1
|
Oprei A, Schreckinger J, Franzmann I, Lee H, Mutz M, Risse-Buhl U. Light over mechanics: microbial community structure and activity in simulated migrating bedforms are controlled by oscillating light rather than by mechanical forces. FEMS Microbiol Ecol 2024; 100:fiae073. [PMID: 38702847 PMCID: PMC11110858 DOI: 10.1093/femsec/fiae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Sandy sediments of lowland streams are transported as migrating ripples. Benthic microorganisms colonizing sandy grains are exposed to frequent moving-resting cycles and are believed to be shaped by two dominant environmental factors: mechanical stress during the moving phase causing biofilm abrasion, and alternating light-dark cycles during the resting phase. Our study consisted of two laboratory experiments and aimed to decipher which environmental factor causes the previously observed hampered sediment-associated microbial activity and altered community structure during ripple migration. The first experiment tested the effect of three different migration velocities under comparable light conditions. The second experiment compared migrating and stationary sediments under either constant light exposure or light oscillation. We hypothesized that microbial activity and community structure would be more strongly affected by (1) higher compared to lower migration velocities, and by (2) light oscillation compared to mechanical stress. Combining the results from both experiments, we observed lower microbial activity and an altered community structure in sediments exposed to light oscillation, whereas migration velocity had less impact on community activity and structure. Our findings indicate that light oscillation is the predominating environmental factor acting during ripple migration, resulting in an increased vulnerability of light-dependent photoautotrophs and a possible shift toward heterotrophy.
Collapse
Affiliation(s)
- Anna Oprei
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Ecohydrology and Biogeochemistry, Justus-von-Liebig-Str. 7, 12489 Berlin, Germany
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - José Schreckinger
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
| | - Insa Franzmann
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Hayoung Lee
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Michael Mutz
- BTU Cottbus-Senftenberg, Chair of Aquatic Ecology, Seestr. 45, 15526 Bad Saarow, Germany
| | - Ute Risse-Buhl
- RPTU Kaiserslautern-Landau, Institute of Environmental Sciences, Fortstr. 7, 76829 Landau, Germany
- RPTU Kaiserslautern-Landau, Ecology, Department of Biolology, Erwin-Schroedinger-Str. 14, 67663 Kaiserslautern, Germany
- Helmholtz Centre for Environmental Research (UFZ), Department of River Ecology, Brückstr. 3a, 39114 Magdeburg, Germany
| |
Collapse
|
2
|
Hui C, Li Y, Yuan S, Zhang W. River connectivity determines microbial assembly processes and leads to alternative stable states in river networks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166797. [PMID: 37673267 DOI: 10.1016/j.scitotenv.2023.166797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
River network is a common form of lotic ecosystems. Variances in river connection modes would form networks with significantly different structures, and further affect aquatic organisms. Microbial communities are vital organisms of river networks, they participate in numerous biogeochemical processes. Identifying associations between microbial community and structural features of river networks are essential for maintaining environmental quality. Thus, dendritic (DRN) and trellised river networks (TRN) were studied by combining molecular biological tools, ecological theory and hydrodynamic calculation. Results illustrated that river connectivity, a vital structural feature exhibiting mass transport ability of river network, increased relative importance of homogeneous selection processes in microbial assembly, which would further shape community with alternative stable states. Between the two researched river networks, DRN possessed higher connectivity, which made homogeneous selection as the driving force in community assembly. The microbial communities in DRN were consisted of species occupying similar ecological niche, and exhibited two alternative stable states, which can decrease influences of environmental disturbance on community composition. On the contrary, lower connectivity of TRN decreased proportions of homogeneous selection in community assembly, which further led to species occupying varied ecological niche. The microbial community exhibited only one stable state, and environmental disturbance would cause loss of ecological niche and significantly alter community composition. This study could provide useful information for the optimization of river connection engineering.
Collapse
Affiliation(s)
- Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Saiyu Yuan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Shan E, Zhang X, Li J, Sun C, Teng J, Hou C, Zhao J, Sun S, Wang Q. Alteration of microbial mediated carbon cycle and antibiotic resistance genes during plastisphere formation in coastal area. CHEMOSPHERE 2023; 344:140420. [PMID: 37838033 DOI: 10.1016/j.chemosphere.2023.140420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Microorganisms can attach on the surface of microplastics (MPs) through biological fouling process to form a diverse community called the "plastisphere", which has attracted extensive attention. Although the microbial structure and composition of biofilm have been studied, the knowledge of its microbial function and ecological risk is still limited. In this study, we investigated how the surface properties of MPs affect the biofilm communities and metabolic features under different environmental conditions, and explored the biofilm enrichment of antibiotic resistance genes (ARGs). The results showed that the incubation time, habitat and MPs aging state significantly influenced the structure and composition of biofilm microbial communities, and a small amount of pathogens have been found in the MPs-attached biofilm. The microbial carbon utilization capacity of the biofilm in different incubation habitats varies greatly with highest metabolism capacity appear in the river. The utilization efficiency of different carbon sources is polymer > carbohydrate > amino acid > carboxylic acids > amine/amide, which indicates that the biofilm communities have selectivity between different types of carbon sources. More importantly, ARGs were detected in all the MPs samples and showed a trend of estuary > river > marine. The aged MPs can accumulate more ARGs than the virgin items. In general, MPs in the aquatic environment may become a carrier for pathogens and ARGs to spread to other environment, which may enhance their potential risks to the ecosystem and human health.
