1
|
Quon H, Jiang S. Quantitative Microbial Risk Assessment of Antibiotic-Resistant E. coli, Legionella pneumophila, and Mycobacteria in Nonpotable Wastewater Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12888-12898. [PMID: 39004818 PMCID: PMC11270989 DOI: 10.1021/acs.est.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic-resistant bacteria (ARB) have become a major threat to public health and modern medicine. A simple death kinetics-based dose-response model (SD-DRM) was incorporated into a quantitative microbial risk assessment (QMRA) to assess the risks of exposure to reclaimed wastewater harboring antibiotic-resistant E. coli, Legionella pneumophila, and Mycobacterium avium for multiple exposure scenarios. The fractions of ARB and trace antibiotics present in the body were incorporated to demonstrate their impact on infection risks. Both ARB and antibiotic susceptible bacteria, ASB, are assumed to have the same dose-response in the absence of antibiotics but behave differently in the presence of residual antibiotics in the body. Annual risk of L. pneumophila infection exceeded the EPA 10-4 pppy (per person per year) benchmark at concentrations in reclaimed water greater than 103-104 CFU/L, depending on parameter variation. Enteropathogenic E. coli infection risks meet the EPA annual benchmark at concentrations around 105-106 total E. coli. The results illustrated that an increase in residual antibiotics from 0 to 40% of the minimum inhibitory concentration (MIC) reduced the risk by about 1 order of magnitude for E. coli but was more likely to result in an untreatable infection.
Collapse
Affiliation(s)
- Hunter Quon
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| | - Sunny Jiang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| |
Collapse
|
2
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Laganà P, Facciolà A, Palermo R, De Giglio O, Delia SA, Gioffrè ME. The Presence of Legionella in Water Used for Car Washing: Implications for Public Health. Microorganisms 2023; 11:2992. [PMID: 38138135 PMCID: PMC10745634 DOI: 10.3390/microorganisms11122992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Although today all of the aspects of Legionella are better understood than in the past, in many countries the interest is still mainly focused on healthcare and tourism facilities. Other at-risk areas are less explored, such as those where workers are often in contact with water during their activities. In reality, any water system capable of producing aerosols can be considered a potential source of Legionella transmission, including car washes, where a large number of users work and flow through annually. From January to May 2022, 120 samples were carried out in 30 car washes located in Messina (Italy): 60 samples of water and 60 of aerosols. The aim of this investigation was to evaluate the risk of legionellosis in car washing workers exposed to potentially contaminated aerosols. To increase the probability of finding Legionella, the sample collections were organized on different days of the week. Of the total samples taken, 10 (8.3%) were positive for Legionella: seven (11.7%) water (range 100-1000 CFU) and three (5%) aerosol (range 10-150 CFU) samples. Detected serogroups were L. pneumophila sgr 1, 7, 10 and Legionella gormanii. Given the results obtained, preventative measures should be implemented in such facilities in order to protect the health of users and car wash operators.
Collapse
Affiliation(s)
- Pasqualina Laganà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Alessio Facciolà
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Roberta Palermo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy;
| | - Osvalda De Giglio
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, Section of Hygiene, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Santi Antonino Delia
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Branch of Messina, Department of Biomedical Science and Morphological and Functional Images, University of Messina, Via C. Valeria, 98125 Messina, Italy; (A.F.); (S.A.D.)
| | - Maria Eufemia Gioffrè
- Multispecialty Clinical Institute, Trauma Orthopedic Care, Via Ducezio 1, 98124 Messina, Italy;
| |
Collapse
|
4
|
Mori J, Smith RL. Risk of Legionellosis in residential areas around farms irrigating with municipal wastewater. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1115-1123. [PMID: 35840056 DOI: 10.1111/risa.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conservation of freshwater is of both global and national importance, and in the United States, agriculture is one of the largest consumers of this resource. Reduction of the strain farming puts on local surface or groundwater is vital for ensuring resilience in the face of climate change, and one possible option is to irrigate with a combination of freshwater and reclaimed water from municipal wastewater treatment facilities. However, this wastewater can contain pathogens that are harmful to human health, such as Legionella pneumophila, which is a bacterium that can survive aerosolization and airborne transportation and cause severe pneumonia when inhaled. To assess an individual adult's risk of infection with L. pneumophila from a single exposure to agricultural spray irrigation, a quantitative microbial risk assessment was conducted for a scenario of spray irrigation in central Illinois, for the growing seasons in 2017, 2018, and 2019. The assessment found that the mean risk of infection for a single exposure exceeded the safety threshold of 10-6 infections/exposure up to 1 km from a low-pressure irrigator and up to 2 km from a high-pressure irrigator, although no median risk exceeded the threshold for any distance or irrigator pressure. These findings suggest that spray irrigation with treated municipal wastewater could be a viable option for reducing freshwater consumption in Midwest farming, as long as irrigation on windy days is avoided and close proximity to the active irrigator is limited.
