1
|
Yan A, Pan Z, Liang Y, Mo X, Guo T, Li J. Archaea communities in aerobic granular sludge: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174974. [PMID: 39053544 DOI: 10.1016/j.scitotenv.2024.174974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Recent research on the archaea community in aerobic granular sludge (AGS) has attracted considerable attention. This review summarizes the existing literature on composition, distribution, and related functions of archaea community in AGS. Furthermore, the effects of granulation, substrate, temperature, process types, and aeration models on the archaea community were discussed. Significantly, the layered structure of AGS facilitates the enrichment of archaea, including methanogenic archaea and ammonia-oxidizing archaea. Archaea engage in metabolic interactions with other microorganisms, enhancing the ecological functionalities of AGS and its tolerance to adverse conditions. Future investigations should focus on minimizing greenhouse gas emissions and exploring the roles and interactive mechanisms of archaea and other microorganisms within AGS.
Collapse
Affiliation(s)
- Anqi Yan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zengrui Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifan Liang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyan Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
3
|
Jampani M, Mateo-Sagasta J, Chandrasekar A, Fatta-Kassinos D, Graham DW, Gothwal R, Moodley A, Chadag VM, Wiberg D, Langan S. Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132527. [PMID: 37788551 DOI: 10.1016/j.jhazmat.2023.132527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments.
Collapse
Affiliation(s)
- Mahesh Jampani
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka.
| | - Javier Mateo-Sagasta
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Aparna Chandrasekar
- UFZ - Helmholtz Centre for Environmental Research, Department Computational Hydrosystems, Leipzig, Germany; Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Despo Fatta-Kassinos
- Civil and Environmental Engineering Department and Nireas International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Ritu Gothwal
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Arshnee Moodley
- International Livestock Research Institute (ILRI), Nairobi, Kenya; Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - David Wiberg
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| | - Simon Langan
- International Water Management Institute (IWMI), Battaramulla, Colombo, Sri Lanka
| |
Collapse
|
4
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
5
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
6
|
Kosar S, Isik O, Cicekalan B, Gulhan H, Cingoz S, Yoruk M, Ozgun H, Koyuncu I, van Loosdrecht MCM, Ersahin ME. Coupling high-rate activated sludge process with aerobic granular sludge process for sustainable municipal wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116549. [PMID: 36419284 DOI: 10.1016/j.jenvman.2022.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/28/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Achieving a neutral/positive energy balance without compromising discharge standards is one of the main goals of wastewater treatment plants (WWTPs) in terms of sustainability. Aerobic granular sludge (AGS) technology promises high treatment performance with low energy and footprint requirement. In this study, high-rate activated sludge (HRAS) process was coupled to AGS process as an energy-efficient pre-treatment option in order to increase energy recovery from municipal wastewater and decrease the particulate matter load of AGS process. Three different feeding strategies were applied throughout the study. AGS system was fed with raw municipal wastewater, with the effluent of HRAS process, and with the mixture of the effluent of HRAS process and raw municipal wastewater at Stage 1, Stage 2 and Stage 3, respectively. Total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total phosphorus (TP) concentrations in the effluent were less than 10 mg/L, 60 mg/L, 0.4 mg/L, and 1.3 mg/L respectively at all stages. Fluctuations were observed in the denitrification performance due to changes in the influent COD/total nitrogen (TN) ratio. This study showed that coupling HRAS process with AGS process by feeding the AGS process with the mixture of HRAS process effluent and raw municipal wastewater could be an appropriate option for both increasing the energy recovery potential of WWTPs and enabling high effluent quality.
Collapse
Affiliation(s)
- Sadiye Kosar
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey.
