1
|
Zuo Y, Cheng S, Han Y, Pu L, Du E, Peng M, Li A, Li W. Chlorination of Biopterin in Water: Deciphering the Kinetics, Disinfection Byproducts, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20137-20146. [PMID: 39475542 DOI: 10.1021/acs.est.4c04844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Pterins, including biopterin prevalent during cyanobacterial blooms, are nitrogen-containing heterocyclic compounds ubiquitous in both natural and engineered environments. However, their roles and associated human risks in water treatment remain poorly understood. This study systematically investigated the kinetics, disinfection byproducts (DBPs), and toxicity of biopterin in chlorination. For deciphering the reaction kinetics, 1,3,5-trimethoxybenzene proved to be a more effective chlorine quencher than the commonly used reducing agents, as it preserved N-chlorinated intermediates without reversing them back to biopterin. The pH-dependent kinetics demonstrated that both chlorine and biopterin species had a significant influence on the reaction rates, with deprotonated biopterin exhibiting a markedly higher reactivity toward HClO/ClO-. Based on time-of-flight mass spectrometry, ten transformation products (TPs) including seven halogenated N-Cl ones, have been identified for the first time. These cyclic TPs were transformed into various aliphatic carbonaceous and nitrogenous DBPs during the subsequent chlorination process. Notably, theoretical predictions and the luminescent bacteria assay confirmed potential higher toxicities of these products than biopterin. These findings highlight the potential risks of pterins during water disinfection and provide a reference framework for accurately revealing the chlorination behavior of emerging nitrogenous chemicals.
Collapse
Affiliation(s)
- Yanting Zuo
- School of Urban Construction, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shi Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuze Han
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liangtao Pu
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Mingguo Peng
- School of Urban Construction, Changzhou University, Changzhou 213164, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Kang Z, Duan L, Zahmatkesh S. Optimizing removal of antiretroviral drugs from tertiary wastewater using chlorination and AI-based prediction with response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172931. [PMID: 38703847 DOI: 10.1016/j.scitotenv.2024.172931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Chemical and pharmaceutical chemicals found in water sources create substantial risks to human health and the environment. The presence of pharmaceutical contaminants in water can cause antibiotic resistance development, toxicity to aquatic organisms, and endocrine disruption. Hence, the elimination of chemicals and other contaminants from wastewater prior to its release is a burgeoning concern in the domains of engineering and science. The use of treatment technologies in wastewater treatment plants can remove pharmaceutical contaminants through the oxidation process. However, many traditional wastewater treatment plants lack the advanced monitoring tools required to detect low concentrations of pharmaceuticals. Without the ability to detect these compounds, it's challenging to treat them effectively. The goal of this study was to use Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) algorithms to model and improve how Nevirapine and Efavirenz break down in different chlorination conditions. The RSM analysis revealed statistically significant models (F-values: Nevirapine, pH-t: 108.15, T-t: 76.55, ICC-t: 110.84), indicating a strong correlation between operational parameters (pH, temperature, and initial chlorine concentration) and degradation behavior. The ANN model accurately predicted the degradation of both Nevirapine and Efavirenz under various chlorination conditions, as confirmed by analyzing actual-predicted graphs, residual plots, and Mean Squared Error (MSE) values. The ANN model using ICC-t achieved the highest MOD value of 31.31 % for Nevirapine. The ANN model based on ICC-t yielded a maximum MOD value of 16.06 % for Efavirenz. These findings provide valuable insights into optimizing chlorination processes for better removal of these pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Zhenhua Kang
- Department of Colorectal & Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun 130021, China
| | - Lian Duan
- Faculty of Pediatrics, the Chinese PLA General Hospital, Beijing 100700, China; Department of Pediatric Surgery, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico; Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
3
|
Miruka AC, Gao X, Cai L, Zhang Y, Luo P, Otieno G, Zhang H, Song Z, Liu Y. Effects of solution chemistry on dielectric barrier atmospheric non-thermal plasma for operative degradation of antiretroviral drug nevirapine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171369. [PMID: 38432368 DOI: 10.1016/j.scitotenv.2024.171369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The global prevalence of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) has been an environmental menace. Tons of drug wastes from antiretroviral therapy are released into the environment annually. We, for the first time, employed the novel dielectric barrier atmospheric non-thermal plasma (DBANP) discharge, to mitigate the inadvertent pollution arising from the antiretroviral therapy. A 40-min treatment of nevirapine achieved >94 % (0.075 min-1) removal efficiency at discharge power of 63.5 W and plasma working gas of atmospheric air. Chemical probes confirmed •OH, ONOO- and eaq- as the dominant reactive species whilst further revealing the reaction acceleration role of NaNO3 and CCl4 which are known reaction terminators. The commonly coexisting inorganic anions potentiated nevirapine removal with over 98 % efficiency, achieving the highest rate constant of 0.148 min-1 in this study. Moreover, the initial solution pH (1.5-11.1) was no limiting factor either. The insensitivity of the DBANP discharge to actual water matrices was an eminent inference of its potential applicability in practical conditions. With reference to data obtained from the liquid chromatography-mass spectrometer analysis, nevirapine degradation pathway was proposed. A nucleophilic attack by ONOO- at the cyclopropyl group and •OH attack at the carbonyl carbon of the amide group, respectively, initiated nevirapine degradation process. It is anticipated that the findings herein, will provide new insights into antiretroviral drug waste management in environmental waters using the innovative and green non-thermal plasma process.
