1
|
Liu Z, Yuan D, Pang S, Wei Y, Du M, He P, Yuan Q, Huang Y. Valorizing Xanthoceras Sorbifolia Bunge seed coats: A novel lignin-based activated carbon for effective malachite green adsorption and wastewater treatment. Int J Biol Macromol 2025; 298:140000. [PMID: 39832575 DOI: 10.1016/j.ijbiomac.2025.140000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
In order to increase the added value of Xanthoceras Sorbifolia Bunge (XSB) and to obtain green biomass activated carbon with abundant pores for efficient MG removal, this study was the first to prepare XSB-based high-performance activated carbon using KOH activation. Activated at temperatures between 600 and 800 °C, XSBAC-800 exhibited the highest specific surface area (1580 m2/g) and pore volume (0.732 cm3/g), leading to superior MG adsorption. The maximum adsorption capacity (Qm) of XSBAC-800 for MG was 1241.25 mg/g at 313 K, pH 7, and 0.2 g/L concentration. The adsorption process was spontaneous, endothermic, and driven by physical mechanisms such as pore filling and electrostatic interactions. XSBAC-800 also demonstrated excellent reusability, maintaining a removal percentage above 89 % after five regeneration cycles. These findings highlight the effectiveness of XSB-based activated carbon as a sustainable adsorbent for the removal of MG dyes, providing a promising solution for water pollution control.
Collapse
Affiliation(s)
- Zhigao Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Zhuang Autonomous Region, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Di Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Zhuang Autonomous Region, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shenghua Pang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Zhuang Autonomous Region, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yujun Wei
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu 611731, China
| | - Minzhuo Du
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu 611731, China
| | - Pan He
- Sichuan Provincial Engineering Research Center of Functional Development and Application of High Performance Special Textile Materials, Chengdu Textile College, Chengdu 611731, China.
| | - Quanping Yuan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530000, Guangxi Zhuang Autonomous Region, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing 100091, China.
| |
Collapse
|
2
|
Fakhar A, Galgo SJC, Canatoy RC, Rafique M, Sarfraz R, Farooque AA, Khan MI. Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. BIOCHAR 2025; 7:8. [PMID: 39758611 PMCID: PMC11698939 DOI: 10.1007/s42773-024-00397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025]
Abstract
Biochar is a carbon-rich material produced through the pyrolysis of various feedstocks. It can be further modified to enhance its properties and is referred to as modified biochar (MB). The research interest in MB application in soil has been on the surge over the past decade. However, the potential benefits of MB are considerable, and its efficiency can be subject to various influencing factors. For instance, unknown physicochemical characteristics, outdated analytical techniques, and a limited understanding of soil factors that could impact its effectiveness after application. This paper reviewed the recent literature pertaining to MB and its evolved physicochemical characteristics to provide a comprehensive understanding beyond synthesis techniques. These include surface area, porosity, alkalinity, pH, elemental composition, and functional groups. Furthermore, it explored innovative analytical methods for characterizing these properties and evaluating their effectiveness in soil applications. In addition to exploring the potential benefits and limitations of utilizing MB as a soil amendment, this article delved into the soil factors that influence its efficacy, along with the latest research findings and advancements in MB technology. Overall, this study will facilitate the synthesis of current knowledge and the identification of gaps in our understanding of MB. Graphical Abstract
Collapse
Affiliation(s)
- Ali Fakhar
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Snowie Jane C. Galgo
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
- College of Agriculture, Sultan Kudarat State University, Lutayan Campus, 9803 Philippines
| | - Ronley C. Canatoy
- Department of Soil Science, College of Agriculture, Central Mindanao University, 8710 Maramag, Philippines
| | - Mazhar Rafique
- Department of Soil and Climate Sciences, The University of Haripur, Haripur, Khyber Pakhtunkhwa Pakistan
| | - Rubab Sarfraz
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Aitazaz Ahsan Farooque
- Canadian Centre for Climate Change and Adaptation, University of Prince Edward Island, St Peters Bay, PE Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A4P3 Canada
| | - Muhammad Israr Khan
- Institute of Agriculture & Applied Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
3
|
Saeidi N, Lotteraner L, Sigmund G, Hofmann T, Krauss M, Mackenzie K, Georgi A. Towards a better understanding of sorption of persistent and mobile contaminants to activated carbon: Applying data analysis techniques with experimental datasets of limited size. WATER RESEARCH 2024; 274:123032. [PMID: 39787835 DOI: 10.1016/j.watres.2024.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset. This dataset includes more than 60 isotherms for 22 PM candidates and well-characterized high-surface-area activated carbon (AC) materials. We demonstrate how tools such as distance correlation and clustering can be used effectively to identify the key parameters driving the sorption process. Using these approaches, we found that aromaticity, followed by hydrophobicity, are key sorbate descriptors for sorption, overshadowing steric and charge effects for a given sorbent. Aromatic PMs, although classified as mobile contaminants based on their sorption to soil, are well adsorbed by AC as engineered adsorbent via π-π interactions. Non-aromatic and especially anionic compounds show much greater variability in sorption. The influence of ionic strength and natural organic matter on adsorption was considered. Our approach will help in the analysis of solute-sorption systems and in the development of new adsorbents beyond the specific examples presented here. In order to make the approach accessible, the code is freely available and described on GitHub (https://github.com/Laura-Lotteraner/PM-Sorption), following the FAIR data principles.
Collapse
Affiliation(s)
- Navid Saeidi
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany; Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Laura Lotteraner
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria; Visualization and Data Analysis, Faculty of Computer Science, University of Vienna, Sensengasse 6, Vienna 1090, Austria
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Martin Krauss
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Katrin Mackenzie
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Anett Georgi
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany.
| |
Collapse
|
4
|
Ashraf M, Abbasi N, Gupta PK, Chakma S, Ziauddin Ahammad S. Effect of Soil-pH, temperature and moisture content on sorption dynamics of metformin and erythromycin. ENVIRONMENTAL RESEARCH 2024; 263:120270. [PMID: 39481784 DOI: 10.1016/j.envres.2024.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The rising soil-groundwater quality issues due to pharmaceuticals and personal care products (PPCPs) contamination have spurred significant concern. To understand the sorption characteristics of metformin (MTN) and erythromycin (ETM) in sandy and sandy loam soils with varying organic matter and particle composition, sorption kinetics (single and competitive), isotherms, and thermodynamics were studied. The effects of pH and soil moisture content (SMC) were also investigated at environmentally relevant concentrations. The equilibrium time of MTN and ETM sorption by the three soils in a competitive solute system was about 4 h, and the sorption process was in line with a pseudo-second-order model. The rate-determining step in the process involved both intraparticle diffusion and liquid film diffusion mechanisms for the two PPCPs. The highest pollutant uptake occurred in soils with higher organic matter, driven by enhanced H-bonding, electrostatic interactions, and π-π and n-π interactions facilitated by the organic matter. The equilibrium data in the three soils was well described by the Freundlich model and confirmed favourable adsorption (1/nf = 1.01-1.90). The sorption coefficient (Kd) on the three soils ranged from 2.1 to 332 L/kg for MTN and from 6.25 to 845 L/kg for ETM. The adsorption process was feasible at 293 K and 303 K (ΔG° = - 0.16 to -10.24 kJ/mol), physical and exothermic in nature (ΔH° = -75.21 to -10.30 kJ/mol) for both the contaminants. Observed alterations in Qe with pH confirmed the participation of electrostatic interactions. A low SMC favoured both MTN and ETM sorption onto the sandy soil. Overall, ETM exhibits higher expected sorption, whereas MTN has a greater tendency for migration in the soils and is thus liable to contaminate the groundwater. The study accentuates novel insights into the transport and fate of MTN and ETM in soil-groundwater systems at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Neha Abbasi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pankaj Kumar Gupta
- Centre of Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Faculty of Environment, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
5
|
Nepal J, Xin X, Maltais-Landry G, Barra Netto-Ferreira J, Wright AL, He Z. Water dispersible carbon nanomaterials reduced N, P, and K leaching potential in sandy soils: A column leaching study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176755. [PMID: 39374699 DOI: 10.1016/j.scitotenv.2024.176755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Carbon nanomaterials (CNMs) - amendments with carbon in nanoscale form -could potentially enhance fertilizer delivery efficiency in agriculture, but their interaction with soil properties and nutrient co-mobility, especially in coarse-textured soils, remain poorly understood. We conducted a column leaching study in repacked soil columns to compare the co-leaching of novel water-dispersible CNMs and soil nutrients across two levels of CNMs applications (200 & 400 mg kg-1), two fertilization rates (low:80 mg kg-1 of N, P and K and high: 200 mg N kg-1, 100 mg P kg-1, 200 mg K kg-1, applied as ammonium nitrate, potassium phosphate, and potassium nitrate) and two soils (Spodosol with pH = 5.1, Alfisol with pH = 6.5). We imposed 12 leaching events to each column, with each leaching event adding water equivalent to the soil-pore volume (250 mL), resulting in cumulative leaching of 3000 mL of water through each column. CNMs applications reduced cumulative leaching losses of NO3-N (Spodosol: 8-12 %, Alfisol: 9-19 %), NH4-N (Spodosol: 2-14 %, Alfisol: 9-14 %), P (Spodosol: 23-27 %, Alfisol: 23-36 %) and K (Spodosol: 17-23 %, Alfisol: 24-26 %) compared to fertilized columns without CNMs. CNMs increased soil pH by up to 0.3 units (Spodosol) or 0.5 units (Alfisol), while lowering electrical conductivity by 15-20 % at the high fertilization rate in both soils. Columns with water-dispersible CNMs accumulated 25-30 % more total C in the base sections of the Alfisol compared to the Spodosol, indicating faster downward movement through the soil profile. Overall, we demonstrated that CNMs have the potential to reduce nutrient leaching in coarse-textured soils, which could be particularly beneficial in high-input intensive agricultural systems.
Collapse
Affiliation(s)
- Jaya Nepal
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America; School of Integrative Plant Science-Soil and Crop Sciences Section, Cornell University, Ithaca, NY, United States of America
| | - Xiaoping Xin
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Gabriel Maltais-Landry
- Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Julia Barra Netto-Ferreira
- Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States of America
| | - Alan L Wright
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America
| | - Zhenli He
- Department of Soil, Water, and Ecosystem Sciences, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States of America.
| |
Collapse
|
6
|
Lladó J, Díaz AM, Lopez-Vinent N, Pérez S, Montemurro N, Cruz-Alcalde A, Lao C, Fuente E, Ruiz B. Lignocellulosic pruning waste adsorbents to remove emerging contaminants from tyre wear and pharmaceuticals present in wastewater in circular economy scenario. BIORESOURCE TECHNOLOGY 2024; 418:131847. [PMID: 39581476 DOI: 10.1016/j.biortech.2024.131847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The following work explores a sustainable approach to repurpose organic waste from poplar pruning into lignocellulosic waste-based activated carbons (LPWACs) through environmentally friendly thermochemical processes and in line with circular economy principles. The developed LPWACs, activated by potassium hydroxide (KOH) at two different temperatures and weight ratios, exhibited promising textural properties with BET surface area (SBET) and total pore volume (VTOT) reaching up to 1336 m2·g-1 and 0.588 cm3·g-1, respectively. In addition, they displayed a developed microporous structure with a significant oxygen content (up to 11 %). These activated carbons were used to remove five emerging organic pollutants from the leaching of tyre wear particles (TWPs) and pharmaceuticals present in water. The increase in oxygen groups had a negative effect on the adsorption capacity of 1H-benzotriazole (BZTL), while electrostatic influences hindered diatrizoic acid (DZT) adsorption. LPWACs effectively remove pharmaceutical and tyre contaminants, supporting the circular economy in water treatment.
