1
|
Shi X, Duan Z, Zhou W, Jiang M, Li T, Ma H, Zhu X. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. CHEMOSPHERE 2023; 318:137982. [PMID: 36716938 DOI: 10.1016/j.chemosphere.2023.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The simultaneous and efficient removal of various heavy metals from wastewater to satisfy the requirements of zero discharge has been a research hotspot and difficult point. In the laboratory scale (0.5 L), the biocathode microbial electrolytic cells (BCMECs) were constructed with the pre-screened heavy metal-tolerant electroactive bacterial, mainly of the Sphingomonas, Azospira and Cupriavidus. The BCMECs system showed a more satisfactory removal effect for multiple heavy metals and organic pollutants. At the auxiliary voltage of 0.9 V and initial concentration of 20 mg L-1, the removal efficiency of Cu, Pb, Zn, Cd and COD were 98.76 ± 0.32%, 98.01 ± 0.76%, 73.58 ± 4.83%, 84.39 ± 5.95%, 77.55 ± 1.51%, respectively. It was found by various characterization techniques (CV, EIS, XPS et al.) that the constructed biocathode has the function of electrocatalytic reduction of heavy metal ions in a micro-aerobic, film-free environment. The positive shift (0.030-0.229 V) of the initial potential for heavy metal reduction and the absence of a significant increase (< 10 Ω) in the interfacial resistance indicated a reduction in the total free energy of the reduction reaction, which promotes the reaction and improves the efficiency of heavy metal removal. Bacterial community analysis revealed that the Proteobacteria has been dominant in different heavy metal environments. With the increase of heavy metal concentration, Sphingomonas, Azospira and Cupriavidus showed stronger tolerance and became the dominant genus. This study emphasized the important performance of biocathodes and the effective treatment of heavy metal wastewaters by BCMECs and provided a reasonable way for industrial and mining enterprises to innovate the water treatment process.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zhengyang Duan
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Wenyi Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Hongyan Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xuan Zhu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| |
Collapse
|
2
|
Feng S, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Zhang X, Bui XT, Varjani S, Hoang BN. Wastewater-derived biohydrogen: Critical analysis of related enzymatic processes at the research and large scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158112. [PMID: 35985587 DOI: 10.1016/j.scitotenv.2022.158112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Organic-rich wastewater is a feasible feedstock for biohydrogen production. Numerous review on the performance of microorganisms and the diversity of their communities during a biohydrogen process were published. However, there is still no in-depth overview of enzymes for biohydrogen production from wastewater and their scale-up applications. This review aims at providing an insightful exploration of critical discussion in terms of: (i) the roles and applications of enzymes in wastewater-based biohydrogen fermentation; (ii) systematical introduction to the enzymatic processes of photo fermentation and dark fermentation; (iii) parameters that affect enzymatic performances and measures for enzyme activity/ability enhancement; (iv) biohydrogen production bioreactors; as well as (v) enzymatic biohydrogen production systems and their larger scales application. Furthermore, to assess the best applications of enzymes in biohydrogen production from wastewater, existing problems and feasible future studies on the development of low-cost enzyme production methods and immobilized enzymes, the construction of multiple enzyme cooperation systems, the study of biohydrogen production mechanisms, more effective bioreactor exploration, larger scales enzymatic biohydrogen production, and the enhancement of enzyme activity or ability are also addressed.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh city 70000, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Bich Ngoc Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
3
|
Zhang J, Chang H, Li X, Jiang B, Wei T, Sun X, Liang D. Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89727-89737. [PMID: 35857167 DOI: 10.1007/s11356-022-22095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrolysis cells (MECs) are considered as green technologies for H2 production with simultaneously wastewater treatment. Low H2 recovery and production rate are two key bottlenecks of MECs fed with real H2 fermentation effluent of biomass wastes. This work established a 1 L cylindrical single chamber MEC and enriched electroactive anodic biofilms from cow dung compost to overcome the bottlenecks. These MEC components (platinum-coated cylindrical titanium mesh cathode and cylindrical graphite felt anode) were arranged in a concentric configuration. A high H2 production rate of 6.26 ± 0.23 L L-1 day-1 with H2 yield of 5.75 ± 0.16 L H2 L-1 fermentation effluent was achieved at 0.8 V. The degradation of acetate and butyrate (main components of H2 fermentation effluent) could reach to 95.3 ± 2.1% and 78.4 ± 3.6%, respectively. The microbial community analysis for anode showed the abundance of Geobacter (22.6%), Syntrophomonas (8.7%), and Dysgonomonas (6.3%) which are responsible to complex substrate oxidation, electrical current generation, and H2 production. These results prove the feasibility of cylindrical single-chamber MEC for high H2 production rate and high acetate and butyrate removal from H2 fermentation effluent.
