1
|
Baig N, Matin A. Incorporating functionalized graphene oxide into diethylene triamine-based nanofiltration membranes can improve the removal of emerging organic micropollutants. J Colloid Interface Sci 2024; 676:657-669. [PMID: 39053413 DOI: 10.1016/j.jcis.2024.06.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The presence of emerging organic micropollutants (OMPs) in drinking and potable waters is a matter of great concern due to the health hazards associated with these. In this work, we present the preparation and application of a thin-film nanocomposite (TFN) membrane containing functionalized graphene oxide to effectively remove low-molecular-weight OMPs from water. Graphene oxide was functionalized with amino silane to enhance its cross-linking capability during the formation of the polyamide active layer via interfacial polymerization of diethylene triamine and trimesoyl chloride. The TEM analysis showed that amino silane functionalized GO had 2-3 layered sheets, while non-functionalized graphene oxide appeared multilayered or stacked. XPS analysis confirmed the successful functionalization of GO. Characterization of the membranes with advanced techniques confirmed the successful incorporation of the GO and its functionalization: spectra from Fourier Transform Infra Red spectroscopy had the characteristic peaks of GO and NH groups; scanning Electron Microscopy (SEM) images showed a continuous presence of GO nanosheets. Contact angle measurements showed the TFN membranes to be more hydrophilic than their thin film composite (TFC) counterparts. Incorporating functionalized oxide nanosheets in the active polyamide layer produced additional water permeation channels, resulting in an improvement of ∼25 % in permeate flux compared to the pristine TFC and the TFN membrane with non-functionalized GO. The removal efficiencies of four OMPs commonly found in natural waters: Amitriptylene HCl (ATT HCl) and Bisphenol-A (BPA), Acetaminophen (ACT), and Caffeine (CFN) were determined for the synthesized membranes. The TFN membrane with functionalized GO outperformed its TFC counterpart with ∼100 % removal for BPA, ∼ 90 % for CFN and ATT HCl, and ∼80 % removal for the low molecular weight ACT. The high-efficiency rejection of OMPs was attributed to the synergistic effects of size exclusion as well as the reduced specific interactions between the functional groups.
Collapse
Affiliation(s)
- Nadeem Baig
- IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - A Matin
- IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Ahmed MA, Mahmoud SA, Mohamed AA. Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC Adv 2024; 14:18879-18906. [PMID: 38873545 PMCID: PMC11167617 DOI: 10.1039/d4ra01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
Because of its great efficiency and widespread application, reverse osmosis (RO) is a popular tool for water desalination and purification. However, traditional RO membranes have a short lifespan due to membrane fouling, deterioration, decreased salt rejection rate, and the low water flux with aging. As a result, membrane modification has received a lot of attention recently, with nanomaterials being extensively researched to improve membrane efficacy and lifespan. Herein, we present an in-depth analysis of recent advances of RO membranes modification utilizing nanomaterials. An overview of the various nanomaterials used for membrane modification, including metal oxides, zeolites, and carbon nanomaterials, is provided. The synthesis techniques and methods of integrating these nanomaterials into RO membranes are also discussed. The impacts of nanomaterial change on the performance of RO membranes are addressed. The underlying mechanisms responsible for RO membrane enhancements by nanomaterials, such as improved surface hydrophilicity, reduced membrane fouling via surface repulsion and anti-adhesion properties, and enhanced structural stability, are discussed. Furthermore, the review provides a critical analysis of the challenges and limitations associated with the use of nanomaterials to modify RO membranes. Overall, this review provides valuable insights into the modification of RO membranes with nanomaterials, providing a full grasp of the benefits, challenges, and future prospects of this challenging topic.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
- Veolia Water Technologies Cairo 11835 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
3
|
Arioli M, Puiggalí J, Franco L. Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 2024; 29:2443. [PMID: 38893319 PMCID: PMC11173604 DOI: 10.3390/molecules29112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Linear polyamides, known as nylons, are a class of synthetic polymers with a wide range of applications due to their outstanding properties, such as chemical and thermal resistance or mechanical strength. These polymers have been used in various fields: from common and domestic applications, such as socks and fishing nets, to industrial gears or water purification membranes. By their durability, flexibility and wear resistance, nylons are now being used in addictive manufacturing technology as a good material choice to produce sophisticated devices with precise and complex geometric shapes. Furthermore, the emergence of triboelectric nanogenerators and the development of biomaterials have highlighted the versatility and utility of these materials. Due to their ability to enhance triboelectric performance and the range of applications, nylons show a potential use as tribo-positive materials. Because of the easy control of their shape, they can be subsequently integrated into nanogenerators. The use of nylons has also extended into the field of biomaterials, where their biocompatibility, mechanical strength and versatility have paved the way for groundbreaking advances in medical devices as dental implants, catheters and non-absorbable surgical sutures. By means of 3D bioprinting, nylons have been used to develop scaffolds, joint implants and drug carriers with tailored properties for various biomedical applications. The present paper aims to collect evidence of these recently specific applications of nylons by reviewing the literature produced in recent decades, with a special focus on the newer technologies in the field of energy harvesting and biomedicine.