Collapse
Affiliation(s)
- Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Chaowei Hou
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Shan Sun
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China.
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
4
|
Wei G, Yang JQ. Microfluidic investigation of the impacts of flow fluctuations on the development of Pseudomonas putida biofilms. NPJ Biofilms Microbiomes 2023; 9:73. [PMID: 37789000 PMCID: PMC10547774 DOI: 10.1038/s41522-023-00442-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Biofilms play critical roles in wastewater treatment, bioremediation, and medical-device-related infections. Understanding the dynamics of biofilm formation and growth is essential for controlling and exploiting their properties. However, the majority of current studies have focused on the impact of steady flows on biofilm growth, while flow fluctuations are common in natural and engineered systems such as water pipes and blood vessels. Here, we reveal the effects of flow fluctuations on the development of Pseudomonas putida biofilms through systematic microfluidic experiments and the development of a theoretical model. Our experimental results showed that biofilm growth under fluctuating flow conditions followed three phases: lag, exponential, and fluctuation phases. In contrast, biofilm growth under steady-flow conditions followed four phases: lag, exponential, stationary, and decline phases. Furthermore, we demonstrated that low-frequency flow fluctuations promoted biofilm growth, while high-frequency fluctuations inhibited its development. We attributed the contradictory impacts of flow fluctuations on biofilm growth to the adjustment time (T0) needed for biofilm to grow after the shear stress changed from high to low. Furthermore, we developed a theoretical model that explains the observed biofilm growth under fluctuating flow conditions. Our insights into the mechanisms underlying biofilm development under fluctuating flows can inform the design of strategies to control biofilm formation in diverse natural and engineered systems.
Collapse
Affiliation(s)
- Guanju Wei
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Judy Q Yang
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, 55414, USA.
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Yu Y, Miao L, Adyel TM, Waldschläger K, Wu J, Hou J. Aquatic plastisphere: Interactions between plastics and biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121196. [PMID: 36736560 DOI: 10.1016/j.envpol.2023.121196] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Because of the high production rates, low recycling rates, and poor waste management of plastics, an increasing amount of plastic is entering the aquatic environment, where it can provide new ecological niches for microbial communities and form a so-called plastisphere. Recent studies have focused on the one-way impact of plastic substrata or biofilm communities. However, our understanding of the two-way interactions between plastics and biofilms is still limited. This review first summarizes the formation process and the co-occurrence network analysis of the aquatic plastisphere to comprehensively illustrate the succession pattern of biofilm communities and the potential consistency between keystone taxa and specific environmental behavior of the plastisphere. Furthermore, this review sheds light on mutual interactions between plastics and biofilms. Plastic properties, environmental conditions, and colonization time affect biofilm development. Meanwhile, the biofilm communities, in turn, influence the environmental behaviors of plastics, including transport, contaminant accumulation, and especially the fragmentation and degradation of plastics. Based on a systematic literature review and cross-referencing from these disciplines, the current research focus, and future challenges in exploring aquatic plastisphere development and biofilm-plastic interactions are proposed.
Collapse
Affiliation(s)
- Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zurich, 8093, Switzerland
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China.
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC, 3125, Australia
| | - Kryss Waldschläger
- Hydrology and Quantitative Water Management Group, Wageningen University & Research, Wageningen, Netherlands
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Bell AN, Guttman L, Main KL, Nystrom M, Brennan NP, Ergas SJ. Hydrodynamics of an integrated fish and periphyton recirculating aquaculture system. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 199.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Huang H, Zeng S, Luo C, Long T. Separate effect of turbulent pulsation on internal mass transfer in porous biofilms. ENVIRONMENTAL RESEARCH 2023; 217:114972. [PMID: 36455631 DOI: 10.1016/j.envres.2022.114972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Turbulence is considered to be the result of coupled time-averaged and pulsating velocities, making it difficult to distinguish the respective effects, and the quantitative effect of turbulent pulsation alone on mass transfer within biofilms has not been discussed in the literature. In this study, we constructed a special oscillating grid biofilm reactor combining Particle Image Velocimetry (PIV) measurements and Computational Fluid Dynamics (CFD) simulations to achieve nearly isotropic turbulence in a designed ambient without time-averaged velocity and shear stress. Subsequently, velocity and contaminant concentration distributions were obtained by solving a mass transfer model with a k-ε turbulence model, combined with measurements of biofilm structure parameters. The results showed that the increase in turbulent pulsation intensity led to a significant stratification of the percolation velocity gradient in biofilms, which enhanced convective mass transfer. The changes of biofilm density and porosity under turbulent pulsation were more strongly correlated with convective mass transfer. When the turbulent intensity (q) increased to 2.50 cm s-1, the removal rate reached the highest value of 96.93%, accelerating the migration of contaminant concentration and the diffusive mass transfer effect was obvious. In addition, the trend of biofilm thickness under turbulent pulsation was consistent with the change of contaminant concentration distribution, and the correlation between them was greater. In summary, at q of 2.50 cm s-1, there was a positive effect on both convection and diffusion mechanisms in biofilms, and the contaminant removal rate and biofilm thickness reached the maximum, which was the recommended turbulent pulsation conditions.
