA, Luz LD, Aguiar Junior TR. Effects of an aluminum-based chemical remediator on the cyanobacteria population: a study in the northeast of Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:743. [PMID: 31713695 DOI: 10.1007/s10661-019-7926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Water sources destined to human supply are increasingly threatened worldwide due to various sources of pollution, either point or diffuse. In this sense, the objective of this work was to evaluate the efficiency of an aluminum-based chemical remediator in the Joanes River. An statistical analysis of physical, chemical, biological, and hydraulic monitoring data was performed relying on a 2013-2018 recording period, provided by the local sanitation service provider and the environmental agency. The results showed that even with the use of aluminum-based chemical remediators, the key parameters for controlling flowering events remained high with mean values of 0.18 mg P L-1, 176.155 cells mL-1 of cyanobacteria and peaks of 1.56 μg L-1 and 4.02 μg L-1 for microcystin and saxitoxin, respectively. At the end of this study, it was verified that the aluminum-based chemical remediator showed low effectiveness in the reduction of phosphorus and cyanobacteria, opposing to expectations of the sanitation provider.
Collapse
Affiliation(s)
| | - Lafayette Dantas Luz
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Terencio Rebello Aguiar Junior
- Department of Environmental Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
18
|
Morris S, Garcia-Cabellos G, Ryan D, Enright D, Enright AM. Low-cost physicochemical treatment for removal of ammonia, phosphate and nitrate contaminants from landfill leachate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1233-1244. [PMID: 31328626 DOI: 10.1080/10934529.2019.1633855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Four low-cost materials, oyster shells, pumice stone, sand and zeolite were employed as adsorbents in an adsorption batch assays investigating the removal of ammonia, phosphate and nitrate from an aqueous solution. These compounds were chosen as they represent typical compounds found in landfill leachate (LFL). Assay performance was evaluated by the Langmuir and Freundlich adsorption isotherms. The top two materials, oyster shells and pumice stone, were employed as adsorbents in a fixed-bed column trial examining the effect of bed height and flow rate on the treatment of a synthetic LFL. The trial concluded that the highest rates of adsorption were achieved using bed heights of 20 cm with a flow rate of 5 mL min-1. After optimization, the system was employed for the treatment of LFL from Powerstown landfill, Carlow, Ireland. Ammonia and nitrate were effectively removed by both adsorption materials resulting in a reduction of influent ammonia and nitrate concentrations to below the national discharge limits set for these compounds of ≤4 mg L-1 and ≤50 mg L-1, respectively. In contrast, although similar high removal efficiencies were observed for phosphate, these rates were not maintained during the test period with overall results indicating reduced phosphate adsorption in comparison to the other compounds tested.
Collapse
Affiliation(s)
- Sinead Morris
- EnviroCore, Institute of Technology Carlow , Carlow , Ireland
| | | | - David Ryan
- EnviroCore, Institute of Technology Carlow , Carlow , Ireland
| | - Deirdre Enright
- Institute of Technology Tralee, Clash, Tralee , Co. Kerry, Ireland
| | | |
Collapse
|
19
|
Cusack PB, Callery O, Courtney R, Ujaczki É, O'Donoghue LMT, Healy MG. The use of rapid, small-scale column tests to determine the efficiency of bauxite residue as a low-cost adsorbent in the removal of dissolved reactive phosphorus from agricultural waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:273-283. [PMID: 31009815 DOI: 10.1016/j.jenvman.2019.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Bauxite residue, the by-product produced in the alumina industry, is a potential low-cost adsorbent in the removal of phosphorus (P) from aqueous solution, due to its high composition of residual iron oxides such as hematite. Several studies have investigated the performance of bauxite residue in removing P; however, the majority have involved the use of laboratory "batch" tests, which may not accurately estimate its actual performance in filter systems. This study investigated the use of rapid, small-scale column tests to predict the dissolved reactive phosphorus (DRP) removal capacity of bauxite residue when treating two agricultural waters of low (forest run-off) and high (dairy soiled water) phosphorus content. Bauxite residue was successful in the removal of DRP from both waters, but was more efficient in treating the forest run-off. The estimated service time of the column media, based on the largest column studied, was 1.08 min g-1 media for the forest run-off and 0.28 min g-1 media for the dairy soiled water, before initial breakthrough time, which was taken to be when the column effluent reached approximately 5% of the influent concentration, occurred. Metal(loid) leaching from the bauxite residue, examined using ICP-OES, indicated that aluminium and iron were the dominant metals present in the treated effluent, both of which were above the EPA parametric values (0.2 mg L-1 for both Al and Fe) for drinking water.