Collapse
Affiliation(s)
- Andere Clement Miruka
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xiaoting Gao
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Li Cai
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yinyin Zhang
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Pengcheng Luo
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Geoffrey Otieno
- School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Han Zhang
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiqi Song
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science & Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Guo K, Liu Y, Peng J, Qi W, Liu H. Chlorination of antiviral drug ribavirin: Kinetics, nontargeted identification, and concomitant toxicity evolution. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133478. [PMID: 38359766 DOI: 10.1016/j.jhazmat.2024.133478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
Residual antiviral drugs in wastewater may increase the risk of generating transformation products (TPs) during wastewater treatment. Therefore, chlorination behavior and toxicity evolution are essential to understand the secondary ecological risk associated with their TPs. Herein, chlorination kinetics, transformation pathways, and secondary risks of ribavirin (RBV), one of the most commonly used broad-spectrum antivirals, were investigated. The pH-dependent second-order rate constants k increased from 0.18 M-1·s-1 (pH 5.8) to 1.53 M-1·s-1 (pH 8.0) due to neutral RBV and ClO- as dominant species. 12 TPs were identified using high-resolution mass spectrometry in a nontargeted approach, of which 6 TPs were reported for the first time, and their chlorination pathways were elucidated. The luminescence inhibition rate of Vibrio fischeri exposed to chlorinated RBV solution was positively correlated with initial free active chlorine, probably due to the accumulation of toxic TPs. Quantitative structure-activity relationship prediction identified 7 TPs with elevated toxicity, concentrating on developmental toxicity and bioconcentration factors, which explained the increased toxicity of chlorinated RBV. Overall, this study highlights the urgent need to minimize the discharge of toxic chlorinated TPs into aquatic environments and contributes to environmental risk control in future pandemics and regions with high consumption of antivirals.
Collapse
Affiliation(s)
- Kehui Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Hu S, Zhao J, Fang S, Guo K, Qi W, Liu H. Neurotoxic effects of chloroquine and its main transformation product formed after chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168043. [PMID: 37898196 DOI: 10.1016/j.scitotenv.2023.168043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Pharmaceutical transformation products (TPs) generated during wastewater treatment have become an environmental concern. However, there is limited understanding regarding the TPs produced from pharmaceuticals during wastewater treatment. In this study, chloroquine (CQ), which was extensively used for treating coronavirus disease-19 (COVID-19) infections during the pandemic, was selected for research. We identified and fractionated the main TP produced from CQ during chlorine disinfection and investigated the neurotoxic effects of CQ and its main TP on zebrafish (Danio rerio) embryos. Halogenated TP353 was observed as one of the main TPs produced from CQ during chlorine disinfection. Zebrafish embryos test revealed that TP353 caused higher neurotoxicity in zebrafish larvae, as compared to the CQ, and that was accompanied by significantly decreased expression levels of the genes related to central nervous system development (e.g., gfap, syn2a, and elavl3), inhibited activity of acetylcholinesterase (AChE), reduced GFP fluorescence intensity of motor neuron axons in transgenic larvae (hb9-GFP), and reduced total swimming distance and swimming velocity of larvae during light-dark transition stimulation. The results of this study can potentially be utilized as a theoretical reference for future evaluations of environmental risks associated with CQ and its related TPs. This work presents a methodology for assessing the environmental hazards linked to the discharge of pharmaceutical TPs after wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kehui Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Hu S, Fang S, Zhao J, Wang G, Qi W, Zhang G, Huang C, Qu J, Liu H. Toxicity Evaluation and Effect-Based Identification of Chlorine Disinfection Products of the Anti-COVID-19 Drug Chloroquine Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7913-7923. [PMID: 37188658 DOI: 10.1021/acs.est.2c08260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.