Collapse
Affiliation(s)
- Haozhe Huang
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Shi Zeng
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Chao Luo
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China
| | - Tianyu Long
- College of Environment and Ecology, Chongqing University, 400045, Chongqing, PR China.
| |
Collapse
|
9
|
Pan M, Li H, Han X, Quan G, Ma W, Guo Q, Li X, Yang B, Ding C, Chen Y, Yun T, Qin J, Jiang S. Effect of hydrodynamics on the transformation of nitrogen in river water by regulating the mass transfer performance of dissolved oxygen in biofilm. CHEMOSPHERE 2023; 312:137013. [PMID: 36397302 DOI: 10.1016/j.chemosphere.2022.137013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.
Collapse
Affiliation(s)
- Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Haizong Li
- Yancheng Environmental Monitoring Center, Yancheng, 224002, PR China
| | - Xiangyun Han
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Guixiang Quan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Weixing Ma
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qingyuan Guo
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xuan Li
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Bairen Yang
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Cheng Ding
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Yuxi Chen
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tao Yun
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jiaojiao Qin
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Siyi Jiang
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224003, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| |
Collapse
|
10
|
Pan M, Li H, Han X, Ma W, Li X, Guo Q, Yang B, Ding C, Ma Y. Effects of hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances and the architecture of biofilms. CHEMOSPHERE 2022; 307:135965. [PMID: 35963380 DOI: 10.1016/j.chemosphere.2022.135965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Microbial biofilms are common on abiotic and biotic surfaces, especially in rivers, which drive crucial ecosystem processes. The microorganisms of biofilms are surrounded by a self-produced extracellular polymeric substance (EPS). In this study, we investigated the effects of different hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances, and the architecture of biofilms. Multidisciplinary methods offer complementary insights into complex architecture correlations in biofilms. The biofilms formed in turbulent flow with high shear force were thin but dense. However, the biofilms formed under laminar flow conditions were thick but relatively loose. The thickness and compactness of the biofilms formed in the transitional flow were different from those of the other biofilms. The compact structure of the biofilm helped to resist shear forces to minimize detachment. Under the turbulent flow condition, bacteria, exopolysaccharides, and extracellular proteins permeated through the biofilm, and more extracellular polysaccharides enveloped bacteria and extracellular proteins. However, under the transitional flow condition, the extracellular polysaccharides and proteins were fewer than those under the turbulent flow condition; bacteria and algae were seen more prominently in the upper layer of the biofilm. Under the laminar flow condition, the distribution of extracellular polysaccharides, extracellular proteins, and bacteria was relatively uniform throughout the biofilm. The number of extracellular polysaccharides was greater than that of extracellular proteins. The total number of EPS in the biofilm was the largest under turbulent flow condition, followed by that under transitional flow condition and then under laminar flow condition. This study also observed that soluble EPS (S-EPS) were secreted first, followed by loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In particular, the adhesion of LB-EPS and flocculation capability of TB-EPS play some role in regulating biofilm formation. This study would help to perfect the five-stages theory of biofilm formation.
Collapse
Affiliation(s)
- Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Haizong Li
- Yancheng Environmental Monitoring Center, Yancheng, 224002, PR China
| | - Xiangyun Han
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Weixing Ma
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Xuan Li
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qingyuan Guo
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Bairen Yang
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Cheng Ding
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Yuwen Ma
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yingbin Road #9, Yancheng, 224003, Jiangsu Province, PR China; Jiangsu Province Engineering Research Center of Intelligent Environmental Protection Equipment, Yancheng Institute of Technology, Yancheng, 224051, PR China
| |
Collapse
|
11
|
Tebbett SB, Streit RP, Morais J, Schlaefer JA, Swan S, Bellwood DR. Benthic cyanobacterial mat formation during severe coral bleaching at Lizard Island: The mediating role of water currents. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105752. [PMID: 36115331 DOI: 10.1016/j.marenvres.2022.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial mats are increasingly recognised as a symptom of coral reef change. However, the spatial distribution of cyanobacterial mats during coral bleaching has received limited attention. We explored cyanobacterial mat distribution during a bleaching event at Lizard Island and considered hydrodynamics as a potential modifier. During bleaching cyanobacterial mats covered up to 34% of the benthos at a transect scale, while some quadrats (1 m2) were covered almost entirely (97.5%). The spatial distribution of cyanobacterial mats was limited to areas with slower water currents. Coral cover declined by 44% overall, although cyanobacterial mats were not spatially coupled to the magnitude of coral loss. Overall, the marked increase in cyanobacterial mat cover was an ephemeral spike, not a sustained change, with cover returning to 0.4% within 6 months. Cyanobacterial mats clearly represent dynamic space holders on coral reefs, with a marked capacity to rapidly exploit change, if conditions are right.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Juliano Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jodie A Schlaefer
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Oceans and Atmosphere, Hobart, Tasmania, 7000, Australia
| | - Sam Swan
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
12
|
Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions. Appl Environ Microbiol 2022; 88:e0107222. [PMID: 36300948 PMCID: PMC9680615 DOI: 10.1128/aem.01072-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Detachment is an important process determining the structure and function of bacterial biofilm, which has significant implications for biogeochemical cycling of elements, biofilm application, and infection control in clinical settings. Quantifying the responses of biofilm structure to hydrodynamics is crucial for understanding biofilm detachment mechanisms in aquatic environments.