Collapse
Affiliation(s)
- Jameson Mori
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Kermani M, Chegini Z, Mirkalantari S, Norzaee S. Assessment of the risk of Legionella pneumophila in water distribution systems in hospitals of Tehran city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:842. [PMID: 36175694 DOI: 10.1007/s10661-022-10469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
When a sensitive host inhales aerosols containing these bacteria, Legionella infection occurs. Therefore, monitoring and assessing Legionella in the environment and water distribution systems of such places are critical due to the prone population in hospitals. However, the health risks of Legionella bacteria in the environment are not adequately evaluated. In this study, for hospitalized patients, we performed a quantitative health risk assessment of Legionella in selected hospitals in Tehran city using two scenarios of shower and toilet faucet exposure. This study identified Legionella in 38 cases (38%) out of 100 samples collected from toilet faucets and showers in 8 hospitals. The information gathered was used for quantitative microbial risk assessment (QMRA). The microbial load transmitted by inhalation was calculated using the concentration of Legionella in water. Other exposure parameters (inhalation rate and exposure time) were obtained using information from other studies and the median length of hospital stay (3.6 days). The exponential model was used to estimate the risk of infection (γ = 0.06) due to Legionella pneumophila (L. pneumophila) inhalation for each exposure event. For the mean concentration obtained for Legionella (103 CFU/L), the risk of infection for toilet faucets and showers was in the range of 0.23-2.3 and 3.5-21.9, respectively, per 10,000 hospitalized patients. The results were compared with the tolerable risk level of infection determined by the US EPA and WHO. The risk values exceeded the WHO values for waterborne pathogens in hospitals in both exposure scenarios. As a result, our QMRA results based on monitoring data showed that despite using treated water (from distribution networks in the urban areas) by hospitals, 38% of the samples were contaminated with Legionella, and faucets and showers can be sources of Legionella transmission. Hence, to protect the health of hospitalized patients, the risk of Legionella infection should be considered.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Wilson AM, Canter K, Abney SE, Gerba CP, Myers ER, Hanlin J, Reynolds KA. An application for relating Legionella shower water monitoring results to estimated health outcomes. WATER RESEARCH 2022; 221:118812. [PMID: 35816914 DOI: 10.1016/j.watres.2022.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Exposure models are useful tools for relating environmental monitoring data to expected health outcomes. The objective of this study was to (1) compare two Legionella shower exposure models, and (2) develop a risk calculator tool for relating environmental monitoring data to estimated Legionella infection risks and Legionnaires' Disease (LD) illness risks. Legionella infection risks for a single shower event were compared using two shower Legionella exposure models. These models varied in their description of partitioning of Legionella in aerosols and aerosol deposition in the lung, where Model 1 had larger and fewer aerosol ranges than Model 2. Model 2 described conventional vs. water efficient showers separately, while Model 1 described exposure for an unspecified shower type (did not describe it as conventional or water efficient). A Monte Carlo approach was used to account for variability and uncertainty in these aerosolization and deposition parameters, Legionella concentrations, and the dose-response parameter. Methods for relating infection risks to illness risks accounting for demographic differences were used to inform the risk calculator web application ("app"). Model 2 consistently estimated higher infection risks than Model 1 for the same Legionella concentration in water and estimated deposited doses with less variability. For a 7.8-min shower with a Legionella concentration of 0.1 CFU/mL, the average infection risks estimated using Model 2 were 4.8 × 10-6 (SD=3.0 × 10-6) (conventional shower) and 2.3 × 10-6 (SD=1.7 × 10-6) (water efficient). Average infection risk estimated by Model 1 was 1.1 × 10-6 (SD=9.7 × 10-7). Model 2 was used for app development due to more conservative risk estimates and less variability in estimated dose. While multiple Legionella shower models are available for quantitative microbial risk assessments (QMRAs), they may yield notably different infection risks for the same environmental microbial concentration. Model comparisons will inform decisions regarding their integration with risk assessment tools. The development of risk calculator tools for relating environmental microbiology data to infection risks will increase the impact of exposure models for informing water treatment decisions and achieving risk targets.