Collapse
Affiliation(s)
- Shengchao Hu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shangbiao Fang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guowei Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan 430205, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Baluchová S, Mamaloukou A, Koldenhof RH, Buijnsters JG. Modification-free boron-doped diamond as a sensing material for direct and reliable detection of the antiretroviral drug nevirapine. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Ngwenya N, Mahlambi P. Methods optimization and application: Solid phase extraction, Ultrasonic extraction and Soxhlet extraction for the determination of antiretroviral drugs in river water, wastewater, sludge, soil and sediment. J Pharm Biomed Anal 2023; 230:115358. [PMID: 37044007 DOI: 10.1016/j.jpba.2023.115358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
The continuous release of antiretroviral drugs into the environmental has resulted in the interest to assess their occurrence in various environmental matrices. Their presence has led to antiretroviral drugs being considered the pollutants of concern due to their possible alterations of the ecosystem as well as the antiviral resistance that may develop upon their unintentional consumption. Therefore, in this work, solid phase extraction (SPE), ultrasonic extraction (UE), Soxhlet extration (SE) and liquid chromatography coupled to photodiode array detector (LC-PDA) methods have been optimized and validated. They were then applied for the simultaneous determination of abacavir, nevirapine and efavirenz antiretroviral drugs in wastewater, river water, sludge, soil and sediments. The percentage recoveries ranged from 71% to 112% for SPE, 88 - 108% for SE and 61 - 104% for UE. Good precision with a relative standard deviation less than 20% in all compounds for all methods was obtained. The LODs and LOQs ranged between 0.68 and 0.77 µg/L and 2.1-2.4 µg/L for SPE; 0.8-0.9 µg/kg and 2.3-2.8 µg/kg for SE and 1.6-2.8 µg/kg and 4.9 - 7.0 µg/kg for UE, respectively. The concentrations ranged from <lod - 102 µg/L, <lod - 814 µg/L, and <lod - 6759 µg/L, <lod - 138 µg/g, <lod - 98.9 µg/g, in river water, wastewater, sludge, soil and sediment samples, respectively. Abacavir was dominant in water while efavirenz was dominant in soil/sediments. The results showed that SE is more sensitive and more accurate than UE, hence it can be recommended for routine analysis despite its longer extraction times. The percentage removal efficiency ranged from 44% to 87% for nevirapine, 6-53% for efavirenz, and 75-91% for abacavir which indicates that these compounds were not completely removed during the WWTP processes, hence they ended up in river waters.
Collapse
Affiliation(s)
- Nduduzo Ngwenya
- School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X 01, Pietermaritzburg 3209, South Africa
| | - Precious Mahlambi
- School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X 01, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
9
|
Mokgope H, Leudjo Taka A, Klink MJ, Pakade VE, Walmsley T. Quantification of some ARVs' removal efficiency from wastewater using a moving bed biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2928-2942. [PMID: 36515197 DOI: 10.2166/wst.2022.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, in South Africa alone, there are an estimated 4.5 million people receiving antiretroviral (ARV) therapy. This places South Africa as the country with the largest ARV therapy programme in the world. As a result, there are an increasing number of reports on the occurrence of ARVs in South African waters. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing ARVs from wastewater. A continuous-flow laboratory scale system was designed, built, installed, and operated at a carrier filling rate of 30%, an organic loading rate of 0.6 kg COD/m3.d-1 OLR, a hydraulic retention time of 18h, and a 27.8 mL/min flow rate. The systems were monitored over time for the elimination of conventional wastewater parameters i.e., Biological Oxygen Demand, Chemical Oxygen Demand, and nutrients. The results showed that the MBBR system as a bio-friendly method has high efficiency in removing Nevirapine, Tenofovir, Efavirenz, Ritonavir and Emtricitabine from the synthetic influent sample with an average removal of 62%, 74%, 94%, 94% and 95%, respectively, after 10 days of operation.