Collapse
Affiliation(s)
- Matteo Arioli
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| | - Lourdes Franco
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est-EEBE, Universitat Politècnica de Catalunya, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain; (M.A.); (J.P.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10–14, 08019 Barcelona, Spain
| |
Collapse
|
4
|
Chen R, Tian T, Jin R, Liu Z, Fu W, Ji Q, Zhou J. Treating reverse osmosis brine of petrochemical wastewater using preparative vertical-flow electrophoresis (PVFE) with multi-objective optimization by response surface method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31123-31134. [PMID: 38627346 DOI: 10.1007/s11356-024-33323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 10/27/2024]
Abstract
Electrochemical desalination is an effective method for recovering salts from reverse osmosis (RO) brine. However, traditional technologies like bipolar membrane technology often face challenges related to membrane blockage. To overcome this issue, a preparative vertical-flow electrophoresis (PVFE) system was used for the first time to treat RO brine of petrochemical wastewater. In order to optimize the PVFE operation and maximize acids and bases production while minimizing energy consumption, the response surface method was employed. The independent variables selected were the electric field intensity (E) and flow rate (v), while the dependent variables were the acid-base concentration and energy consumption (EC) for acid-base production. Using the central composite design methodology, the operation parameters were optimized to be E = 154.311 V/m and v = 0.83 mL/min. Under these conditions, the base concentrations of the produced bases and acids reached 3183.06 and 2231.63 mg/L, respectively. The corresponding base EC and acid EC were calculated to be 12.57 and 11.62 kW·h/kg. In terms of the acid-base concentration and energy consumption during the PVFE process, the electric field intensity was found to have a greater influence than the flow rate. These findings provide a practical and targeted solution for recycling waste salt resources from RO brine.
Collapse
Affiliation(s)
- Rongbo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ze Liu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Wang Fu
- Hengli Petrochemical (Dalian) Chemical Co., LTD, Dalian, 116318, China
| | - Qiuyan Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Sun K, Lyu Q, Zheng X, Liu R, Tang CY, Zhao M, Dong Y. Enhanced water treatment performance of ceramic-based forward osmosis membranes via MOF interlayer. WATER RESEARCH 2024; 254:121395. [PMID: 38452527 DOI: 10.1016/j.watres.2024.121395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Forward osmosis (FO) membrane processes could operate without hydraulic pressures, enabling the efficient treatment of wastewaters with mitigated membrane fouling and enhanced efficiency. Designing a high-performance polyamide (PA) layer on ceramic substrates remains a challenge for FO desalination applications. Herein, we report the enhanced water treatment performance of thin-film nanocomposite ceramic-based FO membranes via an in situ grown Zr-MOF (UiO-66-NH2) interlayer. With the Zr-MOF interlayer, the ceramic-based FO membranes exhibit lower thickness, higher cross-linking degree, and increased surface roughness, leading to higher water flux of 27.38 L m-2 h-1 and lower reverse salt flux of 3.45 g m-2 h-1. The ceramic-based FO membranes with Zr-MOF interlayer not only have an application potential in harsh environments such as acidic solution (pH 3) and alkaline solution (pH 11), but also exhibit promising water and reverse salt transport properties, which are better than most MOF-incorporated PA membranes. Furthermore, the membranes could reject major species (ions, oil and organics) with rejections >94 % and water flux of 22.62-14.35 L m-2 h-1 in the treatment of actual alkaline industrial wastewater (pH 8.6). This rational design proposed in this study is not only applicable for the development of a high-quality ceramic-based FO membrane with enhanced performance but also can be potentially extended to more challenging water treatment applications.
Collapse
Affiliation(s)
- Kuo Sun
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yingchao Dong
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
7
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
8
|
Farahbakhsh J, Golgoli M, Khiadani M, Najafi M, Suwaileh W, Razmjou A, Zargar M. Recent advances in surface tailoring of thin film forward osmosis membranes: A review. CHEMOSPHERE 2024; 346:140493. [PMID: 37890801 DOI: 10.1016/j.chemosphere.2023.140493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The recent advancements in fabricating forward osmosis (FO) membranes have shown promising results in desalination and water treatment. Different methods have been applied to improve FO performance, such as using mixed or new draw solutions, enhancing the recovery of draw solutions, membrane modification, and developing FO-hybrid systems. However, reliable methods to address the current issues, including reverse salt flux, fouling, and antibacterial activities, are still in progress. In recent decades, surface modification has been applied to different membrane processes, including FO membranes. Introducing nanochannels, bioparticles, new monomers, and hydrophilic-based materials to the surface layer of FO membranes has significantly impacted their performance and efficiency and resulted in better control over fouling and concentration polarization (CP) in these membranes. This review critically investigates the recent developments in FO membrane processes and fabrication techniques for FO surface-layer modification. In addition, this study focuses on the latest materials and structures used for the surface modification of FO membranes. Finally, the current challenges, gaps, and suggestions for future studies in this field have been discussed in detail.
Collapse
Affiliation(s)
- Javad Farahbakhsh
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mitra Golgoli
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mehdi Khiadani
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Mohadeseh Najafi
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Wafa Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha, Qatar
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; School of Civil and Environmental Engineering, University of Technology Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia
| | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia.