Collapse
Affiliation(s)
- Jingnan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
| | - Hanghang Chang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
| | - Xiaohu Li
- School of Space and Environment, Beihang University, Beijing, 100191, People's Republic of China.
| | - Baoxuan Jiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Tao Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Xincheng Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450000, People's Republic of China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan, 450000, People's Republic of China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou, Henan, 450002, People's Republic of China
| | - Dawei Liang
- School of Space and Environment, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
4
|
Song S, Huang L, Zhou P. Efficient H2 production in a ZnFe2O4/g-C3N4 photo-cathode single-chamber microbial electrolysis cell. Appl Microbiol Biotechnol 2022; 107:391-404. [DOI: 10.1007/s00253-022-12293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/13/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
5
|
Wang S, Adekunle A, Raghavan V. Bioelectrochemical systems-based metal removal and recovery from wastewater and polluted soil: Key factors, development, and perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115333. [PMID: 35617867 DOI: 10.1016/j.jenvman.2022.115333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) are considered efficient and sustainable technologies for bioenergy generation and simultaneously removal/recovery metal (loid)s from soil and wastewater. However, several current challenges of BES-based metal removal and recovery, especially concentrating target metals from complex contaminated wastewater or soil and their economic feasibility of engineering applications. This review summarized the applications of BES-based metal removal and recovery systems from wastewater and contaminated soil and evaluated their performances on electricity generation and metal removal/recovery efficiency. In addition, an in depth review of several key parameters (BES configurations, electrodes, catalysts, metal concentration, pH value, substrate categories, etc.) of BES-based metal removal and recovery was carried out to facilitate a deep understanding of their development and to suggest strategies for scaling up their specific application fields. Finally, the future intervention on multifunctional BES to improve their performances of mental removal and recovery were revealed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Yu H, Huang L, Zhang G, Zhou P. Physiological metabolism of electrochemically active bacteria directed by combined acetate and Cd(II) in single-chamber microbial electrolysis cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127538. [PMID: 34736191 DOI: 10.1016/j.jhazmat.2021.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
It is of great interest to explore physiological metabolism of electrochemically active bacteria (EAB) for combined organics and heavy metals in single-chamber microbial electrolysis cells (MECs). Four pure culture EAB varying degrees responded to the combined acetate (1.0-5.0 g/L) and Cd(II) (20-150 mg/L) at different initial concentrations in the single-chamber MECs, shown as significant relevance of Cd(II) removal (2.57-7.35 mg/L/h) and H2 production (0-0.0011 m3/m3/h) instead of acetate removal (73-130 mg/L/h), to these EAB species at initial Cd(II) below 120 mg/L and initial acetate below 3.0 g/L. A high initial acetate (5.0 g/L) compensated the Cd(II) inhibition and broadened the removal of Cd(II) to 150 mg/L. These EAB physiologically released variable amounts of extracellular polymeric substances with a compositional diversity in response to the changes of initial Cd(II) and circuital current whereas the activities of typical intracellular enzymes were more apparently altered by the initial Cd(II) than the circuital current. These results provide experimental validation of the presence, the metabolic plasticity and the physiological response of these EAB directed by the changes of initial Cd(II) and acetate concentrations in the single-chamber MECs, deepening our understanding of EAB physiological coping strategies in metallurgical microbial electro-ecological cycles.
Collapse
Affiliation(s)
- Haihang Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Wang G, Yao Y, Tang K, Wang G, Zhang W, Zhang Y, Rasmus Andersen H. Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen. BIORESOURCE TECHNOLOGY 2021; 342:125995. [PMID: 34571331 DOI: 10.1016/j.biortech.2021.125995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial electrosynthesis of hydrogen peroxide is receiving growing interest for a green substitute for anthraquinone process.However, poor oxygen transmission of electrode remains an obstacle to enhance H2O2 production rate without aeration. Here, a superhydrophobic natural air diffusion floating electrode (NADFE), which naturally and efficiently entraps O2 in the air, was proposed for the first time to improve microbial electrosynthesis of H2O2. Furthermore, a one-step calcined electrode preparation method was developed to reduce energy consumption further. In the microbial electrolysis cell with the NADFE, a high H2O2 production rate of 39 mg/L/h and current efficiency of 86% were achieved without aeration. The production rate of H2O2 was 2.2 times that of a gas diffusion electrode. Importantly, the energy consumption was 34.3 times lower than an electrochemical system. Therefore, the high H2O2 production rate and current efficiency, and low energy consumption of the process provide a superior alternative for environmental remediation.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yuechao Yao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Guochen Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
8
|
Mixotrophic bacteria for environmental detoxification of contaminated waste and wastewater. Appl Microbiol Biotechnol 2021; 105:6627-6648. [PMID: 34468802 DOI: 10.1007/s00253-021-11514-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Mixotrophic bacteria provide a desirable alternative to the use of classical heterotrophic or chemolithoautotrophic bacteria in environmental technology, particularly under limiting nutrients conditions. Their bi-modal ability of adapting to inorganic or organic carbon feed and sulfur, nitrogen, or even heavy metal stress conditions are attractive features to achieve efficient bacterial activity and favorable operation conditions for the environmental detoxification or remediation of contaminated waste and wastewater. This review provides an overview on the state of the art and summarizes the metabolic traits of the most promising and emerging non-model mixotrophic bacteria for the environmental detoxification of contaminated wastewater and waste containing excess amounts of limiting nutrients. Although mixotrophic bacteria usually function with low organic carbon sources, the unusual capabilities of mixotrophic electroactive exoelectrogens and electrotrophs in bioelectrochemical systems and in microbial electrosynthesis for accelerating simultaneous metabolism of inorganic or organic C and N, S or heavy metals are reviewed. The identification of the mixotrophic properties of electroactive bacteria and their capability to drive mono- or bidirectional electron transfer processes are highly exciting and promising aspects. These aspects provide an appealing potential for unearthing new mixotrophic exoelectrogens and electrotrophs, and thus inspire the next generation of microbial electrochemical technology and mixotrophic bacterial metabolic engineering. KEY POINTS: • Mixotrophic bacteria efficiently and simultaneously remove C and N, S or heavy metals. • Exoelectrogens and electrotrophs accelerate metabolism of C and N, S or heavy metals. • New mixotrophic exoelectrogens and electrotrophs should be discovered and exploited.