Collapse
|
13
|
The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 2022; 20:608-620. [PMID: 35922483 PMCID: PMC9841534 DOI: 10.1038/s41579-022-00767-0] [Citation(s) in RCA: 378] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
Collapse
|
14
|
Hou J, Shao G, Adyel TM, Li C, Liu Z, Liu S, Miao L. Can the carbon metabolic activity of biofilm be regulated by the hydrodynamic conditions in urban rivers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155082. [PMID: 35398435 DOI: 10.1016/j.scitotenv.2022.155082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Hydrodynamic regulation is widely used to improve the water quality of urban rivers. However, it is yet to explore substantially whether hydrodynamics could regulate the metabolic activity of biofilm in such aquatic systems. Herein, the pilot experiment of hydrodynamics in the rotation tanks was designed, including two experiment phases, namely constant flow and adjusting flow for 21 days and 14 days, respectively. In constant flow phase, biofilms grew in five shear stress gradients (R1-R5, 0.0044- 0.12 Pa). The carbon metabolic rate (k) of mature biofilms evaluated by BIOLOG ECO microplates showed a hump-shaped relationship with increasing shear stress, with R3 (0.049 Pa) the highest, while R5 (0.12 Pa) the lowest. To verify whether the metabolic activity of biofilm cultured at constant flow phase can be regulated by shear stress, we initiated the adjusting flow phase, and shear stress in reactors was reset uniformly at 0.049 Pa (with the highest k). Results showed the carbon metabolic activity of biofilm in reactor R4 and R5 increased rapidly by day 3, and there was no significant difference between the carbon metabolic rates among the five treatments by day 14. Meanwhile, the utilization levels of polymers and carbohydrates by biofilms were significantly different among the five treatments after hydrodynamic regulations. These results suggested that the total carbon metabolic activity of biofilm can be regulated by hydrodynamics, while the divergent changes of the specific carbon source category might affect the biofilm-mediated carbon biogeochemical processes, which should be considered for the application of hydrodynamic regulation in river ecological restoration projects.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoyi Shao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China; State Key Lab Hydraul & Mt River Engn, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
15
|
Qin Z, Zhao Z, Xia L, Ohore OE. Research trends and hotspots of aquatic biofilms in freshwater environment during the last three decades: a critical review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47915-47930. [PMID: 35522418 DOI: 10.1007/s11356-022-20238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Freshwater periphytic biofilms (FPBs), existing widely in various aquatic environments, have attracted extensive attention for many years. In the present study, a bibliometric analysis based on Web of Science Core Collection (WoSCC) was used to understand the research progress, trends, and hot topics of FPBs qualitatively and quantitatively. The results indicated that publications on FPBs have increased from 1991 to 2020 rapidly, and researchers have focused more on the areas of environmental sciences, microbiology, and marine freshwater biology. The most influential countries were mainly the USA, Spain, France, and Germany. Cooperation network analysis reflected that the USA and its affiliated institutions played crucial roles in the research of FPB cooperation, but the collaboration between core author groups still fell short. Based on the analysis of top 20 high-cited FPB documents over the last 30 years, research hotspots mainly included micro-observation and assembly mechanisms of FPBs; interactions of FPBs and pollutants including heavy metals, antibiotic resistance genes, pathogens, organic pollutants, and nanoparticles; and the role of FPBs for biogeochemical cycling, especially nitrogen cycling. Additionally, future research directions were proposed. Overall, this study provides a comprehensive and systematic overview of FPBs, which is useful for research development and researchers who are interested in this area.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Liling Xia
- Nanjing Institute of Industry Technology, Nanjing, 210016, China
| | - Okugbe Ebiotubo Ohore
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya
| |
Collapse
|
16
|
Benthic Biofilm Bacterial Communities and Their Linkage with Water-Soluble Organic Matter in Effluent Receivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041994. [PMID: 35206183 PMCID: PMC8872271 DOI: 10.3390/ijerph19041994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Benthic biofilms are pioneering microbial aggregates responding to effluent discharge from wastewater treatment plants (WWTPs). However, knowledge of the characteristics and linkage of bacterial communities and water-soluble organic matter (WSOM) of benthic biofilms in effluent-receiving rivers remains unknown. Here, we investigated the quality of WSOM and the evolution of bacterial communities in benthic biofilm to evaluate the ecological impacts of effluent discharge on a representative receiving water. Tryptophan-like proteins showed an increased proportion in biofilms collected from the discharge area and downstream from the WWTP, especially in summer. Biofilm WSOM showed weak humic character and strong autochthonous components, and species turnover was proven to be the main factor governing biofilm bacteria community diversity patterns. The bacterial community alpha diversity, interspecies interaction, biological index, and humification index were signally altered in the biofilms from the discharge area, while the values were more similar in biofilms collected upstream and downstream from the WWTP, indicating that both biofilm bacterial communities and WSOM characters have resilience capacities. Although effluent discharge simplified the network pattern of the biofilm bacterial community, its metabolic functional abundance was basically stable. The functional abundance of carbohydrate metabolism and amino acid metabolism in the discharge area increased, and the key modules in the non-random co-occurrence network also verified the important ecological role of carbon metabolism in the effluent-receiving river. The study sheds light on how benthic biofilms respond to effluent discharge from both ecological and material points of view, providing new insights on the feasibility of utilizing benthic biofilms as robust indicators reflecting river ecological health.