Collapse
Affiliation(s)
- Amanda M Wilson
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT, United States
| | - Kelly Canter
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Sarah E Abney
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Charles P Gerba
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States; Department of Soil, Water, and Environmental Science, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| | - Eric R Myers
- Nalco Water, An Ecolab Company, Naperville, IL, United States
| | - John Hanlin
- Ecolab Research, Development & Engineering, Eagan, MN, United States
| | - Kelly A Reynolds
- Department of Community, Environment and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Drachman Hall, PO Box: 245210, Tucson, AZ 85724, United States.
| |
Collapse
|
7
|
Xu PC, Zhang CM, Wang XC. Numerical simulation for spatial distribution of water aerosol produced from nozzle spray and health risk related to Legionella pneumophila in spray scenarios. WATER RESEARCH 2022; 216:118304. [PMID: 35325820 DOI: 10.1016/j.watres.2022.118304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water spray facilities are widely used in public places for sprinkling or beautifying the environment. However, the potential health risk induced by water aerosols increasingly calls for attention. In this study, the spatial distribution of water aerosols was investigated through the molecular sieve adsorption method, and predicted by discrete phase model (DPM). On this basis, the health risk regarding Legionella pneumophila for specific spray scenarios was evaluated by quantitative microbial risk assessment (QMRA). The results showed that the original droplet size can be described by the Rosin_Rommaler distribution (R2>0.99). The spatial distribution of water aerosols produced from a nozzle spray can be well predicted by the DPM. The concentration of water aerosols showed a sharp decline within 5 m from the nozzle and was not significantly different within 5 m (p>0.05) as for various spray scenarios. However, the difference was significant outside 5 m (p<0.05). Furthermore, a safe contact distance of exceeding 8 m is proposed in spray scenarios considering the risk threshold of 0.0001. Sensitivity analysis demonstrated the concentration of Legionella pneumophila in water aerosols as the critical factor affecting the health risk.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
8
|
An Improved Emergy Analysis of the Environmental and Economic Benefits of Reclaimed Water Reuse System. SUSTAINABILITY 2022. [DOI: 10.3390/su14095050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reclaimed water, a nontraditional water source, has become a desirable choice for meeting the increasing demand in areas with water shortages. However, the environmental and economic benefits of reclaimed water reuse systems (RWRSs) are unclear. Therefore, we conducted this study to assess the environmental performance of RWRSs based on emergy analysis. Notably, the emergy index system was improved by incorporating the environmental impacts of air emissions. The results show that the improved emergy indicator system was more rigorous than the traditional emergy index system. The environmental loading ratio and the emergy sustainability index of the studied system based on an improved emergy index system was 0.202 and 30.01, respectively. The environmental economic value was 3.52 × 1020 sej/y. The results show that the RWRS has good sustainability, and high environmental and economic benefits. Compared with two other RWRSs (Scenario A in Zhengzhou City and Scenario B in Chongqing City) and one seawater desalination system (Scenario C in Qingdao City), it is found that RWRSs are preferred as a way to obtain water resources over seawater desalination under the same water quality conditions. It is also important to select an appropriate treatment process according to the raw water quality and reclaimed water use in the practical application.
Collapse
|
9
|
Zhang J, He X, Zhang H, Liao Y, Wang Q, Li L, Yu J. Factors Driving Microbial Community Dynamics and Potential Health Effects of Bacterial Pathogen on Landscape Lakes with Reclaimed Water Replenishment in Beijing, PR China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5127. [PMID: 35564521 PMCID: PMC9106022 DOI: 10.3390/ijerph19095127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
Assessing the bacteria pathogens in the lakes with reclaimed water as major influents are important for public health. This study investigated microbial communities of five landscape lakes replenished by reclaimed water, then analyzed driven factors and identified health effects of bacterial pathogens. 16S rRNA gene sequence analysis demonstrated that Proteobacteria, Actinobacteria, Cyanobacteria, Firmicutes, and Verrucomicrobia were the most dominant phyla in five landscape lakes. The microbial community diversities were higher in June and July than that in other months. Temperature, total nitrogen and phosphorus were the main drivers of the dominant microbial from the Redundancy analysis (RDA) results. Various potential bacterial pathogens were identified, including Pseudomonas, GKS98_freshwater_group, Sporosarcina, Pseudochrobactrum, Streptomyces and Bacillus, etc, some of which are easily infectious to human. The microbial network analysis showed that some potential pathogens were nodes that had significant health effects. The work provides a basis for understanding the microbial community dynamics and safety issues for health effects in landscape lakes replenished by reclaimed water.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Xiao He
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Huixin Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Yu Liao
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| | - Luwei Li
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; (X.H.); (H.Z.); (Y.L.); (L.L.)