Collapse
Affiliation(s)
- Patricia B Cusack
- Department of Biological Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland; Civil Engineering, National University of Ireland, Galway, Ireland; The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Oisín Callery
- Earth and Ocean Sciences, National University of Ireland, Galway, Ireland
| | - Ronan Courtney
- Department of Biological Sciences, University of Limerick, Castletroy, Co. Limerick, Ireland; The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Éva Ujaczki
- The Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Ireland; Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary; School of Engineering, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Lisa M T O'Donoghue
- School of Engineering, University of Limerick, Castletroy, Co. Limerick, Ireland
| | - Mark G Healy
- Civil Engineering, National University of Ireland, Galway, Ireland.
| |
Collapse
|
20
|
Modelling Phosphorus Sorption Kinetics and the Longevity of Reactive Filter Materials Used for On-Site Wastewater Treatment. WATER 2019. [DOI: 10.3390/w11040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Use of reactive filter media (RFM) is an emerging technology in small-scale wastewater treatment to improve phosphorus (P) removal and filter material longevity for making this technology sustainable. In this study, long-term sorption kinetics and the spatial dynamics of sorbed P distribution were simulated in replaceable P-filter bags filled with 700 L of reactive material and used in real on-site treatment systems. The input data for model calibration were obtained in laboratory trials with Filtralite P®, Polonite® and Top16. The P concentration breakthrough threshold value was set at an effluent/influent (C/C0) ratio of 1 and simulations were performed with P concentrations varying from 1 to 25 mg L−1. The simulation results showed that influent P concentration was important for the breakthrough and longevity, and that Polonite performed best, followed by Top16 and Filtralite P. A 100-day break in simulated intermittent flow allowed the materials to recover, which for Polonite involved slight retardation of P saturation. The simulated spatial distribution of P accumulated in the filter bags showed large differences between the filter materials. The modelling insights from this study can be applied in design and operation of on-site treatment systems using reactive filter materials.
Collapse
|
21
|
Han B, Cai W, Yang Z. Easily Regenerative Carbon/Boehmite Composites with Enhanced Cyclic Adsorption Performance toward Methylene Blue in Batch and Continuous Aqueous Systems. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bowen Han
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Zhichao Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
22
|
Mahmoud ME, Hassan SSM, Kamel AH, Elserw MIA. Fast microwave-assisted sorption of heavy metals on the surface of nanosilica-functionalized-glycine and reduced glutathione. BIORESOURCE TECHNOLOGY 2018; 264:228-237. [PMID: 29807330 DOI: 10.1016/j.biortech.2018.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Two eco-friendly nanosorbents have been designed and synthesized via surface crosslinking of nanosilica (N-Si) with glycine (Gly) and reduced glutathione (GSH) to produce (N-Si-Gly) and (N-Si-Glu) using crosslinking reagent and sonochemical reactions, respectively. An investigation was performed to search selectivity of nanosorbents via microwave-assisted removal of Ni(II)/Cu(II)/Cd(II)/Pb(II) to affirm green and fast technique. The microwave-assisted removal values of Ni(II), Cu(II), Cd(II) and Pb(II) were observed at 850, 2100, 3500 and 2150 μmol g-1, respectively utilizing 10 mg of (N-Si-Glu) and 25.0 s heating, while those corresponded to 750, 1800, 2500 and 1850 μmol g-1, respectively by using (N-Si-Gly). The microwave-assisted removal processes were more fitted to Freundlich compared to Langmuir isotherm except in case of Pb(II). The high percent removal of Cd(II) and Pb(II) ions exceed 95% from the second run in real wastewater samples indicating the efficiency of N-Si-Glu in the uptake of these metals utilizing microwave-assisted sorption technique.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Saad S M Hassan
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Ayman H Kamel
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| | - Mahmoud I A Elserw
- Faculty of Science, Chemistry Department, Ain Shams University, P.O. Box 80205, Cairo, Egypt
| |
Collapse
|
23
|