Collapse
|
17
|
Biophysical properties at patch scale shape the metabolism of biofilm landscapes. NPJ Biofilms Microbiomes 2022; 8:5. [PMID: 35115555 PMCID: PMC8813951 DOI: 10.1038/s41522-022-00269-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Phototrophic biofilms form complex spatial patterns in streams and rivers, yet, how community patchiness, structure and function are coupled and contribute to larger-scale metabolism remains unkown. Here, we combined optical coherence tomography with automated O2 microprofiling and amplicon sequencing in a flume experiment to show how distinct community patches interact with the hydraulic environment and how this affects the internal distribution of oxygen. We used numerical simulations to derive rates of community photosynthetic activity and respiration at the patch scale and use the obtained parameter to upscale from individual patches to the larger biofilm landscape. Our biofilm landscape approach revealed evidence of parallels in the structure-function coupling between phototrophic biofilms and their streambed habitat.
Collapse
|
18
|
Simões LC, Gomes IB, Sousa H, Borges A, Simões M. Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. BIOFOULING 2022; 38:1-12. [PMID: 34818957 DOI: 10.1080/08927014.2021.2006189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The effect that the hydrodynamic conditions under which biofilms are formed has on their persistence is still unknown. This study assessed the behaviour of Pseudomonas fluorescens biofilms, formed on stainless steel under different shear stress (τw) conditions (1, 2 and 4 Pa), to chemical (benzalkonium chloride - BAC, glutaraldehyde - GLUT and sodium hypochlorite - SHC) and mechanical (20 Pa) treatments (alone and combined). The biofilms formed under different τw showed different structural characteristics. Those formed under a higher τw were invariably more tolerant to chemical and mechanical stresses. SHC was the biocide which caused the highest biofilm killing and removal, followed by BAC. The sequential exposure to biocides and mechanical stress was found to be insufficient for effective biofilm control. A basal layer containing biofilm cells mostly in a viable state remained on the surface of the cylinders, particularly for the 2 and 4 Pa-generated biofilms.
Collapse
Affiliation(s)
- L C Simões
- CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - H Sousa
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - A Borges
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Miao L, Yu Y, Adyel TM, Wang C, Liu Z, Liu S, Huang L, You G, Meng M, Qu H, Hou J. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123577. [PMID: 32795819 DOI: 10.1016/j.jhazmat.2020.123577] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Concerns are growing about the increasing amounts of microplastics (MPs) and their ecological impacts, especially the influences of "plastisphere" in the freshwater ecosystems. Although the microbial structure and composition of biofilms are investigated, knowledge of their microbial functions remains limited. Herein, we investigated the functional diversity of carbon metabolism in biofilms colonizing one inert (glass) and two MPs as polyvinyl chloride (PVC) and polyethylene terephthalate (PET) substrates incubated for 44 days in situ in the Niushoushan River, the Qinhuai River, and Donghu Lake. 2D confocal laser scanning microscopy images visualized distinct micro-structures and biofilm compositions on three substrates. BIOLOG ECO microplates indicated variation on carbon utilization capacities of biofilms of inert and MPs in three freshwater ecosystems. Biofilms on PET showed lower capacities and carbon metabolism rates than those on glass and PVC, indicating the presence of substrate-specific functional diversity. The Shannon-Wiener diversity, Simpson diversity and Shannon evenness indices for the Niushoushan River and Donghu Lake were ordered as glass > PVC > PET. Besides to MPs-specific factors, environmental factors including nutrient (i.e., TN and TP) and turbidity largely shaped biofilm carbon metabolism. Overall findings demonstrated that as specific niches, MPs influenced microbial-mediated carbon cycling in the freshwater ecosystems and MPs-promoted microbial communities posed ecological significance.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tanveer M Adyel
- Department of Civil Engineering, Monash University, 23 College Walk, Clayton, VIC, 3800, Australia
| | - Chengqian Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Liuyan Huang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Meng Meng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hao Qu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
20
|
Pan M, Liu X, Ma W, Li X, Li H, Ding C, Chen Y, Chen R. The effect of hydrodynamics on the succession of autotrophic and heterotrophic organisms of biofilms in river ecosystems. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:63-76. [PMID: 33460407 DOI: 10.2166/wst.2020.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biofilms were cultivated for a 68-day period under different hydrodynamic conditions, and the effect of hydrodynamics on the succession of autotrophic and heterotrophic organisms of biofilms was investigated. Five obvious stages were observed during biofilm formation. At Stage I, the attachment of algae was delayed, especially under turbulent conditions. After Stage II, algal density and heterotrophic biomass of biofilms increased, which were obvious under turbulent flow. Therefore, the algal density and heterotrophic biomass of biofilms were largest under turbulent condition, followed by laminar condition, and then transitional condition. Diatoms were dominant in all flumes and were most abundant under turbulent conditions. The proportion of cyanobacteria was highest under laminar conditions. The ratio of aerobic to anaerobic bacteria decreased and their co-existence could facilitate the nitrification and denitrification in the biofilm. The ratio of monounsaturated fatty acids to saturated fatty acids was highest under turbulent conditions on the 15th day. While the ratio was highest under laminar condition on the 48th day, the high ratio indicates the high ability of biofilm to obtain nutrients, which affect the growth of algae. The regulation of hydrodynamics is a useful technology which can affect the growth of the microorganisms of biofilm, and further improve water quality.