Collapse
Affiliation(s)
- J Lladó
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - A M Díaz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - N Lopez-Vinent
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - S Pérez
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - N Montemurro
- Department of Environmental Chemistry Water and Soil Research Group, Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), Barcelona, Spain
| | - A Cruz-Alcalde
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona (UB), Barcelona, Spain
| | - C Lao
- Department of Mining, Industrial and TIC Engineering (EMIT) Escola Politècnica Superior d'Enginyeria de Manresa. Univesitat Politécnica de Catalunya. Manresa, Spain
| | - E Fuente
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain
| | - B Ruiz
- Biocarbon, Circularity & Sustainability Group. Carbon Science and Technology Institute (INCAR), CSIC. C/ Francisco Pintado Fe 26, 33011 Oviedo, Spain.
| |
Collapse
|
7
|
Karki BK. Amended biochar in constructed wetlands: Roles, challenges, and future directions removing pharmaceuticals and personal care products. Heliyon 2024; 10:e39848. [PMID: 39524858 PMCID: PMC11550652 DOI: 10.1016/j.heliyon.2024.e39848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) in wastewater pose significant threats to both human health and aquatic ecosystems. Wastewater discharge from various sources is the primary cause of these contaminants, and proper treatment is essential for protecting the environment. Traditional treatment technologies are often too expensive and ineffective in removing PPCPs. Constructed wetlands (CWs) offer a sustainable, cost-efficient alternative for wastewater treatment, though their capability to eliminate PPCPs can vary based on multiple aspects. Recent studies highlight biochar-a carbon-rich material resultant from biomass pyrolysis-as a promising amendment to improve CW performance. However, there is a deficiency of proper literature reviews on using biochar in CWs specifically for PPCP removal. This review focuses on biochar's role in CWs and its effectiveness in removing PPCPs and enhancing microbial activity and nutrient cycling. A bibliometric analysis using Vosviewer software was used to assess the current research trends in the biochar-amended CWs to attenuate PPCPs. While biochar shows potential in eliminating PPCPs, challenges, such as optimizing its application and addressing long-term operational concerns for treating emerging pollutants like PPCPs. Future research should enhance biochar production and low-cost techniques for diverse groups of PPCPs and perform field trials to validate laboratory results under actual conditions exploring microbial-biochar and plant-biochar interactions. Addressing these challenges is crucial to advancing biochar-amended CWs and enhancing wastewater treatment on a global scale.
Collapse
Affiliation(s)
- Bhesh Kumar Karki
- Tribhuvan University, Institute of Engineering, Thapathali Campus, Department of Civil Engineering Kathmandu, 44600, Nepal
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
8
|
Milanković V, Tasić T, Brković S, Potkonjak N, Unterweger C, Pašti IA, Lazarević-Pašti T. Transforming Food Biowaste into Selective and Reusable Adsorbents for Pesticide Removal from Water. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5499. [PMID: 39597323 PMCID: PMC11595743 DOI: 10.3390/ma17225499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
With growing concerns regarding environmental pollution and the need for sustainable waste management practices, this study investigates the potential of utilizing spent coffee grounds (SCG) as a precursor for producing functional carbon materials aimed at organophosphorus pesticide remediation under environmentally relevant conditions. Carbonization of SCG is followed by various activation methods, including treatment with potassium hydroxide, phosphoric acid, and carbon dioxide, individually or in combination. The resulting biochars are systematically analyzed for their adsorption performance towards malathion and chlorpyrifos. Screening tests revealed a selective adsorption preference towards aromatic chlorpyrifos over aliphatic malathion. Activation processes significantly influence adsorption kinetics and efficiency, with physical activation showing notable adsorption rates and capacity enhancements. Moreover, the SCG-derived biochars exhibit a pronounced dependency on adsorption temperature. Adsorption, regeneration, and reuse of the most promising material are tested in a real, spiked tap water sample, proving that the presence of ions in tap water did not affect the adsorption and that the material has the potential to be reused more than ten times. This work proposes a straightforward approach for recycling SCG by converting it into functional carbon materials, underscoring the importance of selecting the appropriate activation processes and conditions for practical applications in pesticide remediation.
Collapse
Affiliation(s)
- Vedran Milanković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Tamara Tasić
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Snežana Brković
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Nebojša Potkonjak
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| | - Christoph Unterweger
- Wood K Plus—Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria;
| | - Igor A. Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11158 Belgrade, Serbia;
| | - Tamara Lazarević-Pašti
- Vinča Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12–14, 11000 Belgrade, Serbia; (T.T.); (S.B.); (N.P.); (T.L.-P.)
| |
Collapse
|
9
|
Wang X, Chen H, Qian Y, Li X, Li X, Xu X, Wu Y, Zhang W, Xue G. Sludge-derived hydrochar modulates complete nonradical electron transfer in peroxydisulfate activation via pyrrolic-N and carbon defect: Implication for degrading electron-rich ionizable anilines compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135724. [PMID: 39236539 DOI: 10.1016/j.jhazmat.2024.135724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation. Degradation of anilines IOC was not only affected by the electron-donating capacity but also proton concentration in solution because of the ionizable amino group (-NH2). Diverse effects including proton favor, insusceptible and inhibition were observed. Impressively, addition of HCO3 with strong proton binding capacity boosted aniline degradation nearly 10 times. Moreover, characterizations and theoretical calculations demonstrated that pyrrolic-N increased electron density and created positively charged surface, profoundly promoting generation of SDHC-N-S2O82-* complexes. More delocalized electrons around carbon defect could enhance electron mobility. This work guides a rational design of sludge-derived hydrochar to mediate nonradical ETP oxidation, and provides insights into the impacts of proton on anilines IOC degradation.
Collapse
Affiliation(s)
- Xiaonuan Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianying Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjuan Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Zhou D, Liu H, Huang Y, Li Y, Wang N, Wang J. Overlooked role of CO 3· - reactivity with different dissociation forms of organic micropollutants in degradation kinetics modeling: A case study of fluoxetine degradation in a UV/peroxymonosulfate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135538. [PMID: 39173383 DOI: 10.1016/j.jhazmat.2024.135538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Selective oxidizing agent carbonate radical (CO3•-) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO3•- in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO3•- effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO3•- reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO3•- selective reactivity (with determined second-order rate constants, ksrc,CO3·-, of 7.33 ×106 and 2.56 ×108 M-1s-1 for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between ksrc,CO3·- from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl- slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl• with HCO3- into CO3•-, which partially compensated for the quenching effects of Cl- on HO• and SO4•-. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO3•- being the dominant contributor (∼90 %) to this degradation process.
Collapse
Affiliation(s)
- Die Zhou
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yixi Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingjie Li
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Nian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
11
|
He R, Jiang Y, Liu Z, Wu J, Zhang X, Wu Y. Exploring the sorption/desorption of nitenpyram in loess soils: implications for neonicotinoid fate and ecological risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:446. [PMID: 39316173 DOI: 10.1007/s10653-024-02234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Neonicotinoids are widely used insecticides that accumulate in various environmental matrixes and potentially harm non-target organisms. However, the mechanism of sorption/desorption of neonicotinoids in different loess soils remains poorly understood. Therefore, this study investigated the sorption/desorption of nitenpyram (NIT), a commonly used neonicotinoid, in three different types of loess soils and examined factors influencing the adsorption process using batch experiments. The findings revealed that NIT reached adsorption equilibrium in 4 h in all three loess soil samples. The R2 value (> 0.898) obtained from fitting the sorption/desorption kinetics indicated a good match with the pseudo-second-order model, suggesting the involvement of multiple mechanisms, including chemisorption. The linear and Freundlich models also adequately described the sorption of NIT in loess soils. Additionally, a clear hysteresis phenomenon was observed. The adsorption capacity of NIT is significantly related to the adsorption temperature, solution pH and ionic strength. Upon increasing the initial concentration, the equilibrium adsorption capacity of NIT for gray-cinnamon soil, sierozem, and cultivated loessial soil increased from 3.56, 2.51, and 2.64 mg/kg to 8.49, 3.92, and 5.22 mg/kg, respectively. FTIR spectral analysis revealed that the adsorption of NIT in loess soil was primarily governed by mixed mechanism. This study elucidates the behavior and fate of NIT in soil-water systems in the Northwest, while also establishing a foundation for assessing its ecological risks. The findings have significant practical implications for the future development of environmental management and pollution control strategies.
Collapse
Affiliation(s)
- Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Zhewei Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jiali Wu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaozhen Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
12
|
Ding R, Ouyang Z, Dong P, Su T, Wang J, Guo X. Insights into the photoreactivity mechanisms of micro-sized rubber particles with different structure: The crucial role of reactive oxygen species and released dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135250. [PMID: 39032182 DOI: 10.1016/j.jhazmat.2024.135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Micro-sized rubber particles (MRPs), as a significant component of tire wear particles (TWPs), increasingly garnered attention due to the potential ecological risks. However, the impact of photoaging of MRPs and the characteristics of the dissolved organic matter (DOM) derived from MRPs on the photoreactivity of co-existing pollutants is remain unclear. To bridge this knowledge gap, this study selected MRPs with different structure including butadiene rubber (BR), styrene butadiene rubber (SBR) and nitrile butadiene rubber (NBR) and took tetracycline (TC) as the target pollutant to firstly study potential effects of structural characteristics and active components of MRPs on TC photodegradation process under simulated sunlight irradiation. The results indicated that BR, NBR and SBR enhanced TC photodegradation to varying extents, with SBR having the most pronounced effect. This effect was attributed mainly to the high electron transport capacity and the generation of more triple excited DOM (3DOM*) of SBR, thereby producing more active species (•OH and 1O2) and significantly promoting TC photodegradation. Additionally, the unsaturated bonds and aromatic groups in MRPs-DOM was identified as another crucial factor influencing their photoreactivity. This study will provide a new perspective for understanding the potential ecological effects between MRPs and co-existing pollutants in the natural environment.