| | - Onur Isik
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Kahramanmaras Sutcu Imam University, Engineering and Architecture Faculty, Environmental Engineering Department, Onikisubat, 46100, Kahramanmaras, Turkey
| | - Busra Cicekalan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Hazal Gulhan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey
| | - Seyma Cingoz
- ISKI, Istanbul Water and Sewerage Administration, Eyup, 34060, Istanbul, Turkey
| | - Mustafa Yoruk
- ISKI, Istanbul Water and Sewerage Administration, Eyup, 34060, Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mark C M van Loosdrecht
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
7
|
Amoah ID, Kumari S, Bux F. A probabilistic assessment of microbial infection risks due to occupational exposure to wastewater in a conventional activated sludge wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156849. [PMID: 35728649 DOI: 10.1016/j.scitotenv.2022.156849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Exposure to pathogens during wastewater treatment could result in significant health risks. In this paper, a probabilistic approach for assessing the risks of microbial infection for workers in an activated sludge wastewater treatment plant is presented. A number of exposure routes were modelled, including hand-to-mouth and droplet ingestion of untreated wastewater, droplet ingestion and inhalation of aerosols after secondary treatment, and ingestion of sludge during drying. Almost all workers exposed to untreated wastewater could be infected with the three selected potential pathogens of pathogenic E. coli, Norovirus and Cryptosporidium spp. Hand-to-mouth ingestion is the single most significant route of exposure at the head of works. There is also a risk of infections resulting from ingestion of droplets or inhalation of aerosols at the aeration tanks or contaminated hands at the clarifiers during secondary wastewater treatment. For sludge, the risks of infection with Norovirus was found to be the highest due to accidental ingestion (median risks of 2.2 × 10-2(±3.3 × 10-3)). Regardless of the point and route of exposure, Norovirus and Cryptosporidium spp. presented the highest risks. The study finds that occupational exposure to wastewater at wastewater treatment plants can result in significant viral and protozoan infections. This risk assessment framework can be used to establish and measure the success of risk reduction measures in wastewater treatment plants. These measures could include the use of personal protective equipment and adherence to strict personal hygiene.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| |
Collapse
|
8
|
Araújo JM, Berzio S, Gehring T, Nettmann E, Florêncio L, Wichern M. Influence of temperature on aerobic granular sludge formation and stability treating municipal wastewater with high nitrogen loadings. ENVIRONMENTAL RESEARCH 2022; 212:113578. [PMID: 35649490 DOI: 10.1016/j.envres.2022.113578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the influence of temperature (20 and 30 °C) on the formation and stability of aerobic granules in sequential batch reactors (SBR). Therefore, two lab-scale SBRs operated at 20 and 30 °C (SBR20 and SBR30) were used. The reactors were fed with municipal wastewater (CODt:TN:TP 100:15:1.7), leading to mean organic loading rates (OLR) of 1.3 ± 0.4 kgCODt m-3 day-1. Both reactors had the same height/diameter ratio of 4.2 and were inoculated with activated sludge from a municipal wastewater treatment plant. The operational conditions were also the same for both temperatures and lasted in stable process parameters for over 100 days. By optimizing the aeration and oxygen concentration, a high removal efficiency of NH4-N (∼99%) and COD (∼90%) was achieved in both reactors, despite the poor C:N:P ratio at the influent. Furthermore, a relatively low oxygen concentration of 2 mg L-1 was defined as the set point for the control strategy. Nevertheless, granulation at 30 °C was significantly faster, resulting in more stable sludge volume index (SVI) values (SVI10/SVI30 < 1.1). The granules formed at 30 °C were also larger, more compact, and considerably more stable against system disturbances. However, at higher temperatures, larger granules might be required for nitrate removal because of the increased oxygen diffusion rates. Finally, microbiological 16S rRNA gene amplicon analysis for both systems indicated major differences relatively to the inoculum sludge only for nitrogen-degrading organisms.
Collapse
Affiliation(s)
- Julliana M Araújo
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil; Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Stephan Berzio
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Tito Gehring
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Edith Nettmann
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| | - Lourdinha Florêncio
- Federal University of Pernambuco, Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Av. Acadêmico Hélio Ramos s/n, Recife, 50740-530, Brazil.
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany.
| |
Collapse
|
9
|
Deng J, Jia M, Zeng YQ, Li W, He J, Ren J, Bai J, Zhang L, Li J, Yang S. Enhanced treatment of organic matter in slaughter wastewater through live Bacillus velezensis strain using nano zinc oxide microsphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118306. [PMID: 34634401 DOI: 10.1016/j.envpol.2021.118306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Slaughter wastewater is an important and wide range of environmental issues, and even threaten human health through meat production. A high efficiency and stability microsphere-immobilized Bacillus velezensis strain was designed to remove organic matter and inhibit the growth of harmful bacteria in process of slaughter wastewater. Bacillus velezensis was immobilized on the surface of sodium alginate (SA)/Polyvinyl alcohol (PVA)/Nano Zinc Oxide (Nano-ZnO) microsphere with the adhesion to bio-carrier through direct physical adsorption. Results indicated that SA/PVA/ZnO and SA/ZnO microspheres could inhibit E.coli growth with adding 0.15 g/L nano-ZnO and not affect Bacillus velezensis strain, and the removal the chemical oxygen demand (COD) rates of SA/PVA/ZnO microsphere immobilized cells are 16.99%, followed by SA/ZnO (13.69%) and free bacteria (7.61%) from 50% concentration slaughter wastewater within 24 h at 37 °C, pH 7.0, and 120 rpm, a significant difference was found between the microsphere and control group. Moreover, when the processing time reaches 36 h, COD degradation of SA/PVA/ZnO microsphere is obviously higher than other groups (SA/PVA/ZnO:SA/ZnO:control vs 18.535 : 15.446: 10.812). Similar results were obtained from 30% concentration slaughter wastewater. Moreover, protein degradation assay was detected, and there are no significant difference (SA/PVA/ZnO:SA/ZnO:control vs 35.4 : 34.4: 36.0). The design of this strategy could greatly enhance the degradation efficiency, inhibit the growth of other bacteria and no effect on the activity of protease in slaughter wastewater. These findings suggested that the nano-ZnO hydrogel immobilization Bacillus velezensis system wastewater treatment is a valuable alternative method for the remediation of pollutants from slaughter wastewater with a novel and eco-friendly with low-cost investment as an advantage.