Collapse
|
9
|
Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, Shukor MY. Microbiological Reduction of Molybdenum to Molybdenum Blue as a Sustainable Remediation Tool for Molybdenum: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5731. [PMID: 34071757 PMCID: PMC8198738 DOI: 10.3390/ijerph18115731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022]
Abstract
Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.
Collapse
Affiliation(s)
- Hafeez Muhammad Yakasai
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University, Kano PMB 3011, Nigeria
| | - Mohd Fadhil Rahman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Motharasan Manogaran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nur Adeela Yasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Mohd Arif Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| | - Nor Aripin Shamaan
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Mohd Yunus Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (H.M.Y.); (M.F.R.); (M.M.); (N.A.Y.); (M.A.S.)
| |
Collapse
|
10
|
Yao J, Huang Y, Hou Y, Yang B, Lei L, Tang X, Scheckel KG, Li Z, Wu D, Dionysiou DD. Graphene-modified graphite paper cathode for the efficient bioelectrochemical removal of chromium. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 405:10.1016/j.cej.2020.126545. [PMID: 33424420 PMCID: PMC7787988 DOI: 10.1016/j.cej.2020.126545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-free electrocatalysts have been widely used as cathodes for the reduction of hexavalent chromium [Cr(VI)] in microbial fuel cells (MFCs). The electrocatalytic activity of such system needs to be increased due to the low anodic potential provided by bacteria. In this study, graphite paper (GP) was treated by liquid nitrogen to form three-dimensional graphite foam (3DGF), improving the Cr(VI) reduction by 17% and the total Cr removal by 81% at 30 h in MFCs. X-ray absorption spectroscopy confirmed the Cr(VI) reduction product as Cr(OH)3. Through the spectroscopy characterizations, electrochemical measurements, and density functional theory calculations, the porous structures, edges, and O-doped defects on the 3DGF surface resulted in a higher electroconducting rate and a lower mass transfer rate, which provide more active sites for the Cr(VI) reduction. Additionally, the scrolled graphene-like carbon nanosheets and porous structures on the 3DGF surface might limit the OH- diffusion and result in a high local pH, which accelerated the Cr(OH)3 formation. The results of this study are expected to provide a simple method to manipulate the carbon materials and insights into mechanisms of Cr(VI) reduction in MFCs by the 3DGF with in situ exfoliated edges and O-functionalized graphene.
Collapse
Affiliation(s)
- Jiani Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Kirk G. Scheckel
- United States Environmental Protection Agency, Office of Research & Development, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45268, United States
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Wu
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dionysios D. Dionysiou
- Environmental Engineering and Science program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
11
|
Song X, Huang L, Lu H, Zhou P, Wang M, Li N. An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Hou J, Huang L, Zhou P, Qian Y, Li N. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. CHEMOSPHERE 2020; 243:125317. [PMID: 31722262 DOI: 10.1016/j.chemosphere.2019.125317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L-1). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
13
|
Yu Z, Han H, Feng P, Zhao S, Zhou T, Kakade A, Kulshrestha S, Majeed S, Li X. Recent advances in the recovery of metals from waste through biological processes. BIORESOURCE TECHNOLOGY 2020; 297:122416. [PMID: 31786035 DOI: 10.1016/j.biortech.2019.122416] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Wastes containing critical metals are generated in various fields, such as energy and computer manufacturing. Metal-bearing wastes are considered as secondary sources of critical metals. The conventional physicochemical methods of metals recovery are energy-intensive and cause further pollution. Low-cost and eco-friendly technologies including biosorbents, bioelectrochemical systems (BESs), bioleaching, and biomineralization, have become alternatives in the recovery of critical metals. However, a relatively low recovery rate and selectivity severely hinder their large-scale applications. Researchers have expanded their focus to exploit novel strain resources and strategies to improve the biorecovery efficiency. The mechanisms and potential applicability of modified biological techniques for improving the recovery of critical metals need more attention. Hence, this review summarize and compare the strategies that have been developed for critical metals recovery, and provides useful insights for energy-efficient recovery of critical metals in future industrial applications.
Collapse
Affiliation(s)
- Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Sabahat Majeed
- Department of Biosciences, COMSATS University, Park Road, Tarlai Kalan Islamabad, Islamabad 44000, Pakistan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, No. 222 Tianshuinan Road, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|