Collapse
Affiliation(s)
- Herman Mokgope
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| | - Anny Leudjo Taka
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Michael John Klink
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Vusumzi Emmanuel Pakade
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa E-mail:
| | - Tara Walmsley
- Department of Biotechnology, Vaal University of Technology, Vanderbijlpark Campus, Vanderbijlpark 1911, South Africa
| |
Collapse
|
10
|
Tyhali A, Forbes PB. N − nitrosamines in surface and drinking waters: An African status report. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Method optimisation and application based on solid phase extraction of non steroidal anti-inflammatory drugs, antiretroviral drugs, and a lipid regulator from coastal areas of Durban, South Africa. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AbstractThis study presents an optimized method that is applicable in monitoring the occurrence of pharmaceuticals in a wide range of aquatic environments. The optimised Solid Phase Extraction method is based on Bond Elut Plexa cartridges for the identification and quantification of three non-steroidal anti-inflammatory drugs, three antiretroviral drugs and a lipid regulator in the coastal area of Durban city, South Africa covering four seasons. The extracted compounds are qualitatively and quantitatively detected by a high-performance liquid phase chromatographic instrument coupled to a photodiode array detector. The recoveries range from 62 to 110% with a Relative Standard Deviation of 0.56−4.68%, respectively, for the determination of emtricitabine, tenofovir, naproxen, diclofenac, ibuprofen, efavirenz, and gemfibrozil. The analytical method is validated by spiking estuarine water samples with 5 µg L− 1 of a mixture containing the target pharmaceuticals and the matrix detection limit is established to be 0.62–1.78 µg L− 1 for the target compounds. The optimized method is applied to seasonal monitoring of pharmaceuticals at chosen study sites from winter and spring of 2019 and summer and autumn of 2020. The results indicate the concentration of the pharmaceuticals studied varies with the type of aquatic environment and season.
Collapse
|
12
|
Adeola AO, Forbes PBC. Antiretroviral Drugs in African Surface Waters: Prevalence, Analysis, and Potential Remediation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:247-262. [PMID: 34033688 DOI: 10.1002/etc.5127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The sources, ecotoxicological impact, and potential remediation strategies of antiretroviral drugs (ARVDs) as emerging contaminants in surface waters are reviewed based on recent literature. The occurrence of ARVDs in water bodies raises concern because many communities in Africa depend on rivers for water resources. Southern Africa is a potential hotspot regarding ARVD contamination due to relatively high therapeutic application and detection thereof in water bodies. Efavirenz and nevirapine are the most persistent in effluents and are prevalent in surface water based on environmental concentrations. Whereas the highest concentration of efavirenz reported in Kenya was 12.4 µg L-1 , concentrations as high as 119 and 140 µg L-1 have been reported in Zambia and South Africa, respectively. Concentrations of ARVDs ranging from 670 to 34 000 ng L-1 (influents) and 540 to 34 000 ng L-1 (effluents) were determined in wastewater treatment plants in South Africa, compared with Europe, where reported concentrations range from less than limit of detection (LOD) to 32 ng L-1 (influents) and less than LOD to 22 ng L-1 (effluents). The present African-based review suggests the need for comprehensive toxicological and risk assessment of these emerging pollutants in Africa, with the intent of averting environmental hazards and the development of sustainable remediation strategies. Environ Toxicol Chem 2022;41:247-262. © 2021 SETAC.
Collapse
Affiliation(s)
- Adedapo O Adeola
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
13
|
Mosekiemang TT, Stander MA, de Villiers A. Ultra-high pressure liquid chromatography coupled to travelling wave ion mobility-time of flight mass spectrometry for the screening of pharmaceutical metabolites in wastewater samples: Application to antiretrovirals. J Chromatogr A 2021; 1660:462650. [PMID: 34788673 DOI: 10.1016/j.chroma.2021.462650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
The presence of pharmaceutical compounds in the aquatic environment is a significant environmental health concern, which is exacerbated by recent evidence of the contribution of drug metabolites to the overall pharmaceutical load. In light of a recent report of the occurrence of metabolites of antiretroviral drugs (ARVDs) in wastewater, we investigate in the present work the occurrence of further ARVD metabolites in samples obtained from a domestic wastewater treatment plant in the Western Cape, South Africa. Pharmacokinetic data indicate that ARVDs are biotransformed into several positional isomeric metabolites, only two of which have been reported wastewater samples. Given the challenges associated with the separation and identification of isomeric species in complex wastewater samples, a method based on liquid chromatography hyphenated to ion mobility spectrometry-high resolution mass spectrometry (LC-IMS-HR-MS) was implemented. Gradient LC separation was achieved on a sub-2 µm reversed phase column, while the quadrupole-time-of-flight MS was operated in data independent acquisition (DIA) mode to increase spectral coverage of detected features. A mass defect filter (MDF) template was implemented to detect ARVD metabolites with known phase I and phase II mass shifts and fractional mass differences and to filter out potential interferents. IMS proved particularly useful in filtering the MS data for co-eluting species according to arrival time to provide cleaner mass spectra. This approach allowed us to confirm the presence of two known hydroxylated efavirenz and nevirapine metabolites using authentic standards, and to tentatively identify a carboxylate metabolite of abacavir previously reported in literature. Furthermore, three hydroxylated-, two sulphated and one glucuronidated metabolite of efavirenz, two hydroxylated metabolites of nevirapine and one hydroxylated metabolite of ritonavir were tentatively or putatively identified in wastewater samples for the first time. Assignment of the metabolites is discussed in terms of high resolution fragmentation data, while collisional cross section (CCS) values measured for the detected analytes are reported to facilitate further work in this area.