Collapse
Affiliation(s)
- Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Mingxi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yu Qing Zeng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, 412007, Hunan, China.
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiali Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Lin Zhang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Juan Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Sheng Yang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
10
|
Yu C, Wang K, Tian C, Yuan Q. Aerobic granular sludge treating low-strength municipal wastewater: Efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148297. [PMID: 34153768 DOI: 10.1016/j.scitotenv.2021.148297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Low organic load while high fraction of particulates still challenging the application of aerobic granular sludge process in low-strength municipal wastewater treatment. The feasibility of adopting short cycle length to increase organic load and hydrolysis-acidification pretreatment to enhance anaerobic COD uptake was evaluated. As the cycle length decreased from 4 h to 2 h, the organic loading rate increased from 0.98 to 1.3 g L-1 d-1 and granulation appeared after two weeks. Moreover, with the hydrolysis-acidification pretreatment, the average effluent TN and TP concentrations decreased respectively from 17.8 to 13.7 mg L-1 and 0.76 to 0.41 mg L-1, meeting the Grade IA of the effluent standards in China. Furthermore, cycle tests were conducted to reveal the underlying mechanism of the pretreatment effects. The results showed that the hydrolysis-acidification pretreatment enhanced the COD storage and phosphorus release in anaerobic phase, and improved the simultaneous nitrification-denitrification process, as well as the phosphorus uptake in aeration phase.
Collapse
Affiliation(s)
- Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Chen Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
11
|
Uluseker C, Kaster KM, Thorsen K, Basiry D, Shobana S, Jain M, Kumar G, Kommedal R, Pala-Ozkok I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front Microbiol 2021; 12:717809. [PMID: 34707579 PMCID: PMC8542863 DOI: 10.3389/fmicb.2021.717809] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/15/2021] [Indexed: 11/15/2022] Open
Abstract
This paper reviews current knowledge on sources, spread and removal mechanisms of antibiotic resistance genes (ARGs) in microbial communities of wastewaters, treatment plants and downstream recipients. Antibiotic is the most important tool to cure bacterial infections in humans and animals. The over- and misuse of antibiotics have played a major role in the development, spread, and prevalence of antibiotic resistance (AR) in the microbiomes of humans and animals, and microbial ecosystems worldwide. AR can be transferred and spread amongst bacteria via intra- and interspecies horizontal gene transfer (HGT). Wastewater treatment plants (WWTPs) receive wastewater containing an enormous variety of pollutants, including antibiotics, and chemicals from different sources. They contain large and diverse communities of microorganisms and provide a favorable environment for the spread and reproduction of AR. Existing WWTPs are not designed to remove micropollutants, antibiotic resistant bacteria (ARB) and ARGs, which therefore remain present in the effluent. Studies have shown that raw and treated wastewaters carry a higher amount of ARB in comparison to surface water, and such reports have led to further studies on more advanced treatment processes. This review summarizes what is known about AR removal efficiencies of different wastewater treatment methods, and it shows the variations among different methods. Results vary, but the trend is that conventional activated sludge treatment, with aerobic and/or anaerobic reactors alone or in series, followed by advanced post treatment methods like UV, ozonation, and oxidation removes considerably more ARGs and ARB than activated sludge treatment alone. In addition to AR levels in treated wastewater, it examines AR levels in biosolids, settled by-product from wastewater treatment, and discusses AR removal efficiency of different biosolids treatment procedures. Finally, it puts forward key-points and suggestions for dealing with and preventing further increase of AR in WWTPs and other aquatic environments, together with a discussion on the use of mathematical models to quantify and simulate the spread of ARGs in WWTPs. Mathematical models already play a role in the analysis and development of WWTPs, but they do not consider AR and challenges remain before models can be used to reliably study the dynamics and reduction of AR in such systems.