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100019, China
| |
Collapse
|
10
|
Zhang CM, Xu PC, Du WW, Wang XC. Exposure parameters and health risk of Cryptosporidium and Giardia in the recreational water activities for urban residents in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1573-1583. [PMID: 34363153 DOI: 10.1007/s11356-021-15463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Knowledge gaps in the exposure parameters for recreational water activities make quantitative risk assessment related to water recreation difficult. Therefore, the annual exposure frequency and single exposure duration for the recreational water activities of residents from ten cities in the North and South of China were investigated. Questionnaire interviews were carried on recreational water activities comprising swimming (SW), boating (BA), playing in interactive fountains (PF), and watching fountains (WF). Quantitative microbial risk assessment for the exposure of urban residents to Cryptosporidium and Giardia was also performed. For the four recreational water activities, the participation rates of urban residents in SW and WF were higher than the others. For SW and BA, the mean annual exposure frequency and single exposure duration for males were significantly higher than those for females. PF and WF showed the opposite. The annual exposure frequency for above 35-year-old residents was higher than that for young residents (18-35 years). However, the single exposure duration for young residents was highest in SW, BA, and PF. The mean annual exposure frequency and single exposure duration for North China residents were higher than those for South China residents in all recreational water activities, except for SW. Overall, the annual exposure frequency and single exposure duration in recreational water activities for all urban residents followed a lognormal distribution. In the four recreational water activities, the total annual infection risk of male exposure to Cryptosporidium was 1.0 × 10-2, with the confidence intervals between 95 and 5% of [4.3 × 10-4, 3.7 × 10-2], whereas that for females was 6.8 × 10-3 and [4.2 × 10-4, 2.4 × 10-2]. Also, the annual infection risk of males to Giardia was 8.8 × 10-3 and [5.1×10-4, 3.2×10-2], and that of females was 5.3 × 10-3 and [4.0 × 10-4, 1.8 × 10-2]. These results demonstrated that SW and PF made the highest contribution to the total annual infection risk. Sensitivity analysis highlighted that the characterization of exposure parameters plays a critical role in health risk assessment, which may provide a scientific basis for recreational water quality standards formulation.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Peng-Cheng Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wei-Wei Du
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
11
|
Gholipour S, Mohammadi F, Nikaeen M, Shamsizadeh Z, Khazeni A, Sahbaei Z, Mousavi SM, Ghobadian M, Mirhendi H. COVID-19 infection risk from exposure to aerosols of wastewater treatment plants. CHEMOSPHERE 2021; 273:129701. [PMID: 33517118 PMCID: PMC7825974 DOI: 10.1016/j.chemosphere.2021.129701] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
Fecal shedding of SARS-CoV-2 from COVID-19 patients and presence of the viral RNA in wastewater have extensively been reported. Some wastewater treatment plant (WWTP) processes generate aerosols which have the potential to transmit pathogenic microorganisms and present a health risk for exposed individuals. We analyzed the presence of viral RNA of SARS-CoV-2 in raw wastewater and air samples of WWTPs. The risk that may arise from exposure to virus-contaminated aerosols of wastewater was estimated by developing a quantitative microbial risk analysis (QMRA) method. SARS-CoV-2 was detected in 9 of 24 (37.5%) wastewater samples with a concentration about 104 genomic copies L-1. The viral RNA was also detected in 40% (6/15) of air samples. QMRA analysis showed a relatively high risk of SARS-CoV-2 infection for wastewater workers via exposure to the viral aerosols. The estimated annual infection risk ranged from 1.1 × 10-2 to 2.3 × 10-2 per person per year (PPPY) for wastewater workers which was higher than the reference level recommended by WHO (10-3 pppy). However, due to the lack of data on survival of SARS-CoV-2 in wastewater and its fate in aerosolized state, more research is needed to determine the importance of wastewater in transmission of COVID-19.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Khazeni
- Department of Infectious Disease, Vice Chancellery for Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Mori J, Uprety S, Mao Y, Koloutsou-Vakakis S, Nguyen TH, Smith RL. Quantification and Comparison of Risks Associated with Wastewater Use in Spray Irrigation. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:745-760. [PMID: 33084120 DOI: 10.1111/risa.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.