| |
Collapse
|
9
|
Wang Y, Duan S, Wang H, Wei C, Qin L, Dong G, Zhang Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. MEMBRANES 2023; 14:7. [PMID: 38248697 PMCID: PMC10819655 DOI: 10.3390/membranes14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water. Furthermore, the hydropathic properties of the membranes can be well controlled by adjusting the content of m-ZIF-8 and m-HNTs. A series of modified m-ZIF-8/m-HNT/PAN membranes were prepared to modulate the dye/salt separation performance of TFN membranes. The experimental results showed that our m-ZIF-8/m-HNT/PAN membranes can elevate the water flux significantly up to 42.6 L m-2 h-1 MPa-1, together with a high rejection of Reactive Red 49 (more than 80%). In particular, the optimized NFM-7.5 membrane that contained 7.5 mg of HNTs and 2.5 mg of ZIF-8 showed a 97.1% rejection of Reactive Red 49 and 21.3% retention of NaCl.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Shaofan Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Huixian Wang
- School of Material Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Can Wei
- Pollution Prevention and Control Office, Ecological Environment Protection Commission of Zhengzhou, Zhengzhou 450007, China;
| | - Lijuan Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
- Research Department of New Energy Technology, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450046, China
| | - Guanying Dong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| |
Collapse
|
10
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
11
|
Xin JH, Fan HY, Guo BB, Yang HC, Zhu CY, Zhang C, Xu ZK. Interfacial polymerization at unconventional interfaces: an emerging strategy to tailor thin-film composite membranes. Chem Commun (Camb) 2023; 59:13258-13271. [PMID: 37869905 DOI: 10.1039/d3cc04171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Interfacial polymerization is a well-known process to synthesize separation layers for thin film composite membranes at an immiscible organic liquid-aqueous liquid interface. The organic-aqueous interface determines the diffusion dynamics of monomers and the chemical environment for polymerization, exerting a critical influence on the formation of polymer thin films. This review summarizes recent advances in tailoring interfacial polymerization using interfaces beyond the conventional alkane-water interface to achieve high-performance separation films with designed structures. Diverse liquid-liquid interfaces are introduced for synthesizing separation films by adding co-solvents into the organic phase and/or the aqueous phase, respectively, or by replacing one of the liquid phases with other solvents. Innovative liquid-gel and liquid-gas interfaces are then summarized for the synthesis of polymer thin films for separation. Novel strategies to form reaction interfaces, such as spray-coating, are also presented and discussed. In addition, we discuss the details of how a physically or chemically patterned substrate affects interfacial polymerization. Finally, the potential of unconventional interfaces in interfacial polymerization is forecast with both challenges and opportunities.
Collapse
Affiliation(s)
- Jia-Hui Xin
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hong-Yu Fan
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Bian-Bian Guo
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Cheng-Ye Zhu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Chao Zhang
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Engineering Research Center of Membrane and Water Treatment, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- The "Belt and Road" Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Sun J, Zhang Q, Xue W, Ding W, Zhang K, Wang S. An economical and simple method for preparing highly permeable and chlorine-resistant reverse osmosis membranes with potential commercial applications. RSC Adv 2023; 13:32083-32096. [PMID: 37920753 PMCID: PMC10618943 DOI: 10.1039/d3ra06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
The improvement in the overall efficiency of thin-film composite (TFC) reverse osmosis (RO) membranes is limited by their low permeability and sensitivity to degradation by chlorine. In the present study, polypiperazine (PIP), the commonly used amine monomer in preparing commercial TFC nanofiltration (NF) membranes, was used to regulate the m-phenylenediamine (MPD) based interfacial polymerization (IP) process. The results showed that addition of PIP optimized the micro-structure and surface properties of the polyamide (PA) layer. When the MPD and PIP mass ratio was 1 : 1, the TFCW-1:1 membrane exhibited 70% flux enhancement compared to pure MPD-based TFCW-1:0 membranes. Besides, the TFCW-1:1 membrane exhibited better chlorine-resistant performance since the NaCl rejection declined to just 3.8% while it was 11.3% for TFCW-1:0 membranes after immersion in 500 ppm NaClO solution for 48 h. Such improvement can be attributed to the increased number of unreacted amine groups and the thickness of the PA layer that PIP brought, which provided a sacrificial protective layer to consume the active chlorine, and thus maintain the integrity of the inner rejection layer. In all, the novelty and purpose of the present work is to find a more simple and scalable method to fabricate high-performance TFC RO membranes by using commonly, cheaply and frequently used materials.
Collapse
Affiliation(s)
- Junqing Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Qianwen Zhang
- School of Environment, Tsinghua University Beijing 100084 China
| | - Wenjing Xue
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wande Ding
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Shandong Shuifa Environmental Technology Co., Ltd Jining 272000 China
| | - Kefeng Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Shan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
13
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
14
|
Hu A, Liu Y, Zheng J, Wang X, Xia S, Van der Bruggen B. Tailoring properties and performance of thin-film composite membranes by salt additives for water treatment: A critical review. WATER RESEARCH 2023; 234:119821. [PMID: 36889093 DOI: 10.1016/j.watres.2023.119821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
During the fabrication of thin film composite (TFC) membranes by interfacial polymerization (IP), the utilization of salt additives is one of the effective methods to regulate membrane properties and performance. Despite gradually receiving widespread attention for membrane preparation, the strategies, effects and underlying mechanisms of using salt additives have not yet been systematically summarized. This review for the first time provides an overview of various salt additives used to tailor properties and performance of TFC membranes for water treatment. By classifying salt additives into organic and inorganic salts, the roles of added salt additives in the IP process and the induced changes in membrane structure and properties are discussed in detail, and the different mechanisms of salt additives affecting membrane formation are summarized. Based on these mechanisms, the salt-based regulation strategies have shown great potential for improving the performance and application competitiveness of TFC membranes, including overcoming the trade-off relationship between water permeability and salt selectivity, tailoring membrane pore size distribution for precise solute-solute separation, and enhancing membrane antifouling performance. Finally, future research directions are suggested to focus on the long-term stability assessment of salt-modified membranes, the combined use of different salt additives, and the integration of salt regulation with other membrane design or modification strategies.