Collapse
Affiliation(s)
- Cansu Uluseker
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Krista Michelle Kaster
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Kristian Thorsen
- Department of Electrical Engineering and Computer Science, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Daniel Basiry
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Sutha Shobana
- Department of Chemistry and Research Centre, Aditanar College of Arts and Science, Tiruchendur, India
| | - Monika Jain
- Department of Natural Resource Management, College of Forestry, Banda University of Agricultural and Technology, Banda, India
| | - Gopalakrishnan Kumar
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Roald Kommedal
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| |
Collapse
|
12
|
Tavares Ferreira TJ, Luiz de Sousa Rollemberg S, Nascimento de Barros A, Machado de Lima JP, Bezerra Dos Santos A. Integrated review of resource recovery on aerobic granular sludge systems: Possibilities and challenges for the application of the biorefinery concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112718. [PMID: 33962280 DOI: 10.1016/j.jenvman.2021.112718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Aerobic Granular Sludge (AGS) is a biological treatment technology that has been extensively studied in the last decade. The possibility of resource recovery has always been highlighted in these systems, but real-scale applications are still scarce. Therefore, this paper aimed to present a systematic review of resources recovery such as water, energy, chemicals, raw materials, and nutrients from AGS systems, also analyzing aspects of engineering and economic viability. In the solid phase, sludge application in agriculture is an interesting possibility. However, the biosolids' metal concentration (the granules have high adsorption capacity due to the high concentration of extracellular polymeric substances, EPS) may be an issue. Another possibility is the recovery of Polyhydroxyalkanoates (PHAs) and Alginate-like exopolymers (bio-ALE) in the solid phase, emphasizing the last one, which has already been made in some Wastewater Treatment Plants (WWTPs), named and patented as Kaumera® process. The Operational Expenditure (OPEX) can be reduced by 50% in the WWTP when recovery of ALE is made. The ALE recovery reduced sludge yield by up to 35%, less CO2 emissions, and energy saving. Finally, the discharged sludge can also be evaluated to be used for energetic purposes via anaerobic digestion (AD) or combustion. However, the AD route has faced difficulties due to the low biodegradability of aerobic granules.
Collapse
Affiliation(s)
| | | | - Amanda Nascimento de Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Pedro Machado de Lima
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality requirements? Int J Food Microbiol 2021; 356:109352. [PMID: 34385095 DOI: 10.1016/j.ijfoodmicro.2021.109352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
The new European regulation on minimum quality requirements (MQR) for water reuse (EU, 2020/741) was launched in May 2020 and describes the directives for the use of reclaimed water for agricultural irrigation. This Regulation will be directly applicable in all Member States from 26 June 2023. Since its publication in 2020, concerns have raised about potential non-compliance situations in water reuse systems. The present study represents a case study where three different water reuse systems have been monitored to establish their compliance with the MQR. Each water reuse system includes a wastewater treatment plant (WWTP), a distribution/storage system and an end-user point, where water is used for irrigation of leafy greens. The selected water reuse systems allowed us to compare the efficacy of water treatments implemented in two WWTPs as well as the impact of three different irrigation systems (drip, furrow and overhead irrigation). The presence and concentration of indicator microorganisms (Escherichia coli and C. perfringens spores) as well as pathogenic bacteria (Shiga toxin-producing, E. coli (STEC), E. coli O157:H7, and Salmonella spp.) were monitored in different sampling points (influent and effluent of the WWTPs, water reservoirs located at the distribution system and the end-user point at the irrigation system as well as in the leafy greens during their growing cycle. Average levels of E. coli (0.73 ± 1.20 log cfu E. coli/100 mL) obtained at the point where the WWTP operator delivers reclaimed water to the next actor in the chain, defined in the European regulation as the 'point of compliance', were within the established MQR (<1 log cfu/100 mL) (EU, 2020/741). On the other hand, average levels of E. coli at the end-user point (1.0 ± 1.2 log cfu/100 mL) were below the recommended threshold (2 log cfu E. coli/100 mL) for irrigation water based on the guidance document on microbiological risks in fresh fruits and vegetables at primary production (EC, 2017/C_163/01). However, several outlier points were observed among the samples taken at the irrigation point, which were linked to a specific cross-contamination event within the distribution/storage system. Regarding pathogenic bacteria, water samples from the influent of the WWTPs showed a 100% prevalence, while only 5% of the effluent samples were positive for any of the monitored pathogenic bacteria. Obtained results indicate that reclaimed water produced in the selected water reuse system is suitable to be used as irrigation water. However, efforts are necessary not only in the establishment of advance disinfection treatments but also in the maintenance of the distribution/storage systems.