Collapse
Affiliation(s)
- Mei Pan
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| | - Xiang Liu
- College of Agricultural Engineering, Hohai University, Nanjing 210098, Jiangsu Province, China
| | - Weixing Ma
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| | - Xuan Li
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| | - Haizong Li
- Yancheng Environmental Monitoring Center, Yancheng, Jiangsu 224002, China
| | - Cheng Ding
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| | - Yuxi Chen
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| | - Runze Chen
- College of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224003, Jiangsu Province, China E-mail:
| |
Collapse
|
21
|
Abstract
AbstractNitrogen (N) uptake is a key process in stream ecosystems that is mediated mainly by benthic microorganisms (biofilms on different substrata) and has implications for the biogeochemical fluxes at catchment scale and beyond. Here, we focused on the drivers of assimilatory N uptake, especially the effects of hydromorphology and other environmental constraints, across three spatial scales: micro, meso and reach. In two seasons (summer and spring), we performed whole-reach 15N-labelled ammonium injection experiments in two montane, gravel-bed stream reaches with riffle–pool sequences. N uptake was highest in epilithic biofilms, thallophytes and roots (min–max range 0.2–545.2 mg N m−2 day−1) and lowest in leaves, wood and fine benthic organic matter (0.05–209.2 mg N m−2 day−1). At the microscale, N uptake of all primary uptake compartments except wood was higher in riffles than in pools. At the mesoscale, hydromorphology determined the distribution of primary uptake compartments, with fast-flowing riffles being dominated by biologically more active compartments and pools being dominated by biologically less active compartments. Despite a lower biomass of primary uptake compartments, mesoscale N uptake was 1.7–3.0 times higher in riffles than in pools. At reach scale, N uptake ranged from 79.6 to 334.1 mg N m−2 day−1. Highest reach-scale N uptake was caused by a bloom of thallopyhtes, mainly filamentous autotrophs, during stable low discharge and high light conditions. Our results reveal the important role of hydromorphologic sorting of primary uptake compartments at mesoscale as a controlling factor for reach-scale N uptake in streams.
Collapse
|
22
|
Gerbersdorf SU, Koca K, de Beer D, Chennu A, Noss C, Risse-Buhl U, Weitere M, Eiff O, Wagner M, Aberle J, Schweikert M, Terheiden K. Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges. WATER RESEARCH 2020; 185:116182. [PMID: 32763530 DOI: 10.1016/j.watres.2020.116182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment: i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Collapse
Affiliation(s)
- Sabine Ulrike Gerbersdorf
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Kaan Koca
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
| | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany.
| | - Christian Noss
- University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany.
| | - Ute Risse-Buhl
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Markus Weitere
- Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Olivier Eiff
- KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany.
| | - Michael Wagner
- KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany.
| | - Jochen Aberle
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany.
| | - Michael Schweikert
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Kristina Terheiden
- University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| |
Collapse
|
23
|
Ziadi I, Alves MM, Taryba M, El-Bassi L, Hassairi H, Bousselmi L, Montemor MF, Akrout H. Microbiologically influenced corrosion mechanism of 304L stainless steel in treated urban wastewater and protective effect of silane-TiO 2 coating. Bioelectrochemistry 2019; 132:107413. [PMID: 31816578 DOI: 10.1016/j.bioelechem.2019.107413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
Microbiologically influenced corrosion (MIC) of bare and silane-TiO2 sol-gel coated stainless steel (SS) was studied in treated urban wastewater (TUWW). Combining the electrochemical impedance spectroscopy (EIS) and the scanning vibrating electrode technique (SVET) showed that SS surface colonization occurs, at earlier stages, by iron-oxidizing bacteria (IOB), and later by sulphate-reducing bacteria (SRB). The SVET results showed that chemical corrosion process and bacterial respiration led to the depletion of dissolved oxygen, creating a differential aeration cell and thus a localized corrosion phenomenon. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that the growth of a bacterial biofilm on 304L SS was a dynamic process, stimulating the localized oxidation of SS. To improve corrosion protection, a silane-TiO2 sol-gel coating for SS is proposed. SEM showed that the coating reduced bacterial adhesion and EIS study demonstrated that the coating improved the barrier properties and corrosion resistance of 304L SS in TUWW over a short period of immersion.