Collapse
Affiliation(s)
- Tlou T Mosekiemang
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Maria A Stander
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
14
|
Yao L, Chen ZY, Dou WY, Yao ZK, Duan XC, Chen ZF, Zhang LJ, Nong YJ, Zhao JL, Ying GG. Occurrence, removal and mass loads of antiviral drugs in seven wastewater treatment plants with various treatment processes. WATER RESEARCH 2021; 207:117803. [PMID: 34741900 DOI: 10.1016/j.watres.2021.117803] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Antiviral drugs are among the most common and important classes of pharmaceuticals to treat viral infections, however their continuous emission and persistence in the receiving environment has attracted increasing attention about their potential ecological risks. Here we investigated the occurrence, fate and mass load of 9 antiviral drugs for acquired immunodeficiency syndrome and hepatitis B, in 7 wastewater treatment plants (WWTPs) with different treatment processes in Guangdong, China. Totally, 8 target antiviral drugs were detected in the WWTPs influent wastewater, effluent wastewater and sludge, with maximal concentrations up to 7624 ng/L (telbivudine), 568 ng/L (telbivudine), and 2013 ng/g wet weight (telbivudine), respectively. The removal efficiency varied widely between different antiviral drugs, with the mean aqueous removal efficiency and total removal efficiency ranging from -6.2% (nevirapine) to 100% (lamivudine) and -1.2% (nevirapine) to 100% (lamivudine), respectively. Mass balance analysis showed that their elimination was mostly attributed to the biodegradation/biotransformation. The total back-estimated usage and emission of 9 target antiviral drugs were 77.8 t/y and 13.2 t/y in Guangdong province, China, respectively. Based on the sewage epidemiology approach, the consumption and emission of antiviral drugs in seven studied WWTPs were ranged at 2.31 mg/d/1000 people (nevirapine) to 4970 mg/d/1000 people (telbivudine), and 0 (lamivudine) to 900 mg/d/1000 people (telbivudine), respectively. Preliminary risk assessment showed that the antiviral drugs of zidovudine, ritonavir, lopinavir, and telbivudine in the receiving rivers could pose high ecological risks for aquatic environment. The findings from the present study illustrate the persistence of nevirapine in WWTPs, and provide essential evidence for further study into the development of wastewater treatment technologies.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Wen-Yuan Dou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Kai Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xing-Chun Duan
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhi-Feng Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li-Juan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yun-Jun Nong
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Reddy K, Renuka N, Kumari S, Bux F. Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. CHEMOSPHERE 2021; 280:130674. [PMID: 34162077 DOI: 10.1016/j.chemosphere.2021.130674] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The prevalence of pharmaceuticals (PCs), especially antiretroviral (ARV) drugs in various aquatic ecosystems has been expansively reported, wherein wastewater treatment plants (WWTPs) are identified as the primary point source. Consequently, the occurrence, ecotoxicity and treatment of ARV drugs in WWTPs have drawn much attention in recent years. Numerous studies have shown that the widely employed activated sludge-based WWTPs are incapable of removing ARV drugs efficiently from wastewater. Recently, algae-based wastewater treatment processes have shown promising results in PCs removal from wastewater, either completely or partially, through different processes such as biosorption, bioaccumulation, and intra-/inter-cellular degradation. Algal species have also shown to tolerate high concentrations of ARV drugs than the reported concentrations in the environmental matrices. In this review, emphasis has been given on discussing the current status of the occurrence of ARV drugs in the aquatic environment and WWTPs. Besides, the current trends and future perspectives of PCs removal by algae are critically reviewed and discussed. The potential pathways and mechanisms of ARV drugs removal by algae have also been discussed.