Collapse
|
14
|
Palatsi J, Ripoll F, Benzal A, Pijuan M, Romero-Güiza MS. Enhancement of biological nutrient removal process with advanced process control tools in full-scale wastewater treatment plant. WATER RESEARCH 2021; 200:117212. [PMID: 34029870 DOI: 10.1016/j.watres.2021.117212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
One of the major challenges in existing WasteWater Treatment Plants (WWTPs) is to comply with the increasingly stringent nutrient discharge limits established by the competent authorities to enhance environmental protection, while keeping operation costs as low as possible. This paper describes the results obtained from upgrading a full-scale WWTP during seven years (2013-2020) applying five different Advanced Process Control (APC) strategies. Results show that implementation of APC and the development of ammonia-based aeration control, aeration/non-aeration cycles, improved internal/external recirculation and chemical dosage controls resulted in an improvement in nutrients removal rates (+25.48% and +9.25%, for nitrogen and phosphorus, respectively) and in a reduction (-21.79%) of the specific energy ratio. In addition, the promotion of an Enhanced Biological Phosphorous Removal (EBPR) process by APC resulted in an improvement in biological phosphorous removal (+43.90%), chemical savings (-20.00%) and nutrient recovery in the dewatered sludge. Molecular biology tools and laboratory batch tests confirmed the Polyphosphate Accumulating Organisms (PAOs) activity, specifically Tetrasphaera genera. Finally, an economic analysis was conducted, showing a rate of return for the incurred capital expenses with the implemented APC systems of about five years, being an affordable alternative to the upgrading existing WWTPs.
Collapse
Affiliation(s)
- Jordi Palatsi
- AQUALIA. Production Area. Cami Sot de Fontanet, 29. 25197, Lleida, Spain.
| | - Ferran Ripoll
- Createch360, Costa d`en Paratge, 22-2°. 08500, Vic-Barcelona, Spain
| | - Albert Benzal
- Createch360, Costa d`en Paratge, 22-2°. 08500, Vic-Barcelona, Spain
| | - Maite Pijuan
- ICRA, Catalan Institute for Water Research, Emili Grahit 101. 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | | |
Collapse
|
15
|
New Advances in Aerobic Granular Sludge Technology Using Continuous Flow Reactors: Engineering and Microbiological Aspects. WATER 2021. [DOI: 10.3390/w13131792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.
Collapse
|
16
|
Barrios-Hernández ML, Bettinelli C, Mora-Cabrera K, Vanegas-Camero MC, Garcia H, van de Vossenberg J, Prats D, Brdjanovic D, van Loosdrecht MCM, Hooijmans CM. Unravelling the removal mechanisms of bacterial and viral surrogates in aerobic granular sludge systems. WATER RESEARCH 2021; 195:116992. [PMID: 33714012 DOI: 10.1016/j.watres.2021.116992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The aerobic granular sludge (AGS) process is an effective wastewater treatment technology for organic matter and nutrient removal that has been introduced in the market rapidly. Until now, limited information is available on AGS regarding the removal of bacterial and viral pathogenic organisms present in sewage. This study focussed on determining the relation between reactor operational conditions (plug flow feeding, turbulent aeration and settling) and physical and biological mechanisms on removing two faecal surrogates, Escherichia coli and MS2 bacteriophages. Two AGS laboratory-scale systems were separately fed with influent spiked with 1.0 × 106 CFU/100 mL of E. coli and 1.3 × 108 PFU/100 mL of MS2 bacteriophages and followed during the different operational phases. The reactors contained only granular sludge and no flocculent sludge. Both systems showed reductions in the liquid phase of 0.3 Log10 during anaerobic feeding caused by a dilution factor and attachment of the organisms on the granules. Higher removal efficiencies were achieved during aeration, approximately 1 Log10 for E. coli and 0.6 Log10 for the MS2 bacteriophages caused mainly by predation. The 18S sequencing analysis revealed high operational taxonomic units (OTUs) of free-living protozoa genera Rhogostoma and Telotrochidium concerning the whole eukaryotic community. Attached ciliates propagated after the addition of the E. coli, an active contribution of the genera Epistylis, Vorticella, and Pseudovorticella was found when the reactor reached stability. In contrast, no significant growth of predators occurred when spiking the system with MS2 bacteriophages, indicating a low contribution of protozoa on the phage removal. Settling did not contribute to the removal of the studied bacterial and viral surrogates.