Collapse
Affiliation(s)
- I Ziadi
- Laboratory for Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE) Technopark of Borj Cedria PB 273, Soliman 8020, Tunisia; National Institute of Applied Science and Technology (INSAT), Carthage University, Tunis, Tunisia
| | - M M Alves
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - M Taryba
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - L El-Bassi
- Laboratory for Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE) Technopark of Borj Cedria PB 273, Soliman 8020, Tunisia
| | - H Hassairi
- Laboratory for Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE) Technopark of Borj Cedria PB 273, Soliman 8020, Tunisia
| | - L Bousselmi
- Laboratory for Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE) Technopark of Borj Cedria PB 273, Soliman 8020, Tunisia
| | - M F Montemor
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - H Akrout
- Laboratory for Wastewaters and Environment, Centre of Water Researches and Technologies (CERTE) Technopark of Borj Cedria PB 273, Soliman 8020, Tunisia. @gmail.com
| |
Collapse
|
24
|
van der Lugt W, Euser SM, Bruin JP, den Boer JW, Yzerman EPF. Wide-scale study of 206 buildings in the Netherlands from 2011 to 2015 to determine the effect of drinking water management plans on the presence of Legionella spp. WATER RESEARCH 2019; 161:581-589. [PMID: 31238223 DOI: 10.1016/j.watres.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 05/25/2023]
Abstract
Previous analysis of the Dutch National Legionella Outbreak Detection Program 2002-2012 has shown that buildings required to maintain a Legionella control plan for their drinking water installation are more likely to test positive for Legionella spp. Than buildings without such a plan (38% versus 22% of samples). To clarify this discrepancy, we analysed the results of mandatory water sample testing conducted as part of risk assessments in 206 buildings in the Netherlands from 2011 to 2015. Of the 6171 samples analysed, 16.2% exceeded the Dutch drinking water standard for Legionella spp. of 100 CFU/litre. In buildings with ≤50 tap points, the average percentage of samples containing ≥100 CFU/litre was 28.2%, and from buildings with >50 tap points, it was 12.2%. Analysis of serial samples (taken every 6 months) from each building showed that 33.2% of all buildings tested positive for at least one sample every 6 months. The overall increase was 4.4% per year. Analysis of Legionella subgroups showed that while the majority of positive samples contained L. non-pneumophila (96.9%), some samples did contain L. pneumophila serogroup 1 (1.0%) and serogroups 2-14 (2.1%). Our data suggest that the Dutch mandatory risk assessment and drinking water management plan is not sufficiently effective in preventing the proliferation of Legionella spp. and may even contribute to proliferation. This analysis should now be expanded to include other areas of the Netherlands in order to understand the geographical differences that we observed in our results, and why smaller buildings appear to be more likely to test positive for Legionella spp.
Collapse
Affiliation(s)
| | - Sjoerd M Euser
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Jacob P Bruin
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Jeroen W den Boer
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Ed P F Yzerman
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| |
Collapse
|
25
|
Wang L, Li Y, Zhang P, Zhang S, Li P, Wang P, Wang C. Sorption removal of phthalate esters and bisphenols to biofilms from urban river: From macroscopic to microcosmic investigation. WATER RESEARCH 2019; 150:261-270. [PMID: 30529591 DOI: 10.1016/j.watres.2018.11.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/20/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
River biofilms play fundamental roles in shaping the architecture of aquatic systems. Sorption to biofilms was thought to be a crucial mechanism controlling the fate and transport of trace emerging contaminants. This study focused on the role of in situ colonized river biofilms in the early fate of phthalate esters (PAEs) and bisphenols (BPs) at trace concentrations in a representative urban river. PAEs and BPs were readily sorbed to biofilms with uptakes of 38.2-162.5 μg/g for PAEs and 1787.7-4425.6 μg/g for BPs, respectively. The total mass and characteristics of the colonized biofilms varied in response to seasons and water qualities. The biofilm colonized in the downstream of a wastewater treatment plant exhibited the highest sorption capacity among the tested sites, possibly attributed to the higher organic contents of biofilms owing to the elevated availability of nutrients. Correlation analysis indicates that certain water qualities, e.g., TN and NH3N, and biofilm properties, e.g., organic and polysaccharide fractions could be selected to predict the sorption capacities of river biofilms. Hydrophobic partitioning into organic matter appears to be the dominant sorption mechanism and biofilm polysaccharides were probably responsible for the adhesion of tested compounds. The contaminant partitioning into biofilm and sediment at mass/volume ratios typical for small rivers suggests that the biofilm could serve as an important sorbing matrix for the trace organic contaminants as compared to the sediments. Our work yields new insights into the early uptake and accumulation of trace plasticizers by natural biofilms, which is of significance in understanding the subsequent transport of trace organic contaminants in fluvial systems.