Razmi B, Ghasemi-Fasaei R. Investigation of Taguchi optimization, equilibrium isotherms, and kinetic modeling for phosphorus adsorption onto natural zeolite of clinoptilolite type. ADSORPT SCI TECHNOL 2018. [DOI: 10.1177/0263617418779738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adsorption process plays an important role in the removal of phosphorus from aqueous solutions. A laboratory experiment was conducted to investigate the adsorption characteristics of phosphorus onto natural zeolite and to find out the relative importance of some controllable treatments in phosphorus adsorption process using the Taguchi optimization methodology. Results showed that the adsorption of phosphorus in the presence of Fe3+ and Al3+ was higher than that in the absence of these two cations probably due to the adsorption of phosphorus-bearing anions on opposite charges of these cations. Also, increase in contact time tended phosphorus adsorption to be increased. The addition of base and acid treatments caused an increase and a decrease, respectively, on phosphorus adsorption. The order of effectiveness of treatments on the values of phosphorus adsorption was as follows: acid/base treatment >sorbent to sorbate ratio > modification with aluminium (Al)/iron (Fe) >contact time >phosphorus concentration. Phosphorus adsorption data well fitted to the Freundlich isotherm model. The pseudo-second order was the best model describing phosphorus adsorption kinetics. According to the results reported herein, it is assumed that the main mechanism controlling phosphorus adsorption onto natural zeolite is chemisorption.
Collapse
Affiliation(s)
- Bahareh Razmi
- Department of Soil Science, College of Agriculture, Shiraz University, Iran
| | | |
Collapse
|
24
|
Suganya S, Senthil Kumar P. Kinetic and thermodynamic analysis for the redemption of effluents containing Solochrome Black T onto powdered activated carbon: A validation of new solid-liquid phase equilibrium model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Arán D, Antelo J, Lodeiro P, Macías F, Fiol S. Use of Waste-Derived Biochar to Remove Copper from Aqueous Solution in a Continuous-Flow System. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Pablo Lodeiro
- Department
of Chemical Oceanography, GEOMAR − Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
| | | | | |
Collapse
|
26
|
Callery O, Healy MG. Predicting the propagation of concentration and saturation fronts in fixed-bed filters. WATER RESEARCH 2017; 123:556-568. [PMID: 28704771 DOI: 10.1016/j.watres.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The phenomenon of adsorption is widely exploited across a range of industries to remove contaminants from gases and liquids. Much recent research has focused on identifying low-cost adsorbents which have the potential to be used as alternatives to expensive industry standards like activated carbons. Evaluating these emerging adsorbents entails a considerable amount of labor intensive and costly testing and analysis. This study proposes a simple, low-cost method to rapidly assess the potential of novel media for potential use in large-scale adsorption filters. The filter media investigated in this study were low-cost adsorbents which have been found to be capable of removing dissolved phosphorus from solution, namely: i) aluminum drinking water treatment residual, and ii) crushed concrete. Data collected from multiple small-scale column tests was used to construct a model capable of describing and predicting the progression of adsorbent saturation and the associated effluent concentration breakthrough curves. This model was used to predict the performance of long-term, large-scale filter columns packed with the same media. The approach proved highly successful, and just 24-36 h of experimental data from the small-scale column experiments were found to provide sufficient information to predict the performance of the large-scale filters for up to three months.
Collapse
Affiliation(s)
- O Callery
- Civil Engineering, National University of Ireland, Galway, Co., Galway, Ireland
| | - M G Healy
- Civil Engineering, National University of Ireland, Galway, Co., Galway, Ireland.
| |
Collapse
|
27
|
Wang X, Zhang G, Lan H, Liu R, Liu H, Qu J. Preparation of hollow Fe-Al binary metal oxyhydroxide for efficient aqueous fluoride removal. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Mahmoud ME, Nassar AM, Abou Ali SA, Elweshahy SM. Factors optimization of super fast removal of heavy metals from aqueous solution using microwave-enforced sorption on the surface of a novel nano-composite. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|