Collapse
Affiliation(s)
- Rui Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Pingshu Dong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Abdel Hamid EM, Aly HM, El Naggar KAM. Synthesis of nanogeopolymer adsorbent and its application and reusability in the removal of methylene blue from wastewater using response surface methodology (RSM). Sci Rep 2024; 14:20631. [PMID: 39231999 PMCID: PMC11375093 DOI: 10.1038/s41598-024-70284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
Organic dyestuff are mostly toxic compounds that pose serious dangers to the environment. Adsorption using low-cost adsorbents is the most favorable method for its economic aspects. Recently, geopolymers have been introduced as an effective adsorbent for dyes and heavy metals. In this investigation, the synthesis of geopolymers from fired brick waste (Homra) was studied with full characterization using X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Brunauer-Emmett-Teller, Energy dispersive X-ray, Scanning electron microscope tests and Transmission electron microscopy. The synthesized nano-Homra geopolymer (NHGP) was then subjected to the removal of one of the most used basic dyes, Methylene Blue (MB). Adsorption optimization was applied using Response surface methodology to study dye adsorption by the synthesized nano-geopolymer. The independent variables studied were: temperature, contact time, and concentration of dye in the elimination process, which were varied in the range of (25-60 ℃), (10-180 min), and (20-300 mg/L) respectively. The results obtained from ANOVA indicated that the maximum removal efficiency of 95% and adsorption capacity of 80.65 mg/g at a temperature of 59 ℃, contact time of 163 min, and an initial concentration of 254 mg/L. The results showed that the data obtained from the adsorption of MB onto NHGP was compatible with the Pseudo second order (R2 = 0.9838) and Langmuir isotherm model (R2 = 0.9882).
Collapse
Affiliation(s)
- E M Abdel Hamid
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EAEAT), Km 3 Cairo-Belbeis, Desert Road, PO box 3056, Cairo, Egypt.
| | - H M Aly
- Chemical Engineering Department, National Research Centre, Cairo, Egypt
| | - K A M El Naggar
- Chemical Engineering Department, Egyptian Academy for Engineering and Advanced Technology (EAEAT), Km 3 Cairo-Belbeis, Desert Road, PO box 3056, Cairo, Egypt
| |
Collapse
|
14
|
Wang Q, Lechtenfeld OJ, Rietveld LC, Schuster J, Ernst M, Hofman-Caris R, Kaesler J, Wang C, Yang M, Yu J, Zietzschmann F. How aromatic dissolved organic matter differs in competitiveness against organic micropollutant adsorption. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100392. [PMID: 38434492 PMCID: PMC10907174 DOI: 10.1016/j.ese.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 03/05/2024]
Abstract
Activated carbon is employed for the adsorption of organic micropollutants (OMPs) from water, typically present in concentrations ranging from ng L-1 to μg L-1. However, the efficacy of OMP removal is considerably deteriorated due to competitive adsorption from background dissolved organic matter (DOM), present at substantially higher concentrations in mg L-1. Interpreting the characteristics of competitive DOM is crucial in predicting OMP adsorption efficiencies across diverse natural waters. Molecular weight (MW), aromaticity, and polarity influence DOM competitiveness. Although the aromaticity-related metrics, such as UV254, of low MW DOM were proposed to correlate with DOM competitiveness, the method suffers from limitations in understanding the interplay of polarity and aromaticity in determining DOM competitiveness. Here, we elucidate the intricate influence of aromaticity and polarity in low MW DOM competition, spanning from a fraction level to a compound level, by employing direct sample injection liquid chromatography coupled with ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anion exchange resin pre-treatment eliminated 93% of UV254-active DOM, predominantly aromatic and polar DOM, and only minimally alleviated DOM competition. Molecular characterization revealed that nonpolar molecular formulas (constituting 26% PAC-adsorbable DOM) with medium aromaticity contributed more to the DOM competitiveness. Isomer-level analysis indicated that the competitiveness of highly aromatic LMW DOM compounds was strongly counterbalanced by increased polarity. Strong aromaticity-derived π-π interaction cannot facilitate the competitive adsorption of hydrophilic DOM compounds. Our results underscore the constraints of depending solely on aromaticity-based approaches as the exclusive interpretive measure for DOM competitiveness. In a broader context, this study demonstrates an effect-oriented DOM analysis, elucidating counterbalancing interactions of DOM molecular properties from fraction to compound level.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Oliver J. Lechtenfeld
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
- ProVIS−Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Luuk C. Rietveld
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
| | - Jonas Schuster
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Mathias Ernst
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073, Hamburg, Germany
| | - Roberta Hofman-Caris
- KWR Watercycle Research Institute, 3433PE, Nieuwegein, the Netherlands
- Wageningen University and Research, Department of Environmental Technology, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Jan Kaesler
- Department of Analytical Chemistry, Research Group BioGeoOmics, Helmholtz Centre for Environmental Research − UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Frederik Zietzschmann
- Delft University of Technology, Department of Water Management, PO Box 5048, 2600, GA, Delft, the Netherlands
- Berliner Wasserbetriebe, Laboratory, Motardstr. 35, 13629, Berlin, Germany
| |
Collapse
|
15
|
Gu C, Zhang Y, He P, Gan M, Zhu J, Yin H. Bioinspired axial S-coordinated single-atom cobalt catalyst to efficient activate peroxymonosulfate for selective high-valent Co-Oxo species generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134515. [PMID: 38703676 DOI: 10.1016/j.jhazmat.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yaqin Zhang
- College of Food Science and Technology, Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
16
|
Bian P, Shao Q. Efficient adsorption of hexavalent chromium in water by torrefaction biochar from lignin-rich kiwifruit branches: The combination of experiment, 2D-COS and DFT calculation. Int J Biol Macromol 2024; 273:133116. [PMID: 38889832 DOI: 10.1016/j.ijbiomac.2024.133116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
A biochar (KBC) enriched with O functional groups was prepared by torrefaction using lignin-rich kiwifruit branches (KBM) as a raw material, which was characterized, and then KBC was used to adsorb hexavalent chromium (Cr6+) from water. The results showed that KBC contained more functional groups compared to KBM. The maximum adsorption of Cr6+ by KBC could reach 143.64 mg·g-1 and also had better adsorption performance than other adsorbents reported in some other reports. Cr6+ absorption by KBC was mainly a mechanism of electrostatic interaction and adsorption-reduction coupling. FTIR and XPS revealed that -OH, -COOH, CO and CC on KBC participated in Cr6+ adsorption and new groups (C=O) were generated during the process of adsorption, which implied that a redox reaction occurred. 2D-COS and DFT calculations showed that the order of functional groups on KBC interacting with Cr6+ was -OCH3 > -COOH > -OH > phenolic hydroxyl, and the binding tightness of the different functional groups to Cr6+ was -OCH3 (the shortest displacement of both groups after the adsorption) > -COOH > -OH > phenolic hydroxyl. KBC has good regeneration performance, and it is a good adsorbent for Cr6+.
Collapse
Affiliation(s)
- Pengyang Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qinqin Shao
- School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou 450044, PR China.
| |
Collapse
|
17
|
He Y, Liu Z, Chen J, Deng Y. Performance and mechanism of sulfadiazine and norfloxacin adsorption from aqueous solution by magnetic coconut shell biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48561-48575. [PMID: 39031314 DOI: 10.1007/s11356-024-34359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.
Collapse
Affiliation(s)
- Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Ziruo Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jiale Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
18
|
Hu YL, Liu Y, Fu W, Yang H. Efficiency and mechanism of enhanced norfloxacin removal using amorphous TiO 2-modified biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124027. [PMID: 38688387 DOI: 10.1016/j.envpol.2024.124027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/31/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Inadequate treatment of antibiotic-contaminated wastewater, including compounds such as norfloxacin (NOR), poses a substantial treat to both ecological safety and human well-being. An innovative approach was devised to address NOR pollution using amorphous TiO2 modified biochar (A-TiO2/BC) prepared via sol-gel impregnation. The resultant had a commendably specific surface area of 131.8 m2/g-1, which was 1.91 times more than the original surface area of unmodified BC. A-TiO2/BC also exhibited abundant hydroxyl and oxygen-containing functional groups, thereby provided adequately active sites for NOR adsorption. R2 values obtained from NOR isotherm adsorption models descended in order of Freundlich < Temkin < Sips < Langmuir, which indicated that the NOR removal by A-TiO2/BC mainly complied with monolayer adsorption accompanied by heterogeneous surface adsorption. Under weakly acidic conditions, NOR adsorption benefits from the synergistic physicochemical interactions of A-TiO2 and BC. Notably, A-TiO2/BC demonstrated an impressive NOR adsorption capacity of up to 78.14 mg g-1, with a dosage of 20 mg L-1 at 25 °C under pH 6. Such A-TiO2 modified biochar thus presents a promising alternative for NOR removal.
Collapse
Affiliation(s)
- Yu-Liang Hu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ying Liu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Weng Fu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hong Yang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
19
|
Heusser A, Dax A, McArdell CS, Udert KM. Comparing the adsorption of micropollutants on activated carbon from anaerobically stored, organics-depleted, and nitrified urine. WATER RESEARCH 2024; 257:121615. [PMID: 38692253 DOI: 10.1016/j.watres.2024.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
Separate collection and treatment of urine optimizes nutrient recovery and enhances micropollutant removal from municipal wastewater. One typical urine treatment train includes nutrient recovery in three biological processes: anaerobic storage, followed by aerobic organics degradation concurrently with nitrification. These are usually followed by activated carbon adsorption to remove micropollutants. However, removing micropollutants prior to nitrification would protect nitrifiers from potential inhibition by pharmaceuticals. In addition, combining simplified biological treatment with activated carbon adsorption could offer a cheap and robust process for removing micropollutants where nutrient recovery is not the first priority, as a partial loss of ammonia occurs without nitrification. In this study, we investigated whether activated carbon adsorption could also take place between the three biological treatment steps. We tested the effectiveness of micropollutant removal with activated carbon after each biological treatment step by conducting experiments with anaerobically stored urine, organics-depleted urine, and nitrified urine. The urine solutions were spiked with 19 pharmaceuticals: amisulpride, atenolol, atenolol acid, candesartan, carbamazepine, citalopram, clarithromycin, darunavir, diclofenac, emtricitabine, fexofenadine, hydrochlorothiazide, irbesartan, lidocaine, metoprolol, N4-acetylsulfamethoxazole, sulfamethoxazole, trimethoprim, venlafaxine, and two artificial sweeteners, acesulfame and sucralose. Batch experiments were conducted with powdered activated carbon (PAC) to determine how much activated carbon achieve which degree of micropollutant removal and how organics, pH, and speciation change from ammonium to nitrate influence adsorption. Micropollutant removal was also tested in granular activated carbon (GAC) columns, which is the preferred technology for micropollutant removal from urine. The carbon usage rates (CUR) per person were lower for all urine solutions than for municipal wastewater. The results showed that organics depletion would be needed when micropollutant removal was the sole aim of urine treatment, as the degradation of easily biodegradable organics prevented clogging of GAC columns. However, CUR did hardly improve with organics-depleted urine compared to stored urine. The lowest CUR was achieved with nitrified urine. This resulted from the additional organics removal during nitrification and not the lower pH or the partial conversion of ammonium to nitrate. In addition, we showed that the relative pharmaceutical removal in all solutions was independent of the initial pharmaceutical concentration unless the background organics matrix changed considerably. We conclude that removal of micropollutants in GAC columns from organics-depleted urine can be performed without clogging, but with the drawback of a higher carbon usage compared to removal from nitrified urine.