Collapse
Affiliation(s)
- Airan Hu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, China.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| |
Collapse
|
15
|
Duan Y, Li L, Shen Z, Cheng J, He K. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. MEMBRANES 2023; 13:480. [PMID: 37233541 PMCID: PMC10221405 DOI: 10.3390/membranes13050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Separation is one of the most energy-intensive processes in the chemical industry, and membrane-based separation technology contributes significantly to energy conservation and emission reduction. Additionally, metal-organic framework (MOF) materials have been widely investigated and have been found to have enormous potential in membrane separation due to their uniform pore size and high designability. Notably, pure MOF films and MOF mixed matrix membranes (MMMs) are the core of the "next generation" MOF materials. However, there are some tough issues with MOF-based membranes that affect separation performance. For pure MOF membranes, problems such as framework flexibility, defects, and grain orientation need to be addressed. Meanwhile, there still exist bottlenecks for MMMs such as MOF aggregation, plasticization and aging of the polymer matrix, poor interface compatibility, etc. Herein, corresponding methods are introduced to solve these problems, including inhibiting framework flexibility, regulating synthesis conditions, and enhancing the interaction between MOF and substrate. A series of high-quality MOF-based membranes have been obtained based on these techniques. Overall, these membranes revealed desired separation performance in both gas separation (e.g., CO2, H2, and olefin/paraffin) and liquid separation (e.g., water purification, organic solvent nanofiltration, and chiral separation).
Collapse
Affiliation(s)
- Yutian Duan
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Lei Li
- SINOPEC Nanjing Research Institute of Chemical Industry Co., Ltd., Nanjing 210048, China
| | - Zhiqiang Shen
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology, Hefei 230001, China
| | - Kewu He
- Imaging Center, Third Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| |
Collapse
|
16
|
Tayel A, Abdelaal AB, Esawi AMK, Ramadan AR. Thin-Film Nanocomposite (TFN) Membranes for Water Treatment Applications: Characterization and Performance. MEMBRANES 2023; 13:membranes13050477. [PMID: 37233538 DOI: 10.3390/membranes13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Thin-film nanocomposite (TFN) membranes have been widely investigated for water treatment applications due to their promising performance in terms of flux, salt rejection, and their antifouling properties. This review article provides an overview of the TFN membrane characterization and performance. It presents different characterization techniques that have been used to analyze these membranes and the nanofillers within them. The techniques comprise structural and elemental analysis, surface and morphology analysis, compositional analysis, and mechanical properties. Additionally, the fundamentals of membrane preparation are also presented, together with a classification of nanofillers that have been used so far. The potential of TFN membranes to address water scarcity and pollution challenges is significant. This review also lists examples of effective TFN membrane applications for water treatment. These include enhanced flux, enhanced salt rejection, antifouling, chlorine resistance, antimicrobial properties, thermal stability, and dye removal. The article concludes with a synopsis of the current status of TFN membranes and future perspectives.
Collapse
Affiliation(s)
- Amr Tayel
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Ahmed B Abdelaal
- Department of Chemistry, McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4, Canada
| | - Amal M K Esawi
- Department of Mechanical Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| | - Adham R Ramadan
- Department of Chemistry, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
| |
Collapse
|
17
|
Xia C, Li X, Wu Y, Suharti S, Unpaprom Y, Pugazhendhi A. A review on pollutants remediation competence of nanocomposites on contaminated water. ENVIRONMENTAL RESEARCH 2023; 222:115318. [PMID: 36693465 DOI: 10.1016/j.envres.2023.115318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Clean freshwater has been required for drinking, sanitation, agricultural activities, and industry, as well as for the development and maintenance of the eco - systems on which all livelihoods rely. Water contamination is currently a significant concern for researchers all over the world; hence it is essential that somehow this issue is resolved as soon as possible. It is now recognised as one of the most important research areas in the world. Current wastewater treatment techniques degrade a wide range of wastewaters efficiently; however, such methods have some limitations. Recently, nanotechnology has emerged as a wonderful solution, and researchers are conducting research in this water remediation field with a variety of potential applications. The pollutants remediation capability of nanocomposites as adsorbents, photocatalysts, magnetic separation, and so on for contaminant removal from contaminated water has been examined in this study. This study has spotlighted the most significant nanocomposites invention reported to date for contaminated and effluent remediation, as well as a research gap as well as possible future perspectives.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Suharti Suharti
- Department of Chemistry, State University of Malang, Malang, East Java, Indonesia
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai, Thailand
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
18
|
Perry LA, Chew NGP, Grzebyk K, Cay-Durgun P, Lind ML, Sitaula P, Soukri M, Coronell O. Correlating the Role of Nanofillers with Active Layer Properties and Performance of Thin-Film Nanocomposite Membranes. DESALINATION 2023; 550:116370. [PMID: 37274380 PMCID: PMC10237506 DOI: 10.1016/j.desal.2023.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Thin-film nanocomposite (TFN) membranes are emerging water-purification membranes that could provide enhanced water permeance with similar solute removal over traditional thin-film composite (TFC) membranes. However, the effects of nanofiller incorporation on active layer physico-chemical properties have not been comprehensively studied. Accordingly, we aimed to understand the correlation between nanofillers, active layer physico-chemical properties, and membrane performance by investigating whether observed performance differences between TFN and control TFC membranes correlated with observed differences in physico-chemical properties. The effects of nanofiller loading, surface area, and size on membrane performance, along with active layer physico-chemical properties, were characterized in TFN membranes incorporated with Linde Type A (LTA) zeolite and zeolitic imidazole framework-8 (ZIF-8). Results show that nanofiller incorporation up to ~0.15 wt% resulted in higher water permeance and unchanged salt rejection, above which salt rejection decreased 0.9-25.6% and 26.1-48.3% for LTA-TFN and ZIF-8-TFN membranes, respectively. Observed changes in active layer physico-chemical properties were generally unsubstantial and did not explain observed changes in TFN membrane performance. Therefore, increased water permeance in TFN membranes could be due to preferential water transport through porous structures of nanofillers or along polymer-nanofiller interfaces. These findings offer new insights into the development of high-performance TFN membranes for water/ion separations.