Collapse
Affiliation(s)
- Jameson Mori
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sital Uprety
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuqing Mao
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sotiria Koloutsou-Vakakis
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| |
Collapse
|
13
|
Yunana D, Maclaine S, Tng KH, Zappia L, Bradley I, Roser D, Leslie G, MacIntyre CR, Le-Clech P. Developing Bayesian networks in managing the risk of Legionella colonisation of groundwater aeration systems. WATER RESEARCH 2021; 193:116854. [PMID: 33550171 DOI: 10.1016/j.watres.2021.116854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
An Australian water utility has developed a Legionella High Level Risk Assessment (LHLRA) which provides a semi-qualitative assessment of the risk of Legionella proliferation and human exposure in engineered water systems using a combination of empirical observation and expert knowledge. Expanding on this LHLRA, we propose two iterative Bayesian network (BN) models to reduce uncertainty and allow for a probabilistic representation of the mechanistic interaction of the variables, built using data from 25 groundwater treatment plants. The risk of Legionella exposure in groundwater aeration units was quantified as a function of five critical areas including hydraulic conditions, nutrient availability and growth, water quality, system design (and maintenance), and location and access. First, the mechanistic relationship of the variables was conceptually mapped into a fishbone diagram, parameterised deterministically using an expert elicited weighted scoring system and translated into BN. The "sensitivity to findings" analysis of the BN indicated that system design was the most influential variable while elemental accumulation thresholds were the least influential variable for Legionella exposure. The diagnostic inference was used in high and low-risk scenarios to demonstrate the capabilities of the BNs to examine probable causes for diverse conditions. Subsequently, the causal relationship of Legionella growth and human exposure were improved through a conceptual bowtie representation. Finally, an improved model developed the predictors of Legionella growth and the risk of human exposure through the interaction of operational, water quality monitoring, operational parameters, and asset conditions. The use of BNs modelling based on risk estimation and improved functional decision outputs offer a complementary and more transparent alternative approach to quantitative analysis of uncertainties than the current LHLRA.
Collapse
Affiliation(s)
- Danladi Yunana
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW2052, Australia
| | - Stuart Maclaine
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW2052, Australia
| | - Keng Han Tng
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW2052, Australia
| | - Luke Zappia
- Water Corporation of Western Australia, WCWA, Leederville, WA6007, Australia
| | - Ian Bradley
- Water Corporation of Western Australia, WCWA, Leederville, WA6007, Australia
| | - David Roser
- Water Research Centre (WRC), Civil and Environmental Engineering, UNSW, Sydney, Australia
| | - Greg Leslie
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW2052, Australia
| | - C Raina MacIntyre
- The Biosecurity Program, The Kirby Institute, UNSW Medicine, UNSW, Sydney, Australia
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW2052, Australia.
| |
Collapse
|
14
|
Evaluation of Legiolert™ for the Detection of Legionella pneumophila and Comparison with Spread-Plate Culture and qPCR Methods. Curr Microbiol 2021; 78:1792-1797. [PMID: 33758992 DOI: 10.1007/s00284-021-02436-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Legionella pneumophila, the organism responsible for Legionnaires' disease, a potentially lethal pneumonia, is an opportunistic bacterium spread via inhalation of contaminated, aerosolized water. The detection and control of L. pneumophila is crucial to reduce the risk it poses to human health. L. pneumophila is generally detected and quantified by the plating method, ISO 11731:2017 and by qPCR. ISO 11731 is based on the filtration of the water sample through a membrane, which is placed on selective agar medium, and after colony growth, presumptive Legionella are then confirmed by subculturing, serology, or PCR. Quantitative Polymerase Chain Reaction (qPCR) is based on the amplification of a DNA sequence specific to L. pneumophila, usually within the mip gene. The objective of this study was to compare these methods to a new, liquid culture method based on the Most Probable Number (MPN) technique, Legiolert™/Quanti-Tray® with data obtained with ISO 11731 and a viability quantitative qPCR (v-qPCR), for quantification of L. pneumophila in potable and non-potable waters. Data showed that the Legiolert method revealed concentrations of L. pneumophila greater than ISO 11731 and generally similar results to those of v-qPCR. The Legiolert method was highly specific and easy to use, representing a significant advancement in the quantification of L. pneumophila from potable and non-potable waters.