Collapse
Affiliation(s)
- Aurea Heusser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
| |
Collapse
|
20
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
21
|
Vakili M, Cagnetta G, Deng S, Wang W, Gholami Z, Gholami F, Dastyar W, Mojiri A, Blaney L. Regeneration of exhausted adsorbents after PFAS adsorption: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134429. [PMID: 38691929 DOI: 10.1016/j.jhazmat.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The adsorption process efficiently removes per- and polyfluoroalkyl substances (PFAS) from water, but managing exhausted adsorbents presents notable environmental and economic challenges. Conventional disposal methods, such as incineration, may reintroduce PFAS into the environment. Therefore, advanced regeneration techniques are imperative to prevent leaching during disposal and enhance sustainability and cost-effectiveness. This review critically evaluates thermal and chemical regeneration approaches for PFAS-laden adsorbents, elucidating their operational mechanisms, the influence of water quality parameters, and their inherent advantages and limitations. Thermal regeneration achieves notable desorption efficiencies, reaching up to 99% for activated carbon. However, it requires significant energy input and risks compromising the adsorbent's structural integrity, resulting in considerable mass loss (10-20%). In contrast, chemical regeneration presents a diverse efficiency landscape across different regenerants, including water, acidic/basic, salt, solvent, and multi-component solutions. Multi-component solutions demonstrate superior efficiency (>90%) compared to solvent-based solutions (12.50%), which, in turn, outperform salt (2.34%), acidic/basic (1.17%), and water (0.40%) regenerants. This hierarchical effectiveness underscores the nuanced nature of chemical regeneration, significantly influenced by factors such as regenerant composition, the molecular structure of PFAS, and the presence of organic co-contaminants. Exploring the conditional efficacy of thermal and chemical regeneration methods underscores the imperative of strategic selection based on specific types of PFAS and material properties. By emphasizing the limitations and potential of particular regeneration schemes and advocating for future research directions, such as exploring persulfate activation treatments, this review aims to catalyze the development of more effective regeneration processes. The ultimate goal is to ensure water quality and public health protection through environmentally sound solutions for PFAS remediation efforts.
Collapse
Affiliation(s)
| | - Giovanni Cagnetta
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shubo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province 810016, China
| | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01 Ústí nad Labem, Czech Republic
| | - Fatemeh Gholami
- Department of Mathematics, Physics, and Technology, Faculty of Education, University of West Bohemia, Klatovská 51, Plzeň 301 00, Czech Republic
| | - Wafa Dastyar
- Chemical, Environmental, and Materials Engineering Department, McArthur Engineering Building, University of Miami, Coral Gables, FL 33124, USA
| | - Amin Mojiri
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| |
Collapse
|
22
|
Muñoz-Vega E, Horovitz M, Dönges L, Schiedek T, Schulz S, Schüth C. Competitive sorption experiments reveal new regression models to predict PhACs sorption on carbonaceous materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134239. [PMID: 38640667 DOI: 10.1016/j.jhazmat.2024.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Sorption of hydrophobic organic contaminants onto thermally altered carbonaceous materials (TACM) constitutes a widely used technology for remediation of polluted waters. This process is typically described by sorption isotherms, with one of the most used models, the Polanyi-Dubinin-Manes (PDM) equation, including water solubility (Sw) as a normalizing factor. In case of pharmaceutical active compounds (PhACs), Sw depends on the pH of the environment due to the ionic/ionizable behavior of these chemicals, a fact frequently ignored in sorption studies of PhACs. In this work, we set the theoretical framework to include the variation of Sw with pH in the definition of the PDM model, and we applied this approach to describe the effect of ambient pH in the competitive sorption of three commonly detected PhACs (carbamazepine, ibuprofen, and sulfamethoxazole) onto three carbonaceous sorbents (biochar, powder activated carbon, and colloidal activated carbon). Changes in the ambient pH and hence in the hydrophobicity of the compounds could explain the strong variations observed in single-solute sorption and also in competitive sorption. Furthermore, Sw was used as a parameter for the linear regression model of sorption coefficients of our experiments, suggesting the incorporation of this variable as an improvement to existing approaches for prediction of PhACs sorption onto TACM.
Collapse
Affiliation(s)
- Edinsson Muñoz-Vega
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany.
| | - Marcel Horovitz
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany; Laboratório Nacional de Engenharia Civil, Avenida do Brasil 101, Lisbon 1700-066, Portugal
| | - Lisa Dönges
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Thomas Schiedek
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Stephan Schulz
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany
| | - Christoph Schüth
- Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstraße 9, Darmstadt D-64287, Germany; Water Resources Management Division, IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-45476, Germany
| |
Collapse
|
23
|
Rekik H, Arab H, Pichon L, El Khakani MA, Drogui P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. CHEMOSPHERE 2024; 358:142044. [PMID: 38648982 DOI: 10.1016/j.chemosphere.2024.142044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure. This review consists of two parts. In the first part, the environmental effects of fluorinated compound contamination in water are covered with the objective to highlight how their presence in the environment adversely impacts the human health. In the second part, the focus is put on the different techniques available for the degradation and/or separation of PFAS compounds in different types of waters. Examples of removal/treatment of PFAS present in either surface or ground water are presented.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 Rue de la Couronne, Québec (QC), G1K 9A9, Canada.
| |
Collapse
|
24
|
Wang J, Zhang W, Ding Q, Xu J, Yu Q, Zhang L. Flexible filament winding strategy to prepare COF@polyionic liquid-coated fibers for non-selective exclusion of macromolecules in electro-enhanced solid-phase microextraction. Anal Chim Acta 2024; 1306:342609. [PMID: 38692788 DOI: 10.1016/j.aca.2024.342609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Accurate quantitative analysis of small molecule metabolites in biological samples is of great significance. Hydroxypolycyclic aromatic hydrocarbons (OH-PAHs) are metabolic derivatives of emerging pollutants, reflecting exposure to polycyclic aromatic hydrocarbons (PAHs). Macromolecules such as proteins and enzymes in biological samples will interfere with the accurate quantification of OH-PAHs, making direct analysis impossible, requiring a series of complex treatments such as enzymatic hydrolysis. Therefore, the development of matrix-compatible fiber coatings that can exclude macromolecules is of great significance to improve the ability of solid-phase microextraction (SPME) technology to selectively quantify small molecules in complex matrices and achieve rapid and direct analysis. RESULTS We have developed an innovative coating with a stable macromolecular barrier using electrospinning and flexible filament winding (FW) technologies. This coating, referred to as the hollow fibrous covalent organic framework@polyionic liquid (F-COF@polyILs), demonstrates outstanding conductivity and stability. It accelerates the adsorption equilibrium time (25 min) for polar OH-PAHs through electrically enhanced solid-phase microextraction (EE-SPME) technology. Compared to the powder form, F-COF@polyILs coating displays effective non-selective large-size molecular sieving. Combining gas chromatography-tandem triple quadrupole mass spectrometry (GC-MS/MS), we have established a simple, efficient quantitative analysis method for OH-PAHs with a low detection limit (0.008-0.05 ng L-1), wide linear range (0.02-1000 ng L-1), and good repeatability (1.0%-7.3 %). Experimental results show that the coated fiber exhibits good resistance to matrix interference (2.5%-16.7 %) in complex biological matrices, and has been successfully used for OH-PAHs analysis in human urine and plasma. SIGNIFICANCE FW technology realizes the transformation of the traditional powder form of COF in SPME coating to a uniform non-powder coating, giving its ability to exclude large molecules in complex biological matrices. A method for quantitatively detecting OH-PAHs in real biological samples was also developed. Therefore, the filament winding preparation method for F-COF@polyILs coated fibers, along with fibrous COFs' morphology control, has substantial implications for efficiently extracting target compounds from complex matrices.
Collapse
Affiliation(s)
- Jingyi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
25
|
Ge Y, Zhu S, Wang K, Liu F, Zhang S, Wang R, Ho SH, Chang JS. One-step synthesis of a core-shell structured biochar using algae (Chlorella) powder and ferric sulfate for immobilizing Hg(II). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133991. [PMID: 38492405 DOI: 10.1016/j.jhazmat.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Mercury (Hg) pollution poses a significant environmental challenge. One promising method for its removal is the sorption of mercuric ions using biochar. FeS-doped biochar (FBC) exhibits effective mercury adsorption, however may release excess iron into the surrounding water. To address this issue, a novel magnetic pyrrhotite/magnetite-doped biochar with a core-shell structure was synthesized for the adsorption of 2-valent mercury (Hg(II)). The proposed synthesis process involved the use of algae powder and ferric sulfate in a one-step method. By varying the ratio of ferric sulfate and alga powder (within the range of 0.18 - 2.5) had a notable impact on the composition of FBC. As the ferric sulfate content increased, the FBC exhibited a higher concentration of oxygen-containing groups. To assess the adsorption capacity, Langmuir and Freundlich adsorption models were applied to the experimental data. The most effective adsorption was achieved with FBC-4, reaching a maximum capacity (Qm) of 95.51 mg/g. In particular, at low Hg(II) concentrations, FBC-5 demonstrated the ability to reduce Hg(II) concentrations to less than 0.05 mg/L within 30 min. Additionally, the stability of FBC was confirmed within the pH range of 3.8 - 7.2. The study also introduced a model to analyze the adsorption preference for different Hg(II) species. Calomel was identified in the mercury saturated FBC, whereas the core-shell structure exhibited excellent conductivity, which most likely contributed to the minimal release of iron. In summary, this research presents a novel and promising method for synthesizing core-shell structured biochar and provides a novel approach to explore the adsorption contribution of different metal species.
Collapse
Affiliation(s)
- Yiming Ge
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Feiyu Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shiyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jo-Shu Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
26
|
Shan Y, Hao H, Yin Y, Hu N, Zhan M, Ma D, Yin Y, Jiao W, Wick LY. Effects of Temperature and DC Electric Fields on Perfluorooctanoic Acid Sorption Kinetics to Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5987-5995. [PMID: 38504492 PMCID: PMC10993889 DOI: 10.1021/acs.est.3c10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Sorption to activated carbon is a common approach to reducing environmental risks of waterborne perfluorooctanoic acid (PFOA), while effective and flexible approaches to PFOA sorption are needed. Variations in temperature or the use of electrokinetic phenomena (electroosmosis and electromigration) in the presence of external DC electric fields have been shown to alter the contaminant sorption of contaminants. Their role in PFOA sorption, however, remains unclear. Here, we investigated the joint effects of DC electric fields and the temperature on the sorption of PFOA on activated carbon. Temperature-dependent batch and column sorption experiments were performed in the presence and absence of DC fields, and the results were evaluated by using different kinetic sorption models. We found an emerging interplay of DC and temperature on PFOA sorption, which was linked via the liquid viscosity (η) of the electrolyte. For instance, the combined presence of a DC field and low temperature increased the PFOA loading up to 38% in 48 h relative to DC-free controls. We further developed a model that allowed us to predict temperature- and DC field strength-dependent electrokinetic benefits on the drivers of PFOA sorption kinetics (i.e., intraparticle diffusivity and the film mass transfer coefficient). Our insights may give rise to future DC- and temperature-driven applications for PFOA sorption, for instance, in response to fluctuating PFOA concentrations in contaminated water streams.