Collapse
Affiliation(s)
- Mary Luz Barrios-Hernández
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago, 159-7050, Costa Rica.
| | - Carolina Bettinelli
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Karen Mora-Cabrera
- Institute of the Water and the Environmental Sciences, University of Alicante, 03690, Alicante, Spain
| | - Maria-Clara Vanegas-Camero
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Hector Garcia
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Jack van de Vossenberg
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| | - Daniel Prats
- Institute of the Water and the Environmental Sciences, University of Alicante, 03690, Alicante, Spain
| | - Damir Brdjanovic
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Christine M Hooijmans
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
| |
Collapse
|
17
|
Jiang Y, Huang H, Tian Y, Yu X, Li X. Stochasticity versus determinism: Microbial community assembly patterns under specific conditions in petrochemical activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124372. [PMID: 33338810 DOI: 10.1016/j.jhazmat.2020.124372] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
The pattern of microbial community assembly in petrochemical sludge is not well-explained. In this study, three kinds of petrochemical activated sludge (AS) from the same seed sludge were investigated to determine their microbial assembly pattern for long-term adaptation. Beta Nearest Taxon Index analysis revealed that the assembly strategies of the abundant and rare operational taxonomic unit (OTU) sub-communities are different for archaeal and bacterial communities. Abundant OTUs preferred deterministic processes, whereas rare OTUs randomly formed due to weak selection. Canonical correspondence analysis/variation partition analysis and Mantel testing results revealed that ammonium, petroleum, and chromium (Cr (VI)) mainly structured the abundant sub-communities. On the other hand, environmental variables, including ammonium, petroleum, and heavy metals, shaped the rare sub-communities. The PICRUSt2 tool was used to predict the functions. Results indicated a greater abundance of microbes harboring the hydrocarbon degradation pathway and heavy-metal-resistant enzymes. Cross-treatment experiments using one type of AS to treat the other two kinds of wastewater were conducted. The results of the cross-treatment experiments and qPCR both suggest the functional adaptation of the microbial community. We revealed selection strategies for the adaptation of bacteria and archaea in AS during environmental changes, providing a theoretical basis for petrochemical wastewater treatment.
Collapse
Affiliation(s)
- Yiming Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Haiying Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology, Helmholtz Center Munich/ Technical University of Munich, Germany
| | - Yanrong Tian
- Sewage Disposal Plant, Lanzhou Petrochemical Company, PetroChina, Huanxingdonglu #88, Lanzhou, Gansu 730060, PR China
| | - Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
18
|
Wang M, Chen H, Liu S, Xiao L. Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143014. [PMID: 33190880 DOI: 10.1016/j.scitotenv.2020.143014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
In wastewater treatment plants, most of the pathogens and antibiotic resistant genes (ARGs) transferred into and concentrated in waste activated sludge (WAS), which would cause severe public health risks. In this study, the capabilities of several WAS pre-treatment approaches to inactivate coliforms/E. coli and ARGs, as well as the subsequent regrowth of coliforms/E. coli and ARGs/intI1 in treated sludge were investigated. The results showed that electro-Fenton (EF), with continuous hydroxyl radical generation, could efficiently inactivate coliforms/E. coli in 60 min (about 4 log units), followed by methanol (MT), anode oxidization (AO), and acidification (AT). Kinetic analysis showed that the inactivation mainly occurred in the first 10 min. However, the efficiencies of all studied pre-treatment approaches on inactivating ARGs/intI1 (<2 log units) were lower than coliforms/E. coli, whilst EF still had the highest efficiency of ARGs/intI1 reduction. Mechanical ultrasound treatment (ULS) could not inactivate coliforms/E. coli in WAS, but it could efficiently reduce ARGs/intI1. High regrowth rates of coliforms/E. coli were observed in the treated WAS in 10 days, but the abundances of ARGs/intI1 continuously reduced during the after-treatment incubation. Our study showed that EF could efficiently disinfect potential pathogens, however, the reduction of ARGs/intI1 in WAS need further investigation.