Collapse
Affiliation(s)
- Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
16
|
Gani KM, Hlongwa N, Abunama T, Kumari S, Bux F. Emerging contaminants in South African water environment- a critical review of their occurrence, sources and ecotoxicological risks. CHEMOSPHERE 2021; 269:128737. [PMID: 33153841 DOI: 10.1016/j.chemosphere.2020.128737] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The release of emerging contaminants (ECs) to the environment is a serious concern due to its health implications on humans, aquatic species, and the development of anti-microbial resistance. This review focuses on the critical analysis of available literature on the prevalence of ECs in the aquatic environment and their removal from wastewater treatment plants (WWTPs) in South Africa. Besides, a risk assessment is performed on the reported ECs from the South African surface water to augment the knowledge towards mitigation of EC pollution, and prioritisation of ECs to assist future monitoring plans and regulation framework. A zone wise classification approach was carried out to identify the spatial inferences and data deficiencies that revealed a non-uniformity in the monitoring of ECs throughout South Africa, with few zones rendering no data. The overarching data mining further revealed that unmanaged urine diverted toilets could be a potential source of EC pollution to groundwater in South Africa. Based on the available literature, it can be deduced that the complete adoption of EC management practices from developed countries might only contribute partly in the mitigation of EC pollution in South Africa. Therefore, an EC monitoring programme specific to the country is recommended which should be based on their occurrence levels, sources and removal in WWTPs.
Collapse
Affiliation(s)
- Khalid Muzamil Gani
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nhlanhla Hlongwa
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa; Department of Chemistry, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Taher Abunama
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
17
|
Khulu S, Ncube S, Kgame T, Mavhunga E, Chimuka L. Synthesis, characterization and application of a molecularly imprinted polymer as an adsorbent for solid-phase extraction of selected pharmaceuticals from water samples. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03553-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Bhembe YA, Lukhele LP, Hlekelele L, Ray SS, Sharma A, Vo DVN, Dlamini LN. Photocatalytic degradation of nevirapine with a heterostructure of few-layer black phosphorus coupled with niobium (V) oxide nanoflowers (FL-BP@Nb 2O 5). CHEMOSPHERE 2020; 261:128159. [PMID: 33113664 DOI: 10.1016/j.chemosphere.2020.128159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The degradation and removal of antiviral drugs in water has emerged remains a major challenge. This work presents, the photodegradation of nevirapine (NVP) with a novel p-n heterostructure of FL-BP@Nb2O5 nanoparticles synthesized via hydrothermal method. Several characterization techniques revealed a successful formation of the heterostructure with well aligned band positions that promoted excellent separation of charge carriers. A systematic study was conducted on the effect of initial pH, initial catalyst loading and initial concentration on the degradation kinetics of NVP. Degradation efficiency of 68% was achieved with the FL-BP@Nb2O5 after 3 h with 5 ppm initial concentration solution of NVP, at a working pH of 3 and 15 mg of photocatalyst. The stable fragment resulting from the degradation of NVP was n-butanol as evidenced by LC/MS. The successful degradation of NVP transpired with synergistic effect exhibited by the heterostructure that led to accelerated formation of reactive species that were responsible for the breaking down of NVP into smaller fragments. A TOC removal percentage of 19.03% after the photodegradation of NVP was observed, suggesting a successful break down of NVP to simpler non-toxic carbon-containing compounds.
Collapse
Affiliation(s)
- Yoliswa Anittah Bhembe
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | | | - Lerato Hlekelele
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Suprakas Sinha Ray
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa; Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Ajit Sharma
- Department of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | | |
Collapse
|
19
|
Nannou C, Ofrydopoulou A, Evgenidou E, Heath D, Heath E, Lambropoulou D. Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134322. [PMID: 31678880 DOI: 10.1016/j.scitotenv.2019.134322] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
The environmental release of antiviral drugs is of considerable concern due to potential ecosystem alterations and the development of antiviral resistance. As a result, interest on their occurrence and fate in natural and engineered systems has grown substantially in recent years. The main scope of this review is to fill the void of information on the knowledge on the worldwide occurrence of antiviral drugs in wastewaters and natural waters and correlate their levels with their environmental fate. According to the conducted literature survey, few monitoring data exists for several European countries, such as Germany, France, and the UK. Lesser data are available for Asia, where approximately 80% of the studies focus on Japan. Several articles study the occurrence of mostly antiretroantivirals in sub-Saharan African countries, while there is a lack of data for other developing regions of the world, including the rest of Africa, South America, and the biggest part of Asia. An importantly smaller number of studies exists for North America, while no studies exist for Oceania. The against innfluenza drug oseltamivir along with its active carboxy metabolite is found to be the most studied antiviral drug. The distribution of antiviral drugs across all geographic regions varies from low ng L-1 to high μg L-1 levels, in some cases, even in surface waters. This overarching review reveals that monitoring of antiviral drugs is necessary, and some of those compounds may require toxicological attention, in the light of either spatial and temporal high concentration or potential antiviral resistance. Based on the information provided herein, the need for a better understanding of the water quality hazards posed by antiviral drugs existence in wastewater outputs and freshwater ecosystems is demosntrated. Finally, the future challenges concerning the occurrence, fate, and potential ecotoxicological risk to organisms posed by antiviral drug residues are discussed.