Collapse
|
15
|
Exposure to SARS-CoV-2 in Aerosolized Wastewater: Toilet Flushing, Wastewater Treatment, and Sprinkler Irrigation. WATER 2021. [DOI: 10.3390/w13040436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The existence of SARS-CoV-2, the etiologic agent of coronavirus disease 2019 (COVID-19), in wastewater raises the opportunity of tracking wastewater for epidemiological monitoring of this disease. However, the existence of this virus in wastewater has raised health concerns regarding the fecal–oral transmission of COVID-19. This short review is intended to highlight the potential implications of aerosolized wastewater in transmitting this virus. As aerosolized SARS-CoV-2 could offer a more direct respiratory pathway for human exposure, the transmission of this virus remains a significant possibility in the prominent wastewater-associated bioaerosols formed during toilet flushing, wastewater treatment, and sprinkler irrigation. Implementing wastewater disinfection, exercising precautions, and raising public awareness would be essential. Additional research is needed to evaluate the survival, fate, and dissemination of SARS-CoV-2 in wastewater and the environment and rapid characterization of aerosols and their risk assessment.
Collapse
|
16
|
Xu P, Zhang C, Mou X, Wang XC. Bioaerosol in a typical municipal wastewater treatment plant: concentration, size distribution, and health risk assessment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1547-1559. [PMID: 33107849 DOI: 10.2166/wst.2020.416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An investigation on bioaerosol in a wastewater treatment plant (WWTP) located in Xi'an, China, was conducted to understand the characteristics of bioaerosol released from wastewater and sludge treatment facilities because the bioaerosols may pose a threat to human health. Using the Andersen impactor sampler collection and colony-counting method, bioaerosol concentrations and size distributions were detected. The risk quotient method was used to evaluate the health risks associated with inhalation of bioaerosol for WWTP staff, based on the average daily dose rates of exposure. The health risk in relation to Legionella pneumophila was quantitatively calculated using quantitative microbial risk assessment (QMRA), based on the assumption of the percentage. The maximum concentration of airborne bacteria (3,767 ± 280 colony forming units (CFU)/m3) and fungi (8,775 ± 406 CFU/m3) occurred from the aerated grit chamber and sludge thickening house, respectively, which all exceeded 500 CFU/m3 as the acceptable guideline proposed by the American Conference of Governmental Industrial Hygienists. The particle size of airborne bacteria was mainly distributed in the first three stages (>3.3 µm), while that of airborne fungi was from the second to the fourth stage (2.1-7.0 µm). The hazard index exposure to bioaerosol for adult males and females by inhalation were higher than 1. The proportion of L. pneumophila should be strictly controlled below 10-8, based on the QMRA approach.
Collapse
Affiliation(s)
- Pengcheng Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| | - Chongmiao Zhang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| | - Xiao Mou
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education; Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China E-mail:
| |
Collapse
|
17
|
Toberna CP, William HM, Kram JJF, Heslin K, Baumgardner DJ. Epidemiologic Survey of Legionella Urine Antigen Testing Within a Large Wisconsin-Based Health Care System. J Patient Cent Res Rev 2020; 7:165-175. [PMID: 32377550 DOI: 10.17294/2330-0698.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose Legionella pneumophila pneumonia is a life-threatening, environmentally acquired infection identifiable via Legionella urine antigen tests (LUAT). We aimed to identify cumulative incidence, demographic distribution, and undetected disease outbreaks of Legionella pneumonia via positive LUAT in a single eastern Wisconsin health system, with a focus on urban Milwaukee County. Methods A multilevel descriptive ecologic study was conducted utilizing electronic medical record data from a large integrated health care system of patients who underwent LUAT from 2013 to 2017. A random sample inclusive of all positive tests was reviewed to investigate geodemographic differences among patients testing positive versus negative. Statistical comparisons used chi-squared or 2-sample t-tests; stepwise regression followed by binary logistic regression was used for multivariable analysis. Positive cases identified by LUAT were mapped to locate hotspots; positive cases versus total tests performed also were mapped by zip code. Results Of all LUAT performed (n=21,599), 0.68% were positive. Among those in the random sample (n=11,652), positive cases by LUAT were more prevalent in the June-November time period (86.2%) and younger patients (59.4 vs 67.7 years) and were disproportionately male (70.3% vs 29.7%) (P<0.0001 for each). Cumulative incidence was higher among nonwhite race/ethnicity (1.91% vs 1.01%, P<0.0001) but did not remain significant on multivariable analysis. Overall, 5507 tests were performed in Milwaukee County zip codes, yielding 82 positive cases by LUAT (60.7% of all positive cases in the random sample). A potential small 2016 outbreak was identified. Conclusions Cumulative incidence of a positive LUAT was less than 1%. LUAT testing, if done in real time by cooperative health systems, may complement public health detection of Legionella pneumonia outbreaks.