Collapse
Affiliation(s)
- Min Wang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiping Chen
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shulei Liu
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Xiao
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
19
|
Thwaites BJ, Stuetz R, Short M, Reeve P, Alvarez-Gaitan JP, Dinesh N, Philips R, van den Akker B. Analysis of nitrous oxide emissions from aerobic granular sludge treating high saline municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143653. [PMID: 33310220 DOI: 10.1016/j.scitotenv.2020.143653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Conventional activated sludge (CAS)-based wastewater treatment processes have the potential to emit high concentrations of nitrous oxide (N2O) during nitrification and denitrification, which can significantly impact the environmental performance and carbon footprint of wastewater treatment operations. While N2O emissions from CAS have been extensively studied, there is little knowledge of N2O emissions from aerobic granular sludge (AGS) which is now an increasingly popular secondary treatment alternative. The N2O emissions performance of AGS needs to be investigated to ensure that the positive benefits of AGS, such as increased capacity and stable nutrient removal, are not offset by higher emissions. This study quantified N2O emissions from a pilot-scale AGS reactor operated under a range of organic loading rates. A second CAS pilot plant was operated in parallel and under identical loading rates to allow for side-by-side comparison of N2O emissions from floc-based activated sludge. Under low loadings of <0.6 kg COD/m3/d the N2O emission factor from AGS and CAS were similar, at around 1.46 ± 0.1% g N2Oemitted/g ammonium loaded. A step increase in the organic loading rate increased N2O emissions from AGS more so than CAS which appeared to be attributed to the reactor feeding strategy that was required for AGS formation. The use of a separate anaerobic feeding phase which was followed by the aeration phase, resulted in extended periods of low dissolved oxygen (DO) concentrations combined with an initial high biomass ammonium loading rate, which favours N2O production and was exacerbated at higher organic loads. Conversely, the combined feeding plus aeration operation (aerobic feed) employed by the CAS system enabled a more even biomass ammonium loading rate and DO supply. This work has shown that while AGS has many operational benefits, the impacts that aeration profile, loading rate and feeding strategy have on N2O emissions must be considered.
Collapse
Affiliation(s)
- Benjamin J Thwaites
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Richard Stuetz
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Short
- Future Industries Institute, University of South Australia, Mawson Lakes 5095, South Australia, Australia
| | - Petra Reeve
- South Australian Water Corporation, Adelaide, 5000, South Australia, Australia
| | - Juan-Pablo Alvarez-Gaitan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nirmala Dinesh
- South Australian Water Corporation, Adelaide, 5000, South Australia, Australia
| | - Renae Philips
- South Australian Water Corporation, Adelaide, 5000, South Australia, Australia
| | - Ben van den Akker
- South Australian Water Corporation, Adelaide, 5000, South Australia, Australia; Health and Environment Group, School of the Environment, Flinders University, Bedford Park, 5042, South Australia, Australia; School of Natural and Built Environments, University of South Australia, Mawson Lakes 5095, South Australia, Australia
| |
Collapse
|
20
|
Di Iaconi C, De Sanctis M, Altieri VG. Full-scale sludge reduction in the water line of municipal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110714. [PMID: 32560980 DOI: 10.1016/j.jenvman.2020.110714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, sludge management represents one of the most critical challenges in the field of sewage treatment for economic and environmental impacts. Therefore, the reduction of sludge has become a major issue for the operators of municipal wastewater treatment plants. In the present paper, a new system, whose acronym is MULESL (MUch LEss SLudge), is proposed and tested at full scale for reducing the quantity of sludge in the water line of the sewage treatment plant. MULESL system takes the advantage of maintenance metabolism to significantly reduce the sludge production. The effectiveness of MULESL system in removing the typical pollutants and reducing sludge production was evaluated at full scale by using 3500 PE unit located in Putignano's WWTP (Puglia, Italy). This unit was obtained by retrofitting an existing activated sludge basin. The results obtained over 1-year period, during which MULESL unit treated the effluent of the preliminary treatment step, have indicated that it was characterized by a specific sludge production as low as 0.13 kg of dry sludge per kg of COD removed; 77% lower than that recorded for primary and secondary treatments of the conventional plant during the same period. This sludge reduction was obtained with a plant volume 27% smaller than that of the conventional water line. Furthermore, the organic matter of the sludge was already stabilized, thus allowing to save investment costs for digestion process facilities. Finally, MULESL unit guaranteed a mean removal efficiency higher than 95% for COD, BOD5, TSS, TKN, NH3 and TN.
Collapse
Affiliation(s)
- Claudio Di Iaconi
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70123, Bari, Italy.