Collapse
Affiliation(s)
- Lamar A. Perry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
- Curriculum in Applied Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Kasia Grzebyk
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Pinar Cay-Durgun
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Laura Lind
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Paban Sitaula
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Mustapha Soukri
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC 27709-2194, USA
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
19
|
Ersoz TT, Ersoz M. Nanostructured Material and its Application in Membrane Separation
Technology. MICRO AND NANOSYSTEMS 2023; 15:16-27. [DOI: 10.2174/1876402914666220318121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 09/01/2023]
Abstract
Abstract:
Nanomaterials are classified with their at least one dimension in the range of 1-100 nm, which offers new innovative solutions for membrane development. These are included as nanosized adsorbents, nanomembranes, nanocomposites, photocatalysts, nanotubes, nanoclays, etc. Nanomaterials are promising, exceptional properties for one of the opportunity is to prevent the global water crisis with their extraordinary performance as their usage for membrane development, particularly for water treatment process. Nanomaterial based membranes that include nanoparticles, nanofibers, 2D layered materials, and their nanostructured composites which provide superior permeation characteristics besides their antifouling, antibacterial and photodegradation properties. They are enable for providing the extraordinary properties to be used as ultrafast and ultimately selective membranes for water purification. In this review, recently developed nanomaterial based membranes and their applications for water treatment process were summarized. The main attention is given to the nanomaterial based membrane structure design. The variety in terms of constituent structure and alterations provide nanomaterial based membranes which will be expected to be a perfect separation membrane in the future.
Collapse
Affiliation(s)
- Tugrul Talha Ersoz
- Nanotechnology and Advanced Materials, Institute of Sciences, Selcuk University, Kampus, 42130 Konya, Turkey
| | - Mustafa Ersoz
- Department of Chemistry, Faculty of Science, Selcuk University, Kampus, 42130 Konya, Turkey
| |
Collapse
|
20
|
Zhang X, Fan Z, Xu W, Meng Q, Shen C, Zhang G, Gao C. Thin film composite nanofiltration membrane with nanocluster structure mediated by graphene oxide/metal-polyphenol nanonetwork scaffold interlayer. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Novel Thin-Film Nanocomposite Forward Osmosis Membranes Modified with WS2/CuAl LDH Nanocomposite to Enhance Desalination and Anti-fouling Performance. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
22
|
Multiscale Analysis of Permeable and Impermeable Wall Models for Seawater Reverse Osmosis Desalination. SEPARATIONS 2023. [DOI: 10.3390/separations10020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
In recent years, high permeability membranes (HPMs) have attracted wide attention in seawater reverse osmosis (SWRO) desalination. However, the limitation of hydrodynamics and mass transfer characteristics for conventional spiral wound modules defeats the advantage of HPMs. Feed spacer design is one of the effective ways to improve module performance by enhancing permeation flux and mitigating membrane fouling. Herein, we propose a multiscale modeling framework that integrates a three-dimensional multi-physics model with a permeable wall and an impermeable wall, respectively, at a sub-millimeter scale and a system-level model at a meter scale. Using the proposed solution framework, a thorough quantitative analysis at different scales is conducted and it indicates that the average errors of the friction coefficient and the Sherwood number using the impermeable wall model are less than 2% and 9%, respectively, for commercial SWRO membrane (water permeability 1 L m−2 h−1 bar−1) and HPMs (3 L m−2 h−1 bar−1, 5 L m−2 h−1 bar−1 and 10 L m−2 h−1 bar−1) systems, compared to the predictions using the permeable wall model. Using both the permeable and impermeable wall models, the system-level simulations, e.g., specific energy consumption, average permeation flux, and the maximum concentration polarization factor at the system inlet are basically the same (error < 2%), while the impermeable wall model has a significant advantage in computational efficiency. The multiscale framework coupling the impermeable wall model can be used to guide the efficient and accurate optimal spacer design and system design for HPMs using, e.g., a machine learning approach.