Collapse
Affiliation(s)
- Caroline P Toberna
- Aurora Research Institute, Aurora Health Care, Milwaukee, WI.,Center for Urban Population Health, Milwaukee, WI.,Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI
| | - Hannah M William
- Center for Urban Population Health, Milwaukee, WI.,Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI
| | - Jessica J F Kram
- Center for Urban Population Health, Milwaukee, WI.,Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI.,Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kayla Heslin
- Aurora Research Institute, Aurora Health Care, Milwaukee, WI.,Center for Urban Population Health, Milwaukee, WI.,Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI
| | - Dennis J Baumgardner
- Center for Urban Population Health, Milwaukee, WI.,Aurora UW Medical Group, Aurora Health Care, Milwaukee, WI.,Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
18
|
Allegra S, Riffard S, Leclerc L, Girardot F, Stauffert M, Forest V, Pourchez J. A valuable experimental setup to model exposure to Legionella's aerosols generated by shower-like systems. WATER RESEARCH 2020; 172:115496. [PMID: 31972415 DOI: 10.1016/j.watres.2020.115496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The mechanism underlying Legionella aerosolization and entry into the respiratory tract remains poorly documented. In previous studies, we characterized the aerodynamic behaviour of Legionella aerosols and assessed their regional deposition within the respiratory tract using a human-like anatomical model. The aim of this study was to assess whether this experimental setup could mimic the exposure to bioaerosols generated by showers. To achieve this objective we performed experiments to measure the mass median aerodynamic diameter (MMAD) as well as the emitted dose and the physiological state of the airborne bacteria generated by a shower and two nebulizers (vibrating-mesh and jet nebulizers). The MMADs of the dispersed bioaerosols were characterized using a 12-stage cascade low-pressure impactor. The amount of dispersed airborne bacteria from a shower was quantified using a Coriolis® Delta air sampler and compared to the airborne bacteria reaching the thoracic region in the experimental setup. The physiological state and concentration of airborne Legionella were assessed by qPCR for total cells, culture for viable and cultivable Legionella (VC), and flow cytometry for viable but non-cultivable Legionella (VBNC). In summary, the experimental setup developed appears to mimic the bioaerosol emission of a shower in terms of aerodynamic size distribution. Compared to the specific case of a shower used as a reference in this study, the experimental setup developed underestimates by 2 times (when the jet nebulizer is used) or overestimates by 43 times (when the vibrating-mesh nebulizer is used) the total emitted dose of airborne bacteria. To our knowledge, this report is the first showing that an experimental model mimics so closely an exposure to Legionella aerosols produced by showers to assess human lung deposition and infection in well-controlled and safe conditions.
Collapse
Affiliation(s)
- Séverine Allegra
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France.
| | - Serge Riffard
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Françoise Girardot
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Magalie Stauffert
- University of Lyon, University Jean Monnet of Saint-Etienne, CNRS, EVS-ISTHME UMR 5600, F-42023, Saint-Etienne, France
| | - Valérie Forest
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| | - Jérémie Pourchez
- Mines Saint-Etienne, University of Lyon, University Jean Monnet of Saint-Etienne, INSERM, U 1059 Sainbiose, Centre CIS, F-42023, Saint-Etienne, France
| |
Collapse
|
19
|
Narain-Ford DM, Bartholomeus RP, Dekker SC, van Wezel AP. Natural Purification Through Soils: Risks and Opportunities of Sewage Effluent Reuse in Sub-surface Irrigation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 250:85-117. [PMID: 32939618 DOI: 10.1007/398_2020_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Dominique M Narain-Ford
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
- KWR Water Research Institute, Nieuwegein, The Netherlands.