Collapse
Affiliation(s)
- Yongping Shan
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Huijuan Hao
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yuzhou Yin
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Naiwen Hu
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Mingxiu Zhan
- College
of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Dong Ma
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Lukas Y. Wick
- Department
of Environmental Microbiology, Helmholtz
Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| |
Collapse
|
27
|
Chang B, Huang Z, Yang X, Yang T, Fang X, Zhong X, Ding W, Cao G, Yang Y, Hu F, Xu C, Qiu L, Lv J, Du W. Adsorption of Pb(II) by UV-aged microplastics and cotransport in homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133413. [PMID: 38228006 DOI: 10.1016/j.jhazmat.2023.133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
To investigate the adsorption effects of aged microplastics (MPs) on Pb(II) and their co-transport properties in homogeneous (quartz sand) and heterogeneous (quartz sand with apple branches biochar) porous media, we explored the co-transport of UV-irradiated aged MPs and coexisting Pb(II) along with their interaction mechanisms. The UV aging process increased the binding sites and electronegativity of the aged MPs' surface, enhancing its adsorption capacity for Pb(II). Aged MPs significantly improved Pb(II) transport through homogeneous media, while Pb(II) hindered the transport of aged MPs by reducing electrostatic repulsion between these particles and the quartz sand. When biochar, with its loose and porous structure, was used as a porous medium, it effectively inhibited the transport capacity of both contaminants. In addition, since the aged MPs cannot penetrate the column, a portion of Pb(II) adsorbed by the aged MPs will be co-deposited with the aged MPs, hindering Pb(II) transport to a greater extent. The transport experiments were simulated and interpreted using two-point kinetic modeling and the DLVO theory. The study results elucidate disparities in the capacity of MPs and aged MPs to transport Pb(II), underscoring the potential of biochar application as an effective strategy to impede the dispersion of composite environmental pollutants.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zixuan Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- College of Mechanical and Electronic Engineering & Northwest Research Center of Rural Renewable Energy, Exploitation and Utilization of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
28
|
Zhang H, Chen W, Qi Z, Qian W, Yang L, Wei R, Ni J. Biochar improved the solubility of triclocarban in aqueous environment: Insight into the role of biochar-derived dissolved organic carbon. CHEMOSPHERE 2024; 351:141172. [PMID: 38211797 DOI: 10.1016/j.chemosphere.2024.141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
Biochar as an effective adsorbent can be used for the removal of triclocarban from wastewater. Biochar-derived dissolved organic carbon (BC-DOC) is an important carbonaceous component of biochar, nonetheless, its role in the interaction between biochar and triclocarban remains little known. Hence, in this study, sixteen biochars derived from pine sawdust and corn straw with different physico-chemical properties were produced in nitrogen-flow and air-limited atmospheres at 300-750 °C, and investigated the effect of BC-DOC on the interaction between biochar and triclocarban. Biochar of 600∼750 °C with low polarity, high aromaticity, and high porosity presented an adsorption effect on triclocarban owing to less BC-DOC release as well as the strong π-π, hydrophobic, and pore filling interactions between biochar and triclocarban. In contrast and intriguingly, biochar of 300∼450 °C with low aromaticity and high polarity exhibited a significant solubilization effect rather than adsorption effect on triclocarban in aqueous solution. The maximum solubilization content of triclocarban in biochar-added solution reached approximately 3 times its solubility in biochar-free solution. This is mainly because the solubilization effect of BC-DOC surpassed the adsorption effect of biochar though the BC-DOC only accounted for 0.01-1.5 % of bulk biochar mass. Furthermore, the high solubilization content of triclocarban induced by biochar was dependent on the properties of BC-DOC as well as the increasing BC-DOC content. BC-DOC with higher aromaticity, larger molecular size, higher polarity, and more humic-like matters had a greater promoting effect on the water-solubility of triclocarban. This study highlights that biochar may promote the solubility of some organic pollutants (e.g., triclocarban) in aqueous environment and enhance their potential risk.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wei Qian
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Liumin Yang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/ Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
29
|
Dong Q, LeFevre GH, Mattes TE. Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3895-3907. [PMID: 38356175 PMCID: PMC10902836 DOI: 10.1021/acs.est.3c09183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.
Collapse
Affiliation(s)
- Qin Dong
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
30
|
Choi J, Kim M, Choi J, Jang M, Hyun S. Sorption behavior of three aromatic acids (benzoic acid, 1-naphthoic acid and 9-anthroic acid) on biochar: Cosolvent effect in different liquid phases. CHEMOSPHERE 2024; 349:140898. [PMID: 38070610 DOI: 10.1016/j.chemosphere.2023.140898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/12/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Influence of the cosolvent on the sorption of organic acids on biochar has not been well understood. For this purpose, the sorption (log Km, L kg-1) of three aromatic acids (benzoic acid (BA, pKa = 4.20), 1-naphthoic acid (1-NAPA, pKa = 3.70), and 9-anthroic acid (9-ANTA, pKa = 3.65) was evaluated as a function of methanol volume fraction (fc = 0.0, 0.25, and 0.5), liquid pH (2.5 and 7.0), ionic composition (CaCl2 and KCl) and ionic strength (0.005 M, 0.5 M, and 1 M CaCl2). A giant Miscanthus-derived biochar (ZPC of 2.86) was used as the sorbent. For all solutes, the sorption coefficients (log Km) measured at pH 2.5 (i.e., pH < pKa) tended to decrease with increasing fc, as expected from the cosolvency model, while the result obtained at pH 7.0 was not fully explained by the same model. The log Km of 1-NAPA in the CaCl2 system was always greater than in the KCl system (p < 0.05) and the impact became pronounced at high pH (>pKa) with increasing fc. Increasing the Ca2+ concentration at fc = 0.0 (from 0.005 M to 1 M) enhanced the value by 0.32 log unit of Km. These phenomena indicate a significant role of dissolved Ca2+ in the liquid phase, most likely due to the formation of cation bridges between aromatic carboxylates and the biochar surface (i.e., [R-COO--Ca2+]-{Biochar-}). A decrease in the dielectric constant of the methanol mixture could fortify the formation of this bridge. Regardless of the degree of cosolvency power (σ), as the number of aromatic rings of solutes increases, Km decreases in the order BA > 1-NAPA > 9-ANTA, where fc = 0.0. In conclusion, the sorption potential of biochar can be significantly weakened by increasing pH and fc, and in the absence of a divalent cation.
Collapse
Affiliation(s)
- Jeongmin Choi
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; FITI Testing & Research Institute, Seoul, 07791, Republic of Korea
| | - Minhee Kim
- Ministry of Environment, Hanam-si, Gyeonggi-do, 12902, Republic of Korea
| | - Jongwoo Choi
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
31
|
Zhang Z, Wang S, Brown TN, Sangion A, Arnot JA, Li L. Modeling sorption of environmental organic chemicals from water to soils. WATER RESEARCH X 2024; 22:100219. [PMID: 38596456 PMCID: PMC11002749 DOI: 10.1016/j.wroa.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Reliable estimation of chemical sorption from water to solid phases is an essential prerequisite for reasonable assessments of chemical hazards and risks. However, current fate and exposure models mostly rely on algorithms that lack the capability to quantify chemical sorption resulting from interactions with multiple soil constituents, including amorphous organic matter, carbonaceous organic matter, and mineral matter. Here, we introduce a novel, generic approach that explicitly combines the gravimetric composition of various solid constituents and poly-parameter linear free energy relationships to calculate the solid-water sorption coefficient (Kd) for non-ionizable or predominantly neutral organic chemicals with diverse properties in a neutral environment. Our approach demonstrates an overall statistical uncertainty of approximately 0.9 log units associated with predictions for different types of soil. By applying this approach to estimate the sorption of 70 diverse chemicals from water to two types of soils, we uncover that different chemicals predominantly exhibit sorption onto different soil constituents. Moreover, we provide mechanistic insights into the limitation of relying solely on organic carbon normalized sorption coefficient (KOC) in chemical hazard assessment, as the measured KOC can vary significantly across different soil types, and therefore, a universal cut-off threshold may not be appropriate. This research highlights the importance of considering chemical properties and multiple solid constituents in sorption modeling and offers a valuable theoretical approach for improved chemical hazard and exposure assessments.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Shenghong Wang
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| | - Trevor N. Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | | | - Jon A. Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, 1664, N. Virginia Street, Reno, NV 89557-274, United States
| |
Collapse
|
32
|
Heusser A, Dax A, McArdell CS, Udert KM. High content of low molecular weight organics does not always affect pharmaceutical adsorption on activated carbon: The case of acetate, propionate and ethanol in source-separated urine. WATER RESEARCH X 2023; 21:100199. [PMID: 38098878 PMCID: PMC10719575 DOI: 10.1016/j.wroa.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 12/17/2023]
Abstract
Adsorption on activated carbon is a common process to remove pharmaceuticals in wastewater treatment. Activated carbon adsorption is usually applied to wastewater with a low content of biological degradable organics, i.e. after biological treatment. Especially low molecular weight (LMW) compounds are known to compete with pharmaceuticals for adsorption sites. The goal of this study was to test the hypothesis that biological treatment is necessary for efficient pharmaceutical removal. Source-separated urine after anaerobic storage (anaerobically stored urine) and after aerobic biological removal of organics without nitrification (organics-depleted urine) were used in this study. In anaerobically stored urine 60% of the organic compounds were LMW organics, of which about 40% were acetate and propionate. 74% of the DOC and 100% of acetate and propionate were removed during aerobic biological treatment. To investigate the effect of the organic compounds on pharmaceutical removal, sorption experiments with 19 spiked pharmaceuticals and one artificial sweetener were conducted with powdered activated carbon. Ethanol, another LMW organic, was included in the study, as it is regularly used for pharmaceutical spiking thereby strongly increasing the DOC content. The experiments showed that the adsorption of the pharmaceuticals and the sweetener were hardly affected by the easily biodegradable LMW organics or ethanol. Therefore, it was concluded that biological pre-treatment is not necessary for efficient pharmaceutical adsorption. Since acetate, propionate and ethanol contribute substantially to the DOC content but do not absorb UV light, the latter is recommended as indicator for pharmaceutical removal in solutions with high contents of biodegradable LMW organics.