Collapse
|
23
|
Ruan X, Zhang C, Zhu Y, Cai F, Yang Y, Feng J, Ma X, Zheng Y, Li H, Yuan Y, Zhu G. Constructing Mechanical Shuttles in a Three-dimensional (3D) Porous Architecture for Selective Transport of Lithium Ions. Angew Chem Int Ed Engl 2023; 62:e202216549. [PMID: 36482169 DOI: 10.1002/anie.202216549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Lithium (Li) extraction from brines is a major barrier to the sustainable development of batteries and alloys; however, current separation technology suffers from a trade-off between ion selectivity and permeability. Herein, a crown ether mechanically interlocked 3D porous organic framework (Crown-POF) was prepared as the porous filler of thin-film nanocomposite membranes. Crown-POF with penta-coordinated (four Ocrown atoms and one Ntert-amine atom) adsorption sites enables a special recognition for Li+ ion. Moreover, the four Ntert-amine atoms on each POF branch facilitate the flipping motion of Li+ ion along the skeletal thread, while retaining the specified binding pattern. Accordingly, the crown ether interlocked POF network displays an ultrafast ion transfer rate, over 10 times that of the conventional porous materials. Notably, the nanocomposite membrane gives high speed and selectivity for Li+ ion transport as compared with other porous solid-based mixed-matrix membranes.
Collapse
Affiliation(s)
- Xianghui Ruan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Cheng Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yuzhang Zhu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fuli Cai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Jiahui Feng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Xujiao Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Yue Zheng
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Huanhuan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Renmin Avenue, Changchun, 130024, China
| |
Collapse
|
24
|
Krishnan RY, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159681. [PMID: 36302412 DOI: 10.1016/j.scitotenv.2022.159681] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have been identified as an emerging pollutant due to their irrefutable prevalence in air, soil, and particularly, the aquatic ecosystem. Wastewater treatment plants (WWTPs) are seen as the last line of defense which creates a barrier between microplastics and the environment. These microplastics are discharged in large quantities into aquatic bodies due to their insufficient containment during water treatment. As a result, WWTPs are regarded as point sources of microplastics release into the environment. Assessing the prevalence and behavior of microplastics in WWTPs is therefore critical for their control. The removal efficiency of microplastics was 65 %, 0.2-14 %, and 0.2-2 % after the successful primary, secondary and tertiary treatment phases in WWTPs. In this review, other than conventional treatment methods, advanced treatment methods have also been discussed. For the removal of microplastics in the size range 20-190 μm, advanced treatment methods like membrane bioreactors, rapid sand filtration, electrocoagulation and photocatalytic degradation was found to be effective and these methods helps in increasing the removal efficiency to >99 %. Bioremediation based approaches has found that sea grasses, lugworm and blue mussels has the ability to mitigate microplastics by acting as a natural trap to the microplastics pollutants and could act as candidate species for possible incorporation in WWTPs. Also, there is a need for controlling the use and unchecked release of microplastics into the environment through laws and regulations.
Collapse
Affiliation(s)
- Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
25
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
26
|
Jiang H, Liu S. Construction of self-healing polyethersulfone ultrafiltration membrane by cucurbit[8]uril hydrogel via RTIPS method and host-guest chemistry. CHEMOSPHERE 2023; 311:137079. [PMID: 36328320 DOI: 10.1016/j.chemosphere.2022.137079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
In this work, the self-healing polyethersulfone ultrafiltration membrane constructed by host-guest chemistry between cucurbit [8]uril (CB [8] is a family of macrocyclic compounds comprising 8 glycoluril units) and two guest molecules based on reverse thermally induced phase separation (RTIPS) method was developed, which had excellent self-healing performance, better mechanical properties, and high permeation flux and BSA rejection rate. The membrane autonomously restored it BSA rejection rate up to about 89% from rejection rate levels as low as 21% after damage. The observed self-healing performance were attributed to the swelling of pore-filled CB [8] hydrogel into the damage position, the molecular interdiffusion of the hydrogel chains, the strong hydrogen bond of the hydrogel chains and the host-guest interaction between CB [8] and two guest molecules (HEC-Np and PVA-MV). SEM morphologies illustrated that the prepared pore-filled membrane via the RTIPS method had homogeneous and porous skin surface and sponge-like cross-section, which imparted the prepared membranes with improved permeability and better mechanical properties. Properties of MR-CB [8] membranes, which varied with increased content of CB [8], were evaluated by permeability, water contact angle, thermogravimetric analysis (TGA), mechanical properties, FRR, scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle water showed that CB [8] hydrogel enhanced the surface hydrophilicity of the prepared membrane. TGA illustrated that the thermal stability improved with the increased content of CB [8]. The optimal pore-filled CB [8] hydrogel membrane (MR-CB [8]2) exhibited that the pure water flux reached 2100.5 L/m2 h, while the BSA rejection rate remained at 86.0%. The results of this work suggested pore-filled CB [8] hydrogel membrane was a more promising way to develop polyethersulfone ultrafiltration membranes with self-healing performance.