Collapse
Affiliation(s)
- Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Peisheng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Peng Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
26
|
Kang L, He Y, Dai L, He Q, Ai H, Yang G, Liu M, Jiang W, Li H. Interactions between suspended particulate matter and algal cells contributed to the reconstruction of phytoplankton communities in turbulent waters. WATER RESEARCH 2019; 149:251-262. [PMID: 30448737 DOI: 10.1016/j.watres.2018.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The effect of turbulence on phytoplankton growth has been widely studied; however, its effects with respects to suspended particulate matter (SPM) on the development of phytoplankton communities and the behavioral responses of phytoplankton to turbulence and SPM are poorly understood. Here, an approximately homogeneous turbulence simulation system (AHTS, mainly consisting of an oscillating-grid apparatus) was established to gain insight into the mechanisms underlying phytoplankton community responses in turbid, well-mixed waters. The results revealed that maintaining the turbulence dissipation rates (Ɛ) of 2.25 × 10-3 and 1.80 × 10-2 m2/s3 caused significant reductions in algal density, and the effects could be substantially enhanced when 500 mg/L of SPM were added before day 12. In contrast to the constant decrease of algal density for the Ɛ of 2.25 × 10-3 m2/s3, a dramatic increase in the phytoplankton density occurred after 16 days of incubation for a Ɛ of 1.80 × 10-2 m2/s3, irrespective of SPM. Addition of SPM in the Ɛ of 1.80 × 10-2 m2/s3 treatments did not considerably affect the algal density profile compared to that without SPM, of which unicellular algae decreased and colonial algae dominated the phytoplankton community. On the other hand, the phytoplankton can regulate the SPM properties. During the 18 days' coincubation, extracellular polymeric substances (EPS) released from algal cells induced larger particle sizes and round surfaces of SPM, which can reduce the damage received to algal cells. Here we demonstrated that the phytoplankton communities could actively counteract the effects of turbulence + SPM and adapt the couple stress, jointly through the release of EPS, the modification of SPM surface properties and the conversion of their assemblage pattern, thereby contributing to rebalance the ecosystem. These findings highlight the strategies employed during the reconstruction of phytoplankton under the dual effects of turbulence and SPM for the first time, consequently enabling the forecasting of the dominant species of phytoplankton in turbulent waters.
Collapse
Affiliation(s)
- Li Kang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Lichun Dai
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Guofeng Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Ming Liu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Wei Jiang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
27
|
Polst BH, Anlanger C, Risse-Buhl U, Larras F, Hein T, Weitere M, Schmitt-Jansen M. Hydrodynamics Alter the Tolerance of Autotrophic Biofilm Communities Toward Herbicides. Front Microbiol 2018; 9:2884. [PMID: 30564205 PMCID: PMC6288176 DOI: 10.3389/fmicb.2018.02884] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
Multiple stressors pose potential risk to aquatic ecosystems and are the main reasons for failing ecological quality standards. However, mechanisms how multiple stressors act on aquatic community structure and functioning are poorly understood. This is especially true for two important stressors types, hydrodynamic alterations and toxicants. Here we perform a mesocosm experiment in hydraulic flumes connected as a bypass to a natural stream to test the interactive effects of both factors on natural (inoculated from streams water) biofilms. Biofilms, i.e., the community of autotrophic and heterotrophic microorganisms and their extracellular polymeric substances (EPS) in association with substratum, are key players in stream functioning. We hypothesized (i) that the tolerance of biofilms toward toxicants (the herbicide Prometryn) decreases with increasing hydraulic stress. As EPS is known as an absorber of chemicals, we hypothesize (ii) that the EPS to cell ratio correlates with both hydraulic stress and herbicide tolerance. Tolerance values were derived from concentration-response assays. Both, the herbicide tolerance and the biovolume of the EPS significantly correlated with the turbulent kinetic energy (TKE), while the diversity of diatoms (the dominant group within the stream biofilms) increased with flow velocity. This indicates that the positive effect of TKE on community tolerance was mediated by turbulence-induced changes in the EPS biovolume. This conclusion was supported by a second experiment, showing decreasing effects of the herbicide to a diatom biofilm (Nitzschia palea) with increasing content of artificial EPS. We conclude that increasing hydrodynamic forces in streams result in an increasing tolerance of microbial communities toward chemical pollution by changes in EPS-mediated bioavailability of toxicants.
Collapse
Affiliation(s)
- Bastian H Polst
- Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria.,WasserCluster Lunz, Lunz, Austria
| | - Christine Anlanger
- Department of River Ecology, Helmholtz-Centre for Environmental Research - UFZ, Magdeburg, Germany.,Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Ute Risse-Buhl
- Department of River Ecology, Helmholtz-Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Floriane Larras
- Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Thomas Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria.,WasserCluster Lunz, Lunz, Austria
| | - Markus Weitere
- Department of River Ecology, Helmholtz-Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
28
|
Pousti M, Joly M, Roberge P, Amirdehi MA, Bégin-Drolet A, Greener J. Linear Scanning ATR-FTIR for Chemical Mapping and High-Throughput Studies of Pseudomonas sp. Biofilms in Microfluidic Channels. Anal Chem 2018; 90:14475-14483. [DOI: 10.1021/acs.analchem.8b04279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohammad Pousti
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Joly
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrice Roberge
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Andre Bégin-Drolet
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- CHU de Quebec Research Centre, Laval University, 10 rue de l’Espinay, Québec, QC G1L 3L5, Canada
| |
Collapse
|