| | - Ruud P Bartholomeus
- KWR Water Research Institute, Nieuwegein, The Netherlands
- Soil Physics and Land Management, Wageningen University & Research, Wageningen, The Netherlands
| | - Stefan C Dekker
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
- Department of Science, Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Fan P, Wang Y, Wang WH, Chai BH, Lu XX, Zhao JC. Release characteristics of nitrogen and phosphorus from sediments formed under different supplemental water sources in Xi'an moat, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10746-10755. [PMID: 30778936 DOI: 10.1007/s11356-019-04537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The endogenous release of nutrients from sediments contributes to the eutrophication of landscape water to a certain degree, which depends on the characteristics of sediments. The study explored the characteristics of nitrogen (N) and phosphorus (P) released from two different sediments, which were deposited from reclaimed water (SRW) or surface water (SSW) respectively in Xi'an moat. This paper aimed to compare the effects of nutrient release from SRW and SSW on the water quality. Results showed that the maximum increase rates reached 1.21 mg TN/(L·day) and 0.11 mg TP/(L·day), respectively, in the overlying water of SRW, which were 1.6 and 2.8 times those of SSW. The released amounts of SRW were 0.192 mg TN/g and 0.038 mg TP/g, which were 4.1 and 12.7 times those of SSW. Meanwhile, the densities of benthic algae in SRW and SSW were 5.605 × 109 and 2.846 × 108 cells/L, respectively. Moreover, the species number and individual sizes of benthic algae in SRW were also larger than those in SSW, which played an important role in the nitrogen circulation. Unexpectedly, oxidation reduction potential (ORP) level of SRW was lower than that of SSW, although SRW has a higher dissolved oxygen level. Therefore, the N and P concentrations in the overlying water of SRW were considerably higher than those of SSW, which was mainly attributed to the higher nutrient contents and lower ORP in SRW.
Collapse
Affiliation(s)
- Pan Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China.
| | - Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
| | - Bao-Hua Chai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
| | - Xin-Xin Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
| | - Jing-Chan Zhao
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
21
|
De Giglio O, Napoli C, Apollonio F, Brigida S, Marzella A, Diella G, Calia C, Scrascia M, Pacifico C, Pazzani C, Uricchio VF, Montagna MT. Occurrence of Legionella in groundwater used for sprinkler irrigation in Southern Italy. ENVIRONMENTAL RESEARCH 2019; 170:215-221. [PMID: 30594053 DOI: 10.1016/j.envres.2018.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Legionellae are opportunistic bacteria that cause various conditions after exposure to contaminated aerosols, ranging from a serious type of pneumonia to a mild case of an influenza-like illness. Despite the risks of exposure, little is known about the occurrence of Legionella in natural environments and, even though studies have shown that there is a potential risk of transmission via inhalation, it does not have to be detected in groundwater that is used for irrigation. The culture methods traditionally used to detect Legionella have several limits that can be partly solved by applying molecular techniques. Samples from 177 wells in Apulia, Southern Italy, were collected twice, in winter and in summer, and analyzed. When compared with the guidelines, 145 (81.9%) of the sampled wells were suitable for irrigation use. The culture-based method highlighted the presence of different species and serogroups of Legionella in 31 (21.2%) of the 145 wells that were shown to be suitable for irrigation use. A greater number of wells returned positive results for Legionella in summer than in winter (p = 0.023), and the median concentrations were mostly higher in summer (500 CFU/L) than in winter (300 CFU/L). The median temperature in the Legionella positive well waters was significantly higher than that in the negative ones, both in winter and in summer (p < 0.001). Using molecular techniques, Legionella non-pneumophila was found in 37 of the 114 wells earlier detected as suitable for irrigation use but negative for Legionella by the culture-based methods. The distribution of Legionella differ significantly in porous aquifers compared to the karst-fissured ones both with quantitative polymerase chain reaction (qPCR) (p = 0.0004) and viable cells by propidium monoazide (PMA-qPCR) (p = 0.0000). Legionella concentrations were weakly correlated with temperature of water both with qPCR (ρ = 0.47, p = 0.0033) and PMA-qPCR (ρ = 0.41, p = 0.0126). Our data suggest that water that aerosolizes when sprinkled on plants represents a potential source of Legionellosis, with a higher risk from exposure in summer. On a practical level, this finding is important for workers (farmers and gardeners) who are in contact with waters used for irrigation.
Collapse
Affiliation(s)
- Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Christian Napoli
- Department of Medical and Surgical sciences and translational Medicine, Sapienza University of Rome, Italy.
| | - Francesca Apollonio
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Silvia Brigida
- Water Research Institute, National Research Council, Bari, Italy.
| | - Angelo Marzella
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Carla Calia
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| | - Maria Scrascia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | - Claudia Pacifico
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Carlo Pazzani
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.
| | | | - Maria Teresa Montagna
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|