Collapse
Affiliation(s)
- Haotian Jiang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shenghui Liu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
27
|
Xue YR, Ma ZY, Liu C, Zhu CY, Wu J, Xu ZK. Polyamide Nanofilms Synthesized by a Sequential Process of Blade Coating – Spraying - Interfacial Polymerization toward Reverse Osmosis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Zhao S, Chen K, Niu Y, Yuan B, Jiang C, Wang M, Li P, Hou Y, Sun H, Xia D, Niu QJ. Heterogeneous polyamide composite membranes based on aromatic poly(amidoamine) dendrimer for molecular sieving. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Wang C, Wang L, Soo A, Bansidhar Pathak N, Kyong Shon H. Machine learning based prediction and optimization of thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
30
|
Zheng H, Mou Z, Lim YJ, Liu B, Wang R, Zhang W, Zhou K. Incorporating ionic carbon dots in polyamide nanofiltration membranes for high perm-selectivity and antifouling performance. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Huo HQ, Mi YF, Yang X, Lu HH, Ji YL, Zhou Y, Gao CJ. Polyamide thin film nanocomposite membranes with in-situ integration of multiple functional nanoparticles for high performance reverse osmosis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
33
|
Fakoori M, Azdarpour A, Honarvar B. Performance of amine‐functionalized MIL‐53 incorporated thin‐film nanocomposite Pebax membranes for CO
2
/CH
4
mixed gas separation. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahdi Fakoori
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Amin Azdarpour
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| |
Collapse
|
34
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Wang H, Dai R, Wang L, Wang X, Wang Z. Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes. WATER RESEARCH 2022; 226:119221. [PMID: 36242936 DOI: 10.1016/j.watres.2022.119221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The challenge of water scarcity drives zero liquid discharge (ZLD) treatment to maximize reuse of industrial wastewater. Deciphering the characteristics and mechanisms of membrane fouling in the membrane-based ZLD system is crucial for the development of effective fouling control strategies. However, current studies only focused on the membrane fouling of single step, lacking in-depth understanding on the ZLD systems using multiple membrane processes. Herein, membrane fouling characteristics and mechanisms in a full-scale ZLD system for cold-rolling wastewater brine treatment were investigated via a comprehensive analysis on multiple nanofiltration (NF) and reverse osmosis (RO) membrane processes. The membrane fouling behaviors showed distinct characteristics along the wastewater flow direction in the ZLD system. Increasing amounts of foulants were deposited on the membrane surfaces with the sequence of the 1st pass RO, 1st stage NF, and 2nd stage NF processes. The organic fouling and silica scaling were more intensive in the 1st stage NF and 2nd stage NF for treating the brine of the 1st pass RO, as the foulants were rejected and concentrated by previous membrane processes. Severe inorganic fouling, containing amorphous SiO2, Al2O3, and Al2SiO5, occurred on the membrane surface of the 2nd pass RO membrane, due to the recirculated high-concentration silica, high water recovery, and concentration polarization. For the 3rd pass RO process, both the amounts of organic and inorganic foulants decreased dramatically, due to the low foulant concentration in its influent. This work provides a comprehensive understanding of membrane fouling in a membrane-based ZLD system, facilitating the development of membrane fouling control strategies for multiple membrane processes.
Collapse
Affiliation(s)
- Hailan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lingna Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
36
|
Liu Y, Fan S, Chen Y, Chen J, Meng J, Yang M, Li C, Qing H, Xiao Z. Catalytic membrane nano reactor with two-dimensional channels assembly of graphene oxide nanosheets with ZIF-67 derived Co3S4 catalyst immobilized on. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Han G, Studer RM, Lee M, Rodriguez KM, Teesdale JJ, Smith ZP. Post-synthetic modification of MOFs to enhance interfacial compatibility and selectivity of thin-film nanocomposite (TFN) membranes for water purification. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Hu Y, Zhao P, Liu H, Yi X, Song W, Wang X. Photocatalytic thin film composite forward osmosis membrane for mitigating organic fouling in active layer facing draw solution mode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
40
|
Fan K, Liu Y, Wang X, Cheng P, Xia S. Comparison of polyamide, polyesteramide and polyester nanofiltration membranes: properties and separation performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Pu L, Xia Q, Wang Y, Bu Y, Zhang Q, Gao G. Tailored nanofiltration membranes with enhanced permeability and antifouling performance towards leachate treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Zhang J, Wang X, Liang M, Han M, Dai J, Wei Q, Oo TZ, Aung SH, Hui KN, Chen F. High-Performance Photoelectrochemical Desalination Based on the Dye-Sensitized Bi 2O 3 Anode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33024-33031. [PMID: 35819320 DOI: 10.1021/acsami.2c04749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a solar-driven redox flow desalination system is reported, which combines a solar cell based on a Bi2O3 photoanode and a redox flow desalination cell through an integrated electrode. The Bi2O3 film was prepared through a simple one-step water bath deposition method and served as a photoanode after the coating of the N719 dye. The activated carbon (AC)-coated graphite paper served as both the integrated electrode and counter electrode. The I3-/I- redox electrolyte circulates in the solar cell channel between the photoanode and intergrated electrode, while the [Fe(CN)6]4-/[Fe(CN)6]3- electrolyte circulates in the redox flow desalination part between the integrated electrode and counter electrode. This dye-sensitized solar-driven desalination cell is capable of achieving a maximum salt removal rate of 62.89 μg/(cm2·min) without consuming any electrical power. The combination of the solar cell and redox flow desalination is highly efficient with double functions of desalination and energy release using light as a driving force. This current research work is significant for the development of efficient and stable photoanode materials in photoelectrochemical desalination.