Collapse
Affiliation(s)
- Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki. GR 54124, Thessaloniki, Greece
| | - Anna Ofrydopoulou
- Department of Chemistry, Aristotle University of Thessaloniki. GR 54124, Thessaloniki, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki. GR 54124, Thessaloniki, Greece
| | - David Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki. GR 54124, Thessaloniki, Greece.
| |
Collapse
|
20
|
Mosekiemang TT, Stander MA, de Villiers A. Simultaneous quantification of commonly prescribed antiretroviral drugs and their selected metabolites in aqueous environmental samples by direct injection and solid phase extraction liquid chromatography - tandem mass spectrometry. CHEMOSPHERE 2019; 220:983-992. [PMID: 33395820 DOI: 10.1016/j.chemosphere.2018.12.205] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 05/07/2023]
Abstract
The widespread implementation of antiretroviral therapy medication has made antiretroviral drugs (ARVDs) a significant pharmaceutical class in regions of high HIV infection rates. However, relatively little is known regarding the environmental occurrence of these emerging contaminants, and this is especially true for their metabolites. In this work, we report analytical methods to study the simultaneous occurrence of a range of common ARVDs and some of their known metabolites in surface water and wastewater. A novel direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is reported for the analysis of ARVDs of different therapeutic classes and their selected metabolites in wastewater samples. In addition, a solid phase extraction (SPE) procedure was developed for pre-concentration of ARVs and metabolites from surface water samples. The respective methods proved suitable for the quantitative analysis of six parent ARVDs from three ARV classes, as well as three metabolites. Method validation showed average recoveries of 86% for the direct injection method, and 64% for the SPE method. With the exception of Zidovudine and the metabolites of Zidovudine and Ritonavir, all target ARVDs were detected in wastewater samples from two wastewater treatment plants in the Western Cape, South Africa. Higher concentrations were generally measured in influent compared to effluent samples, in the dry compared to the wet season as well as in chlorinated compared to uv-irradiated effluents. This study contributes for the first time quantitative data on the environmental occurrence of the known metabolites of Nevirapine (12-hydroxy-Nevirapine) and Efavirenz (8,14-dihydroxy-Efavirenz).
Collapse
Affiliation(s)
- Tlou T Mosekiemang
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
21
|
Ncube S, Madikizela LM, Chimuka L, Nindi MM. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. WATER RESEARCH 2018; 145:231-247. [PMID: 30142521 DOI: 10.1016/j.watres.2018.08.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 05/27/2023]
Abstract
The therapeutic efficacy of antiretroviral drugs as well as challenges and side effects against the human immunodeficiency virus is well documented and reviewed. Evidence is available in literature indication that antiretrovirals are only partially transformed and become completely excreted from the human body in their original form and/or as metabolites in urine and feces. The possibility of massive release of antiretrovirals through human excreta that enters surface water through surface runoff and wastewater treatment plant effluents is now of environmental concern because the public might be experiencing chronic exposure to antiretrovirals. The primary concern of this review is limited data concerning environmental fate and ecotoxicity of antiretrovirals and their metabolites. The review aims to provide a comprehensive insight into the evaluation of antiretrovirals in environmental samples. The objective is therefore to assess the extent of analysis of antiretrovirals in environmental samples and also look at strategies including instrumentation and predictive models that have been reported in literature on the fate and ecotoxicological effects due to presence of antiretrovirals in different environmental compartments. The review also looks at current challenges and offers possible areas of exploration that could help minimize the presence of antiretrovirals in the environment.