Collapse
Affiliation(s)
- Aurea Heusser
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Anne Dax
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Christa S. McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Kai M. Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
33
|
Kumar K, Kumar R, Kaushal S, Thakur N, Umar A, Akbar S, Ibrahim AA, Baskoutas S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. CHEMOSPHERE 2023; 345:140419. [PMID: 37848104 DOI: 10.1016/j.chemosphere.2023.140419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
In response to the growing global concern over environmental pollution, the exploration of sustainable and eco-friendly materials derived from biomass waste has gained significant traction. This comprehensive review seeks to provide a holistic perspective on the utilization of biomass waste as a renewable carbon source, offering insights into the production of environmentally benign and cost-effective carbon-based materials. These materials, including biochar, carbon nanotubes, and graphene, have shown immense promise in the remediation of polluted soils, industrial wastewater, and contaminated groundwater. The review commences by elucidating the intricate processes involved in the synthesis and functionalization of biomass-derived carbon materials, emphasizing their scalability and economic viability. With their distinctive structural attributes, such as high surface areas, porous architectures, and tunable surface functionalities, these materials emerge as versatile tools in addressing environmental challenges. One of the central themes explored in this review is the pivotal role that carbon materials play in adsorption processes, which represent a green and sustainable technology for the removal of a diverse array of pollutants. These encompass noxious organic compounds, heavy metals, and organic matter, encompassing pollutants found in soils, groundwater, and industrial wastewater. The discussion extends to the underlying mechanisms governing adsorption, shedding light on the efficacy and selectivity of carbon-based materials in different environmental contexts. Furthermore, this review delves into multifaceted considerations, spanning the spectrum from biomass and biowaste resources to the properties and applications of carbon materials. This holistic approach aims to equip researchers and practitioners with a comprehensive understanding of the synergistic utilization of these materials, ultimately facilitating effective and affordable strategies for combatting industrial wastewater pollution, soil contamination, and groundwater impurities.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India.
| | - Ravi Kumar
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Shweta Kaushal
- Department of Chemistry, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, H.P., 176041, India; Centre for Nano-Science and Technology, Career Point University, Hamirpur, H.P., 176041, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ahmed A Ibrahim
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
34
|
Tan X, Zhang F, Wang H, Ho SH. The magic of algae-based biochar: advantages, preparation, and applications. Bioengineered 2023; 14:2252157. [PMID: 37661772 PMCID: PMC10478747 DOI: 10.1080/21655979.2023.2252157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 09/05/2023] Open
Abstract
Compared with other biomass sources, the use of algae as a raw material to prepare biochar (BC) has important advantages including safety, high yield and economy. The protein content of algae cells is as high as 3.2 mg DCW/L, and the graphitic-N and N-O functional groups generated by the pyrolysis of proteins could effectively activate free radicals. Combined with the generated pore structure, the electron transfer/exchange capability was enhanced, which is conducive to improving its catalytic performance. Algae as a natural N source, the manuscript analyzed the surface properties and physicochemical properties of algae-based BC, and investigated its degradation effect on organic/inorganic pollutants in wastewater. Subsequently, the effect of nitrogen-doped BC on the adsorption/catalysis capacity was discussed. Finally, the directed preparation of algae-based BC applied in different scenarios was summarized. Algae-based BC has the property of N doping, which broadens its application efficiency in the environmental field. Overall, this manuscript reviews how to achieve efficient utilization of algae-based BC in wastewater.
Collapse
Affiliation(s)
- Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| | - Fengfa Zhang
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
| | - Huiwen Wang
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
35
|
He X, Song S, Huang Y, Huang X, Huang H, Zhang T, Sun H. Contamination of neonicotinoid insecticides in source water and their fate during drinking water treatment in the Dongguan section of the Pearl River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165935. [PMID: 37532038 DOI: 10.1016/j.scitotenv.2023.165935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Neonicotinoid insecticides (NEOs) as well as their metabolites are highly mobile on the subsurface and can potentially contaminate drinking water sources; however, their pollution status and fate in the drinking water system remains ambiguous. In this study, six parent NEOs and two characteristic metabolites were measured in drinking water source protection area (source water, n = 52) and two related drinking water treatment plants (DWTPs) (n = 88) located in the Dongguan section of the Pearl River. The ubiquitous of NEOs was observed in source water with the mean concentration of total NEOs (ΣNEOs) at 240 ng/L. Although advanced DWTP (A-DWTP; range: 26 % to 100 %) showed better removals of ΣNEOs and all individual NEOs rather than those in conventional DWTP (C-DWTP; range: -53 % to 28 %), the removals were still low for acetamiprid (ACE, 26 %), thiacloprid (THD, 59 %), thiamethoxam (THM, 56 %) and N-desmethyl-acetamiprid (N-dm-ACE, 45 %) in A-DWTP. Removal rates were positive in chlorination (48 %), final stage of sedimentation (F-Sed, 24 %), and granular activated carbon (GAC) filter effluent (19 %) in A-DWTP. It worthy to note that ΣNEOs has high negative removal rates at the start stage of sedimentation (S-Sed, -83 %), middle stage of sedimentation (M-Sed, -47 %), and sand filter effluent (-42 %) water in C-DWTP, which resulted in negative removals of ΣNEOs (-9.6 %), imidacloprid (IMI, -22 %), clothianidin (CLO, -37 %), flupyradifurone (FLU, -76 %), and N-dm-ACE (-29 %) in C-DWTP. Residual levels of NEOs were high in source water, and their low or negative removals in DWTPs should be highly concerning. Results would fill the existing knowledge gap of NEOs in aquatic environment and provide a scientific dataset for policy-making on pollution control and environmental protection.
Collapse
Affiliation(s)
- Xiaoxin He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou 514015, China
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Yan R, Lin S, Jiang W, Yu X, Zhang L, Zhao W, Sui Q. Effect of aggregation behavior on microplastic removal by magnetic Fe 3O 4 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165431. [PMID: 37437640 DOI: 10.1016/j.scitotenv.2023.165431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Magnetic nanotechnologies have been shown to be an efficient approach to the reduction of microplastic (MP) pollution in aquatic environments. However, uncertainties remain regarding the relationship between particle stability and MP removal under varying water conditions, hindering the practical application of magnetic nanotechnologies for MP removal. Herein, the influence of particle aggregation behavior on nano-scale MP removal by Fe3O4 nanoparticles (FNPs) was investigated, by monitoring dynamic light scattering parameters and analyzing the microstructures of particle aggregates. Results showed that 83.1 %-92.9 % of MPs could be removed by FNPs within 1 h, and MP removal exhibited a high degree of Pearson correlation (R = 0.95; P = 0.04) with particle aggregation behavior mediated by the FNPs dosage. Furthermore, pH-dependent electrostatic interactions significantly influenced particle aggregation behavior and the removal of MPs. Under pH <6.7 conditions, electrostatic attraction between electropositive FNPs and electronegative MPs led to charge neutralization-induced aggregation and efficient removal MP performance. Under increasingly saline conditions, compression of the electrical double layer enhanced the self-aggregation behavior of MPs, weakening the electrostatic repulsion between FNPs and MPs under alkaline conditions. Therefore, salinity improved the MP removal efficiency, especially under alkaline conditions, with MP removal increasing from 4.47 % to 55.1 % when the mass fraction of NaCl was increased from 0 % to 1 %. These findings further our understanding of the effect of aggregation behavior on MP removal by FNPs and highlight the potential for magnetic nanotechnology application in the removal of nano-scale MPs from aquatic environments, while also providing valuable insights for the design of FNP-based materials.
Collapse
Affiliation(s)
- Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sen Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weinan Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
37
|
Shah HH, Amin M, Pepe F, Mancusi E, Fareed AG. Overview of environmental and economic viability of activated carbons derived from waste biomass for adsorptive water treatment applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30540-6. [PMID: 37930568 DOI: 10.1007/s11356-023-30540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
In adsorptive water treatment applications, the exploration of waste-derived activated carbon (AC) has gained substantial attention in scientific research. The use of waste materials as precursors for AC has gained attention due to its economic viability and potential to reduce the consumption of non-renewable resources. However, there is a lack of comprehensive literature regarding the costs and environmental impacts associated with the waste-based AC production and application. As sustainability practices gain importance, there has been an increase in research dedicated to estimating costs and conducting life cycle assessment (LCA) of AC production from waste sources. However, there is a need for thorough literature reviews that cover various methodologies and conclusions. The primary objective of this study is to provide a comprehensive overview and analysis of the economic and environmental factors related to the use of waste-derived AC in water treatment. LCA studies indicate that utilizing waste materials for AC production can lead to significant resource and energy savings compared to conventional methods relying on fossil resources. The cost of AC is influenced by factors such as precursor material cost, energy requirements during production (optimizable on an industrial scale), and properties of the resulting material. Additionally, the review emphasizes the significance of waste-based AC regeneration for sustainable viability. Evaluating the environmental and economic costs is crucial to support sustainability claims and avoid unsupported assertions. Overall, this study contributes to understanding the potential of waste-derived AC in water treatment and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Hamad Hussain Shah
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100, Benevento, Italy.
| | - Muhammad Amin
- Interdisciplinary Research Center for Hydrogen and Energy Storage (Tier II)-Research and Innovation, King Fahd University of Petroleum and Minerals (KFUPM), 31261, Dhahran, Saudi Arabia
| | - Francesco Pepe
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100, Benevento, Italy
| | - Erasmo Mancusi
- Department of Engineering, University of Sannio, Piazza Roma 21, 82100, Benevento, Italy
| | - Anaiz Gul Fareed
- Department of Engineering, University of Naples, 'Parthenope', Naples, Italy
| |
Collapse
|
38
|
Liu B, Gao Y, Yue Q, Guo K, Gao B. Microcosmic mechanism analysis of the combined pollution of aged polystyrene with humic acid and its efficient removal by a composite coagulant. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132272. [PMID: 37573824 DOI: 10.1016/j.jhazmat.2023.132272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The composite pollutants formed by aged polystyrene (APS) and natural organic matter are complex and harmful, which lead to the deterioration of water quality. In this work, the interaction mechanism between humic acid (HA) and APS was discussed by investigating the changes in their functional groups. Besides, a novel polyaluminum-titanium chloride composite coagulant (PATC) was prepared, and its binding behaviors with HA@APS under different pH conditions were analyzed from a microscopic perspective. It was found that at pH 4, π-π conjugation was the dominant interaction between HA and APS. And the main removal mechanism of HA@APS by PATC was surface complexation. With the increase of pH, π-π conjugation, n-π electron donor-acceptor interaction (EDA), and hydrogen bonding gradually dominated the interaction between APS and HA. At pH 7, PATC hydrolyzed to form various polynuclear Al-Ti species, which could meet the demand for different binding sites of HA@APS. Under alkaline conditions, HB and n-π EDA in HA@APS were weakened, while π-π conjugation held a dominant position again. At this time, the main coagulation mechanism of PATC changed from charge neutralization to sweeping action, accompanied by hydrogen bonding. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have attracted the public's attention due to their potential toxicity to humans. The combined pollution of aged microplastics and humic acid (HA) will bring great harm to aquatic environment. The development of novel composite coagulants is hopeful to efficiently remove MPs and their combined pollutants. Elucidating the interactions between HA and aged MPs is helpful to understand the transformation and fate of MPs in actual environments, and to reveal the removal mechanism of composite pollutants by coagulation. The findings presented here will provide theoretical guidance for addressing the challenges of coagulation technology in treating new pollutants in practice.