Collapse
Affiliation(s)
- Jiancong Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Mengjun Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Minxian Han
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Jinhong Dai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Qiang Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Than Zaw Oo
- Materials Research Laboratory, Department of Physics, University of Mandalay, 05032 Mandalay, Myanmar
- Universities' Research Centre, University of Yangon, Yangon 11041, Myanmar
| | - Su Htike Aung
- Materials Research Laboratory, Department of Physics, University of Mandalay, 05032 Mandalay, Myanmar
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Fuming Chen
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
43
|
Hu P, Yuan B, Jason Niu Q, Wang N, Zhao S, Cui J, Jiang J. In situ assembled zeolite imidazolate framework nanocrystals hybrid thin film nanocomposite membranes for brackish water desalination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
|
45
|
Güvensoy-Morkoyun A, Velioğlu S, Ahunbay MG, Tantekin-Ersolmaz ŞB. Desalination Potential of Aquaporin-Inspired Functionalization of Carbon Nanotubes: Bridging Between Simulation and Experiment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28174-28185. [PMID: 35675202 PMCID: PMC9227712 DOI: 10.1021/acsami.2c03700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 05/22/2023]
Abstract
Outstanding water/ion selectivity of aquaporins paves the way for bioinspired desalination membranes. Since the amino acid asparagine (Asn) plays a critical role in the fast water conduction of aquaporins through hydrogen bonding interactions, we adapted this feature by functionalizing carbon nanotubes (CNTs) with Asn. We also studied a nonpolar amino acid and carboxylate functional groups for comparison. Computation of the ideal performance of individual CNTs at atomistic scale is a powerful tool for probing the effect of tip-functionalized CNTs on water and ion transport mechanism. Molecular simulation study suggests that steric effects required for ion rejection compromise fast water conductivity; however, an Asn functional group having polarity and hydrogen bonding capability can be used to balance this trade-off to some extent. To test our hypothesis, we incorporated functionalized CNTs (f-CNTs) into the in situ polymerized selective polyamide (PA) layer of thin film nanocomposite membranes and compared their experimental RO desalination performance. The f-CNTs were found to change the separation environment through modification of cross-linking density, thickness, and hydrophilicity of the PA layer. Asn functionalization led to more cross-linked and thinner PA layer while hydrophilicity is improved compared to other functional groups. Accordingly, water permeance is increased by 25% relative to neat PA with a salt rejection above 98%. Starting from the nanomaterial itself and benefiting from molecular simulation, it is possible to design superior membranes suited for practical applications.
Collapse
Affiliation(s)
- Aysa Güvensoy-Morkoyun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Sadiye Velioğlu
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- Institute
of Nanotechnology, Gebze Technical University, Kocaeli, 41400, Turkey
| | - M. Göktuğ Ahunbay
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
| | - Ş. Birgül Tantekin-Ersolmaz
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, Istanbul, 34469, Turkey
- . Tel.: +90-212-2856152
| |
Collapse
|
46
|
Yuan YD, Zhang X, Yang Z, Zhao D. Metal-organic cage incorporating thin-film nanocomposite membranes with antifouling properties. Chem Commun (Camb) 2022; 58:6865-6868. [PMID: 35621067 DOI: 10.1039/d2cc01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the antifouling properties of thin-film nanocomposite (TFN) membranes containing two water-stable metal-organic cages (MOCs). The MOC-containing TFN membranes possess excellent antifouling properties against positively-charged foulants and protein (BSA, up to 99.7% water permeability retention) and achieve up to 100% water permeability recovery.
Collapse
Affiliation(s)
- Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Xiaomei Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Ziqi Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
47
|
Yao A, Hua D, Gao ZF, Pan J, Ibrahim AR, Zheng D, Hong Y, Liu Y, Zhan G. Fabrication of organic solvent nanofiltration membrane using commercial PVDF substrate via interfacial polymerization on top of metal-organic frameworks interlayer. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Jain H, Verma AK, Dhupper R, Wadhwa S, Garg MC. Development of CA-TiO2-incorporated thin-film nanocomposite forward osmosis membrane for enhanced water flux and salt rejection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2022; 19:5387-5400. [DOI: 10.1007/s13762-021-03415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 05/22/2021] [Indexed: 08/20/2024]
|
49
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
50
|
Lim YJ, Goh K, Wang R. The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chem Soc Rev 2022; 51:4537-4582. [PMID: 35575174 DOI: 10.1039/d1cs01061a] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Water channels are one of the key pillars driving the development of next-generation desalination and water treatment membranes. Over the past two decades, the rise of nanotechnology has brought together an abundance of multifunctional nanochannels that are poised to reinvent separation membranes with performances exceeding those of state-of-the-art polymeric membranes within the water-energy nexus. Today, these water nanochannels can be broadly categorized into biological, biomimetic and synthetic, owing to their different natures, physicochemical properties and methods for membrane nanoarchitectonics. Furthermore, against the backdrop of different separation mechanisms, different types of nanochannel exhibit unique merits and limitations, which determine their usability and suitability for different membrane designs. Herein, this review outlines the progress of a comprehensive amount of nanochannels, which include aquaporins, pillar[5]arenes, I-quartets, different types of nanotubes and their porins, graphene-based materials, metal- and covalent-organic frameworks, porous organic cages, MoS2, and MXenes, offering a comparative glimpse into where their potential lies. First, we map out the background by looking into the evolution of nanochannels over the years, before discussing their latest developments by focusing on the key physicochemical and intrinsic transport properties of these channels from the chemistry standpoint. Next, we put into perspective the fabrication methods that can nanoarchitecture water channels into high-performance nanochannel-enabled membranes, focusing especially on the distinct differences of each type of nanochannel and how they can be leveraged to unlock the as-promised high water transport potential in current mainstream membrane designs. Lastly, we critically evaluate recent findings to provide a holistic qualitative assessment of the nanochannels with respect to the attributes that are most strongly valued in membrane engineering, before discussing upcoming challenges to share our perspectives with researchers for pathing future directions in this coming of age of water channels.
Collapse
Affiliation(s)
- Yu Jie Lim
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.,Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 637553, Singapore
| | - Kunli Goh
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| | - Rong Wang
- Singapore Membrane Technology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore. .,School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|