| | - Marco De Sanctis
- Water Research Institute, C.N.R, Viale F. De Blasio 5, 70123, Bari, Italy
| | | |
Collapse
|
21
|
Aerobic granular-based technology for water and energy recovery from municipal wastewater. N Biotechnol 2020; 56:71-78. [DOI: 10.1016/j.nbt.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022]
|
22
|
Barrios-Hernández ML, Pronk M, Garcia H, Boersma A, Brdjanovic D, van Loosdrecht MC, Hooijmans CM. Removal of bacterial and viral indicator organisms in full-scale aerobic granular sludge and conventional activated sludge systems. WATER RESEARCH X 2020; 6:100040. [PMID: 31909394 PMCID: PMC6940708 DOI: 10.1016/j.wroa.2019.100040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 05/07/2023]
Abstract
The aim of this study was to evaluate the effectiveness of the novel aerobic granular sludge (AGS) wastewater treatment technology in removing faecal indicator organisms (FIOs) compared to the conventional activated sludge (CAS) treatment system. The work was carried out at two full-scale wastewater treatment plants (WWTP) in the Netherlands, Vroomshoop and Garmerwolde. Both treatment plants have a CAS and AGS system operated in parallel. The parallel treatment lines are provided with the same influent wastewater. The concentrations of the measured FIOs in the influent of the two WWTPs were comparable with reported literature values as follows: F-specific RNA bacteriophages at 106 PFU/100 mL, and Escherichia coli (E. coli), Enterococci, and Thermotolerant coliforms (TtC) at 105 to 106 CFU/100 mL. Although both systems (CAS and AGS) are different in terms of design, operation, and microbial community, both systems showed similar FIOs removal efficiency. At the Vroomshoop WWTP, Log10 removals for F-specific RNA bacteriophages of 1.4 ± 0.5 and 1.3 ± 0.6 were obtained for the AGS and CAS systems, while at the Garmerwolde WWTP, Log10 removals for F-specific RNA bacteriophages of 1.9 ± 0.7 and 2.1 ± 0.7 were found for the AGS and CAS systems. Correspondingly, E. coli, Enterococci, and TtC Log10 removals of 1.7 ± 0.7 and 1.1 ± 0.7 were achieved for the AGS and CAS systems at Vroomshoop WWTP. For Garmerwolde WWTP Log10 removals of 2.3 ± 0.8 and 1.9 ± 0.7 for the AGS and CAS systems were found, respectively. The measured difference in removal rates between the plants was not significant. Physicochemical water quality parameters, such as the concentrations of organic matter, nutrients, and total suspended solids (TSS) were also determined. Overall, it was not possible to establish a direct correlation between the physicochemical parameters and the removal of FIOs for any of the treatment systems (CAS and AGS). Only the removal of TSS could be positively correlated to the E. coli removal for the AGS technology at the evaluated WWTPs.
Collapse
Affiliation(s)
- Mary Luz Barrios-Hernández
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
- Corresponding author. Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
- Royal HaskoningDHV B.V., P.O Box 1132, 3800, BC, Amersfoort, the Netherlands
| | - Hector Garcia
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| | - Arne Boersma
- Royal HaskoningDHV B.V., P.O Box 1132, 3800, BC, Amersfoort, the Netherlands
| | - Damir Brdjanovic
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Mark C.M. van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - Christine M. Hooijmans
- Department of Environmental Engineering and Water Technology, IHE-Delft Institute for Water Education, P.O. Box 3015, 2601, DA, Delft, the Netherlands
| |
Collapse
|
23
|
Sharaf A, Guo B, Liu Y. Impact of the filamentous fungi overgrowth on the aerobic granular sludge process. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Zhang S, He Z, Meng F. Floc-size effects of the pathogenic bacteria in a membrane bioreactor plant. ENVIRONMENT INTERNATIONAL 2019; 127:645-652. [PMID: 30991220 DOI: 10.1016/j.envint.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The size nature of sludge flocs could affect the occurrence and distribution of bacterial pathogens in wastewater treatment plants (WWTPs). In this study, the floc-size dependence of bacterial pathogens in the activated sludge of a WWTP was investigated using high-throughput metagenomic sequencing approaches. The results showed that a total of 423 pathogenic species belonging to 123 genera were identified in the three size-fractionated flocs. Also, we found that all the pathogens on the WHO's global priority pathogens list were detected in the size-fractionated flocs, with relative abundance of 0.4%, 0.3% and 0.3% for large-size, medium-size and small-size flocs, respectively, indicating the severe human and environmental health risks of activated sludge. Importantly, our results revealed that the pathogenic species showed a clear floc-size dependent distribution manner, leading to significant differences (P < 0.05) of pathogenic communities among the size-fractionated flocs. Additionally, by partitioning pathogens based on the occurrence and significant difference in abundances, we suggested the following distribution features: 1) large flocs-associated pathogens, such as Borrelia recurrentis, Actinobacillus ureae and Campylobacter gracilis; 2) medium flocs-associated pathogens, such as Mycobacterium szulgai and Ureaplasma urealyticum; and 3) small flocs-associated pathogens, such as Rickettsia akari, Staphylococcus anginosus and Helicobacter cinaedi. Overall, this study provides a comprehensive understanding of pathogens in activated sludge, which is expected to aid in assessment and management of pathogen risks.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhili He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|