Collapse
Affiliation(s)
- Beibei Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China
| | - Kangying Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 26600, PR China.
| |
Collapse
|
39
|
Rawat A, Singh RK, Joshi P, Khatri OP, Mohanty P. A sustainable management of polycyclic aromatic hydrocarbons to synthesize microporous organic polymers for adsorptive desulphurization of fuels. CHEMOSPHERE 2023; 337:139318. [PMID: 37392797 DOI: 10.1016/j.chemosphere.2023.139318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
A sustainable management of carcinogenic polycyclic aromatic hydrocarbons (PAHs) to synthesize a series of high surface area (SABET of 563-1553 m2 g-1) microporous polymeric adsorbents is reported. The products with high yield (>90%) were obtained within only 30 min at a low temperature of 50 °C using a microwave-assisted approach with 400 W microwave power followed by 30 min of ageing by raising the temperature to 80 °C. The synthesized adsorbents are used for removing another category of carcinogenic pollutants i.e., polycyclic aromatic sulphur heterocycles (PASHs) from model and real fuels. Adsorptive desulphurization experiment in batch mode could reduce the sulphur from high concentrated model (100 ppm) and real (102 ppm) fuels to 8 ppm and 45 ppm respectively. Similarly, desulphurization of model and real fuels with ultralow sulphur concentrations of 10 and 9 ppm, respectively, reduced the final concentration of sulphur to 0.2 and 3 ppm, respectively. Adsorption isotherms, kinetics, and thermodynamic studies have been conducted using batch mode experiments. Adsorptive desulphurization using fixed bed column studies show the breakthrough capacities of 18.6 and 8.2 mgS g-1, for the same high concentrated model and real fuels, respectively. The breakthrough capacities of 1.1 and 0.6 mgS g-1 are estimated for the ultralow sulphur model and real fuels, respectively. The adsorption mechanism, based on the spectroscopic analysis (FTIR and XPS) demonstrates the role of π-π interactions between the adsorbate and adsorbent. The adsorptive desulphurization studies of model and real fuels from batch to fixed bed column mode would offer an in-depth understanding to demonstrate the lab-scale findings for industrial applications. Thus, the present sustainable strategy could manage two classes of carcinogenic petrochemical pollutants, PAHs and PASHs, simultaneously.
Collapse
Affiliation(s)
- Anuj Rawat
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Raj K Singh
- Advanced Crude Oil Research Centre, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Pratiksha Joshi
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Om P Khatri
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
40
|
Li X, Cheng H. Mn-modified biochars for efficient adsorption and degradation of cephalexin: Insight into the enhanced redox reactivity. WATER RESEARCH 2023; 243:120368. [PMID: 37494743 DOI: 10.1016/j.watres.2023.120368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/24/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Mn-modified biochars (BCs) were developed by pre-treatment of feedstock (MBCs) or post-modification of biochar (BCM), for simultaneous adsorption and degradation of a model pollutant, cephalexin. The apparent removal rates of cephalexin in the presence of MBCs (2.49 - 6.39 × 10-2 h-1) and BCM (13.3 × 10-3 h-1) were significantly higher than that in the presence of biochar prepared under similar conditions (4.2 × 10-3 h-1). While the •OH generated from the activation of dissolved O2 by the persistent free radicals (PFRs) and phenolic -OH on BC could cause degradation of cephalexin, its removal was drastically enhanced through direct oxidation by the MnOx and related Mn species on Mn-modified BCs. The removal of cephalexin by MBCs decreased as the solution pH was raised from 5.0 to 9.0, which supports the critical role played by Mn3O4 in its oxidation. Removal of cephalexin in the presence of MBCs and Mn3O4 was enhanced with the introduction of Mn(II) ions, suggesting that the Mn3O4 present on MBCs facilitates the re-oxidation of Mn(II) to highly reactive Mn(III). While MnO2 anchored on BCM also enhanced the cephalexin oxidation, the active sites of BC and MnO2 were partially destroyed during post-modification of BC, compromising the redox cycling of Mn(II)/Mn(III) and the generation of •OH. As a result, the performance of BCM in oxidizing cephalexin was inferior to that of MBCs. These findings shed new light on the development of environmentally benign sorbents capable of simultaneously adsorbing and oxidizing organic pollutants.
Collapse
Affiliation(s)
- Xian Li
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
41
|
Trinh PB, Schäfer AI. Adsorption of glyphosate and metabolite aminomethylphosphonic acid (AMPA) from water by polymer-based spherical activated carbon (PBSAC). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131211. [PMID: 37121034 DOI: 10.1016/j.jhazmat.2023.131211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Glyphosate (GLY) is the most commonly used herbicide worldwide, and aminomethylphosphonic acid (AMPA) is its main metabolite. Their occurrence in ground and surface waters causes diseases in humans, while complex physico-chemical properties hinder detection and effective removal. Polymer-based spherical activated carbon (PBSAC) can adsorb many micropollutants efficiently and, hence, overcome the shortfalls of conventional treatment methods. The static adsorption of a mixture of GLY and AMPA by PBSAC was investigated with varying PBSAC properties and relevant solution chemistry. The results show that PBSAC can remove 95% GLY and 57% AMPA from an initial concentration of 1 µg/L at pH 8.2. PBSAC properties (size, activation level, and surface charge) have a strong influence on herbicide removal, where surface area plays a key role. Low to neutral pH favors non-charge interactions and results in good adsorption, while higher temperatures equally enhance GLY/AMPA adsorption by PBSAC. The work demonstrated the effective removal of GLY to meet the European guideline concentration (0.1 µg/L), while AMPA could not be removed to the required level.
Collapse
Affiliation(s)
- Phuong Bich Trinh
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Iris Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
42
|
Mielke KC, Brochado MGDS, Laube AFS, Guimarães T, Medeiros BADP, Mendes KF. Pyrolysis Temperature vs. Application Rate of Biochar Amendments: Impacts on Soil Microbiota and Metribuzin Degradation. Int J Mol Sci 2023; 24:11154. [PMID: 37446332 DOI: 10.3390/ijms241311154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Biochar-amended soils influence the degradation of herbicides depending on the pyrolysis temperature, application rate, and feedstock used. The objective of this study was to evaluate the influence of sugarcane straw biochar (BC) produced at different pyrolysis temperatures (350 °C, 550 °C, and 750 °C) and application rates in soil (0, 0.1, 0.5, 1, 1.5, 5, and 10% w/w) on metribuzin degradation and soil microbiota. Detection analysis of metribuzin in the soil to find time for 50% and 90% metribuzin degradation (DT50 and DT90) was performed using high-performance liquid chromatography (HPLC). Soil microbiota was analyzed by respiration rate (C-CO2), microbial biomass carbon (MBC), and metabolic quotient (qCO2). BC350 °C-amended soil at 10% increased the DT50 of metribuzin from 7.35 days to 17.32 days compared to the unamended soil. Lower application rates (0.1% to 1.5%) of BC550 °C and BC750 °C decreased the DT50 of metribuzin to ~4.05 and ~5.41 days, respectively. BC350 °C-amended soil at high application rates (5% and 10%) provided high C-CO2, low MBC fixation, and high qCO2. The addition of low application rates (0.1% to 1.5%) of sugarcane straw biochar produced at high temperatures (BC550 °C and BC750 °C) resulted in increased metribuzin degradation and may influence the residual effect of the herbicide and weed control efficiency.
Collapse
Affiliation(s)
- Kamila Cabral Mielke
- Department of Agronomy, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | | - Tiago Guimarães
- Department of Chemistry, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | | | |
Collapse
|
43
|
Yao S, Ni N, Li X, Wang N, Bian Y, Jiang X, Song Y, Bolan NS, Zhang Q, Tsang DCW. Interactions between white and black carbon in water: A case study of concurrent aging of microplastics and biochar. WATER RESEARCH 2023; 238:120006. [PMID: 37121197 DOI: 10.1016/j.watres.2023.120006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Microplastics and biochar, as particulate matter that is prevalent in the water environment, will inevitably encounter and interact with each other during environmental aging. The potential interaction of microplastics and biochar, and the associated impact on their environmental behavior remains largely unknown. In this study, we exposed microplastics and biochar concurrently to ultraviolet light to mimic the aging process, investigated the release and fluorescence characteristics of dissolved organic matter (DOM) in water, and analyzed the effects of co-existing microplastics and biochar on their sorption of organic contaminants. We demonstrate that early-stage interactions of microplastics and biochar could entangle to promote the release of DOM from biochar, while their long-term interactions after light irradiation resulted in the sorption of hydrophobic and small molecules of microbial byproduct-like DOM. Simultaneously, early-stage interactions of microplastics and biochar showed a promotion for sorption of organic contaminants with an increase of 5.3-17.7%. After aging, however, long-term interactions between microplastics and biochar made it no longer promote the sorption of organic contaminants due to the influence of heterogeneous aggregation. Our results provide new insights into the time-dependent interactions between microplastics and biochar and highlight the need to incorporate their interactions into future environmental risk assessments for microplastics in the water environment.
Collapse
Affiliation(s)
- Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xiaona Li
- School of Environmental Science and Engineering, Jiangnan University, Wuxi 225127, PR China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Nanthi S Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Nedland, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Nedland, WA 6009, Australia
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
44
|
Barry SCL, Franke C, Mulaudzi T, Pokpas K, Ajayi RF. Review on Surface-Modified Electrodes for the Enhanced Electrochemical Detection of Selective Serotonin Reuptake Inhibitors (SSRIs). MICROMACHINES 2023; 14:1334. [PMID: 37512646 PMCID: PMC10386609 DOI: 10.3390/mi14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed classes of antidepressants used for the treatment of moderate to severe depressive disorder, personality disorders and various phobias. This class of antidepressants was created with improved margins of safety. However, genetic polymorphism may be responsible for the high variability in patients' responses to treatment, ranging from failure to delayed therapeutic responses to severe adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects in patients, which may be the result of accidental and deliberate cases of poisoning. Determining SSRI concentration in human fluids and the environment with high sensitivity, specificity and reproducibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors with advanced functional materials have drawn the attention of researchers as a result of these advantages over conventional techniques. This review article aims to present functional materials such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine, citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions, design rationale and properties of functional material and the electrocatalytic effect of the modified electrode on SSRI detection are discussed.