Collapse
Affiliation(s)
- Somandla Ncube
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Luke Chimuka
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag X3, Johannesburg, 2050, South Africa
| | - Mathew M Nindi
- Department of Chemistry, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| |
Collapse
|
22
|
Abafe OA, Späth J, Fick J, Jansson S, Buckley C, Stark A, Pietruschka B, Martincigh BS. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa. CHEMOSPHERE 2018; 200:660-670. [PMID: 29524887 DOI: 10.1016/j.chemosphere.2018.02.105] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/17/2018] [Indexed: 05/23/2023]
Abstract
South Africa has the largest occurrence of the human immune deficiency virus (HIV) in the world but has also implemented the largest antiretroviral (ARV) treatment programme. It was therefore of interest to determine the presence and concentrations of commonly used antiretroviral drugs (ARVDs) and, also, to determine the capabilities of wastewater treatment plants (WWTPs) for removing ARVDs. To this end, a surrogate standard based LC-MS/MS method was optimized and applied for the detection of thirteen ARVDs used in the treatment and management of HIV/acquired immune deficiency syndrome (HIV/AIDS) in two major and one modular WWTP in the eThekwini Municipality in KwaZulu-Natal, South Africa. The method was validated and the detection limits fell within the range of 2-20 ng L-1. The analytical recoveries for the ARVDs were mainly greater than 50% with acceptable relative standard deviations. The concentration values ranged from <LOD - 53000 ng L-1 (influent), <LOD - 34000 ng L-1 (effluent) in a decentralized wastewater treatment facility (DEWATS); <LOD - 24000 ng L-1 (influent), <LOD - 33000 ng L-1 (effluent) in Northern WWTP and 61-34000 ng L-1 (influent), <LOD - 20000 ng L-1 (effluent) in Phoenix WWTP. Whilst abacavir, lamivudine and zidovudine were almost completely removed from the effluents, atazanavir, efavirenz, lopinavir and nevirapine persisted in the effluents from all three WWTPs. To estimate the ecotoxicological risks associated with the discharge of ARVDs, a countrywide survey focussing on the occurrence of ARVDs in WWTPs, surface and fresh water bodies, and aquatic organisms, is necessary.
Collapse
Affiliation(s)
- Ovokeroye A Abafe
- SMRI Biorefinery Research Chair, Department of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa; School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa; Residue Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa.
| | - Jana Späth
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Stina Jansson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Chris Buckley
- Pollution Research Group, University of KwaZulu-Natal, Durban, South Africa
| | - Annegret Stark
- SMRI Biorefinery Research Chair, Department of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Bjoern Pietruschka
- Pollution Research Group, University of KwaZulu-Natal, Durban, South Africa; Bremen Overseas Research and Development Association, Bremen, Germany
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
23
|
Richardson SD, Postigo C. Liquid Chromatography–Mass Spectrometry of Emerging Disinfection By-products. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Wood TP, Du Preez C, Steenkamp A, Duvenage C, Rohwer ER. Database-driven screening of South African surface water and the targeted detection of pharmaceuticals using liquid chromatography - High resolution mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:453-462. [PMID: 28683392 DOI: 10.1016/j.envpol.2017.06.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/21/2017] [Accepted: 06/08/2017] [Indexed: 05/13/2023]
Abstract
Pharmaceuticals and personal care products are released into aquatic environments, largely as a result of ineffectual removal during wastewater treatment. Here we present a screening strategy based on the use of three commercially available mass spectral databases, combined into a single searchable entity and parallelized by cluster computing. In addition to this, a targeted solid phase extraction method with Ultra High Pressure Liquid Chromatography coupled to quadrupole time of flight mass spectrometry (UHPLC-QTOF) was used to quantify 99 pharmaceuticals in South African surface water on a national level. Limits of quantification were in the low ng/L range for the majority of the compounds and it was found that nationally both Lamotrigine and Nevirapine occurred most often. Prednisolone and Ritonavir were present at the highest average concentration; 623 and 489 ng/L respectively. It is however shown that more than 50% of the targets chosen for analysis are not detectable in any of the samples, which highlights the utility of untargeted, database driven screening; prior to the use of costly analytical standards. Untargeted screening detected 45% of the compounds detected in targeted mode, and furthermore tentatively identified a total of 4273 unique compounds across the samples. Automatically triggered MS/MS analyses yielded 92 unique hits with greater than 95% confidence. It is therefore suggested that untargeted screening should precede the targeted approach as a matter of economy and to guide the selection of targets for quantification. There is however great room for improvement in current commercial database search methodologies as a large bottleneck exists due to processing time.
Collapse
Affiliation(s)
- Timothy Paul Wood
- Protechnik Laboratories, A Division of ARMSCOR SOC Ltd, 103 Combretum Crescent, Centurion, Pretoria, 0001, South Africa; Department of Chemistry, University of Pretoria, Lynwood Road, Pretoria, 0001, South Africa.
| | - Christiaan Du Preez
- Flamengro, A Division of ARMSCOR SOC Ltd, Cnr Delmas Road and Nossob Street, Pretoria, 0001, South Africa.
| | - Adriaan Steenkamp
- Flamengro, A Division of ARMSCOR SOC Ltd, Cnr Delmas Road and Nossob Street, Pretoria, 0001, South Africa
| | - Cornelia Duvenage
- Department of Internal Medicine, 1 Military Hospital, South African Military Health Services, Voortrekker Street, Pretoria, 0001, South Africa.
| | - Egmont R Rohwer
- Department of Chemistry, University of Pretoria, Lynwood Road, Pretoria, 0001, South Africa.
| |
Collapse
|