Collapse
Affiliation(s)
- Simone C L Barry
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Candice Franke
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Biotechnology Department, Life Sciences Building, University of the Western Cape, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
45
|
Tang W, Zanli BLGL, Jing F, Hu T, Chen J. Low temperature pyrolytic biochar is a preferred choice for sulfonamide-Cu(II) contaminated soil remediation in tropical climate region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162792. [PMID: 36907415 DOI: 10.1016/j.scitotenv.2023.162792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Biochar is getting increasing consideration for eco-friendly soil amendment and environmental remediation. Once added to the soil, biochar would undergo the natural ageing process, affecting its physicochemical properties and, as a result, the adsorption and immobilization of pollutants in the water and soil. To evaluate the high/low temperature pyrolyzed biochar performance on complex contaminants and the effect of climate ageing, the batch experiments were conducted on the adsorption of the pollutants of antibiotics sulfapyridine (SPY) and a typical coexisting heavy metal Cu2+ as one or binary system on low/high pyrolytic temperature biochars before and after the simulated tropical climate and frigid climate region ageing treatment. The results showed that high-temperature ageing could enhance the SPY adsorption in biochar-amended soil. The SPY sorption mechanism was fully elucidated, and the result confirmed that H-bonding was the dominant role in biochar-amended soil, and π-π electron-donor-acceptor (EDA) interaction and micro-pore filling was another factor for SPY adsorption. This study could lead to the conclusion that low-temperature pyrolytic biochar is a better option for sulfonamide-Cu(II) contaminated soil remediation in tropical regions.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Bi Lepohi Guy Laurent Zanli
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Tingting Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China.
| |
Collapse
|
46
|
Bartels Y, Jekel M, Putschew A. Can reductive deiodination improve the sorption of iodinated X-ray contrast media to aquifer material during bank filtration? CHEMOSPHERE 2023; 326:138438. [PMID: 36940829 DOI: 10.1016/j.chemosphere.2023.138438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Iodinated X-ray contrast media (ICM) as well as their aerobic transformation products (TPs), are highly polar triiodobenzoic acid derivatives, ubiquitously found in the urban water cycle. Based on their polarity, their sorption affinity to sediment and soil is negligible. However, we hypothesize that the iodine atoms bound to the benzene ring play a decisive role for sorption, due to their large atom radius, high electron number and symmetrical positioning within the aromatic system. The aim of this study is to investigate, if the (partial) deiodination, occurring during anoxic/anaerobic bank filtration, improves the sorption to aquifer material. Tri, di, mono and deiodinated structures of two ICMs (iopromide and diatrizoate) and one precursor/TP of ICM (5-amino-2,4,6-triiodoisophtalic acid) were tested in batch experiments, using two aquifer sands and a loam soil with and without organic matter. The di, mono and deiodinated structures were produced by (partial) deiodination of the triiodinated initial compounds. The results demonstrated that the (partial) deiodination increases the sorption to all tested sorbents, even though the theoretical polarity increases with decreasing number of iodine atoms. Whereas lignite particles positively affected the sorption, mineral components decreased it. Kinetics tests show biphasic sorption for the deiodinated derivatives. We have concluded that iodine affects the sorption by sterical hindrance, repulsive forces, resonance and inductive effects, depending on the number and position of iodine, side chain characteristics and composition of the sorbent material. Our study has revealed an increased sorption potential of ICMs and their iodinated TPs to aquifer material during anoxic/anaerobic bank filtration as a result of (partial) deiodination, whereby a complete deiodination is not necessary for efficient removal by sorption. Furthermore, it suggests that the combination of an initial aerobic (side chain transformations) and a subsequent anoxic/anaerobic (deiodination) redox milieu supports the sorption potential.
Collapse
Affiliation(s)
- Yuki Bartels
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Jekel
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Anke Putschew
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
47
|
Schumann P, Muschket M, Dittmann D, Rabe L, Reemtsma T, Jekel M, Ruhl AS. Is adsorption onto activated carbon a feasible drinking water treatment option for persistent and mobile substances? WATER RESEARCH 2023; 235:119861. [PMID: 36958222 DOI: 10.1016/j.watres.2023.119861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Persistent and mobile (PM) substances among the organic micropollutants have gained increasing interest since their inherent properties enable them to enrich in water cycles. This study set out to investigate the potential of adsorption onto activated carbon as a drinking water treatment option for 19 PM candidates in batch experiments in a drinking water matrix using a microporous and a mesoporous activated carbon. Overall, adsorption of PM candidates proved to be very variable and the extent of removal could not be directly related to molecular properties. At an activated carbon dose of 10 mg/L and 48 h contact time, five (out of 19) substances were readily removed (≥ 80%), among them N-(3-(dimethylamino)-propyl)methacrylamide, which was investigated for the first time. For five other substances, no or negligible removal (< 20%) was observed, including 2-methyl-2-propene-1-sulfonic acid and 4‑hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine. For the former, current state of the art adsorption processes may pose a sufficient barrier. Additionally, substance specific surrogate correlations between removals and UVA254 abatements were established to provide a cheap and fast estimate for PM candidate elimination. Adsorption onto activated carbon could contribute significantly to PM substance elimination as part of multi barrier approaches, but assessments for individual substances still require clarification, as demonstrated for the investigated PM candidates.
Collapse
Affiliation(s)
- Pia Schumann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel Dittmann
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Luisa Rabe
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Jekel
- Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency (UBA), Section II 3.3, Schichauweg 58, 12307 Berlin, Germany; Technische Universität Berlin, Chair of Water Quality Control, Sekr. KF 4, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
48
|
Zhang N, Tang C, Bi W, Sun Z, Hu X. Effective adsorptive removal of sulfamethoxazole (SMX) from aqueous solution by ZIF-8 derived adsorbent ZC-0.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60704-60716. [PMID: 37041353 DOI: 10.1007/s11356-023-26588-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Efficient removal of antibiotics from the aquatic environment is urgently needed due to their obstinate accumulation and non-biodegradability. In this study, a mesoporous carbon material (ZC-0.5) was successfully synthesized for the adsorption of sulfamethoxazole (SMX), one of the major antibiotics for the treatment of human and animal infections. ZIF-8 as the precursor of ZC-0.5, specifically, using cetyl trimethyl ammonium bromide (CTAB) and sodium laurate (SL) as dual templates and carbonizing at 800 ℃. This novel adsorbent exhibited a high proportion of mesopore (75.64%) and a large specific surface area (1459.73 m2·g-1). The adsorption experiment examined the reusability of ZC-0.5 and that it could retain superior maximum adsorption capacities (167.45 mg∙L-1) after five cycles of adsorption and desorption. The adsorption process satisfied the pseudo-second-order kinetic (PSO) and mixed first- and second-order kinetic (MOE). It also satisfied the Freundlich and Sips isotherm models. Moreover, thermodynamic calculation indicated the adsorption process was spontaneous, endothermal, and entropy-increasing. Furthermore, plausible adsorption mechanisms were explained through van der Waals force, electrostatic interaction, hydrophobic force, π-π interaction, and hydrogen bond. This work offers a new efficient adsorbent for antibiotic elimination.
Collapse
Affiliation(s)
- Nizi Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weixia Bi
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
49
|
Huidobro-López B, León C, López-Heras I, Martínez-Hernández V, Nozal L, Crego AL, de Bustamante I. Untargeted metabolomic analysis to explore the impact of soil amendments in a non-conventional wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161890. [PMID: 36731565 DOI: 10.1016/j.scitotenv.2023.161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
As non-conventional wastewater treatment, vegetation filters make the most of the natural attenuation processes that occur in soil to remove contaminants, while providing several environmental benefits. However, this practice may introduce contaminants of emerging concern (CECs) and their transformation products (TPs) into the environment. A potential improvement to the system was tested using column experiments containing soil (S) and soil amended with woodchips (SW) or biochar (SB) irrigated with synthetic wastewater that included 11 selected CECs. This study evaluated: i) known CECs attenuation and ii) unknown metabolites formation. Known CECs attenuation was assessed by total mass balance by considering both water and soil media. An untargeted metabolomic strategy was developed to assess the formation of unknown metabolites and to identify them in water samples. The results indicated that SB enhanced CECs attenuation and led to the formation of fewer metabolites. Sorption and biodegradation processes were favored by the bigger surface area of particles in SB column, especially for compounds with negative charges. Incorporating woodchips into soil shortened retention times in the column, which reduced attenuation phenomena and resulted in the formation of significantly more metabolites. Incomplete biodegradation reactions, fostered by shorter retention times in SW column could mainly explain these results.
Collapse
Affiliation(s)
- Blanca Huidobro-López
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Carlos León
- Carlos III University, Department of Bioengineering, E-28911 Madrid, Spain
| | | | | | - Leonor Nozal
- Alcalá University and General Foundation of Alcalá University, Center of Applied Chemistry and Biotechnology, E-28871 Madrid, Spain
| | - Antonio L Crego
- Alcalá University, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, E-28871 Madrid, Spain.
| | - Irene de Bustamante
- IMDEA Water, Avenida Punto Com 2, E-28805 Madrid, Spain; Alcalá University, Department of Geology, Geography and Environment, E-28871 Madrid, Spain
| |
Collapse
|
50
|
Aumeier BM, Georgi A, Saeidi N, Sigmund G. Is sorption technology fit for the removal of persistent and mobile organic contaminants from water? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163343. [PMID: 37030383 DOI: 10.1016/j.scitotenv.2023.163343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Persistent, Mobile, and Toxic (PMT) and very persistent and very mobile (vPvM) substances are a growing threat to water security and safety. Many of these substances are distinctively different from other more traditional contaminants in terms of their charge, polarity, and aromaticity. This results in distinctively different sorption affinities towards traditional sorbents such as activated carbon. Additionally, an increasing awareness on the environmental impact and carbon footprint of sorption technologies puts some of the more energy-intensive practices in water treatment into question. Commonly used approaches may thus need to be readjusted to become fit for purpose to remove some of the more challenging PMT and vPvM substances, including for example short chained per- and polyfluoroalkyl substances (PFAS). We here critically review the interactions that drive sorption of organic compounds to activated carbon and related sorbent materials and identify opportunities and limitations of tailoring activated carbon for PMT and vPvM removal. Other less traditional sorbent materials, including ion exchange resins, modified cyclodextrins, zeolites and metal-organic frameworks are then discussed for potential alternative or complementary use in water treatment scenarios. Sorbent regeneration approaches are evaluated in terms of their potential, considering reusability, potential for on-site regeneration, and potential for local production. In this context, we also discuss the benefits of coupling sorption to destructive technologies or to other separation technologies. Finally, we sketch out possible future trends in the evolution of sorption technologies for PMT and vPvM removal from water.
Collapse
Affiliation(s)
- Benedikt M Aumeier
- RWTH Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe-Strasse 1, 52074 Aachen, Germany.
| | - Anett Georgi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Navid Saeidi
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|