1
|
Li W, Chen R, Zhang S, Li M, Lu J, Qiang Z. Application of high-dose UV irradiation as nanofiltration pretreatment for drinking water production: Organic fouling mitigation and micropollutant removal. WATER RESEARCH 2024; 266:122348. [PMID: 39217642 DOI: 10.1016/j.watres.2024.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nanofiltration (NF) is being increasingly applied to produce high-quality drinking water; however, its cost-effective operation remains challenging due to the perennial membrane fouling. On account of the low tolerance of common NF membranes to chemical oxidants, this study proposed high-dose UV irradiation as a pretreatment strategy for organic fouling mitigation. Results showed that the permeate flux decline of the membrane with UV-treated feedwater (with a dose of 750 mJ cm-2) was less drastic than that with raw feedwater, but slightly faster as compared to that with UV/Cl2 pretreatment. The final normalized fluxes were 0.69, 0.79, and 0.82, respectively, after 10 h of operation with raw, UV- and UV/Cl2-treated feedwaters. With the characterization of feedwaters and membranes, the fouling was found to be initiated by the adsorption of hydrophilic biopolymers onto the membrane, followed by the deposition of hydrophobic humic substances. Reduction of the "glue" biopolymers was crucial to membrane fouling mitigation. The applicability of UV pretreatment in practice was testified with a pilot-scale UV-NF system where permeate flux of the NF module decreased by 37% after six-week continuous operation. Moreover, UV pretreatment could remove most of the identified pesticides in the feedwater with a removal efficiency over 80% for metolachlor and imidacloprid, but had no or even a negative effect on perfluorinated compounds. This work discloses the efficacy and mechanism of high-dose UV irradiation for NF membrane fouling control, which facilitates future research and application of NF technology.
Collapse
Affiliation(s)
- Wentao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongwen Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Suona Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Mengkai Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhimin Qiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Feng K, Wang G, Wang S, Ma J, Wu H, Ma M, Zhang Y. Breaking the pH Limitation of Nanozymes: Mechanisms, Methods, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401619. [PMID: 38615261 DOI: 10.1002/adma.202401619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Although nanozymes have drawn great attention over the past decade, the activities of peroxidase-like, oxidase-like, and catalase-like nanozymes are often pH dependent with elusive mechanism, which largely restricts their application. Therefore, a systematical discussion on the pH-related catalytic mechanisms of nanozymes together with the methods to overcome this limitation is in need. In this review, various nanozymes exhibiting pH-dependent catalytic activities are collected and the root causes for their pH dependence are comprehensively analyzed. Subsequently, regulatory concepts including catalytic environment reconstruction and direct catalytic activity improvement to break this pH restriction are summarized. Moreover, applications of pH-independent nanozymes in sensing, disease therapy, and pollutant degradation are overviewed. Finally, current challenges and future opportunities on the development of pH-independent nanozymes are suggested. It is anticipated that this review will promote the further design of pH-independent nanozymes and broaden their application range with higher efficiency.
Collapse
Affiliation(s)
- Kaizheng Feng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Guancheng Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Shi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Jingyuan Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Ming Ma
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda hospital, Southeast University, Nanjing, 211102, P. R. China
| |
Collapse
|
3
|
Lv X, Liu H, Li Z, Cui M, Cui K, Guo Z, Dai Z, Wang B, Chen X. Critical role of zero-valent iron in the efficient activation of H 2O 2 for 4-CP degradation by bimetallic peroxidase-like. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10838-10852. [PMID: 38214857 DOI: 10.1007/s11356-023-31754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Peroxidase-like based on double transition metals have higher catalytic activity and are considered to have great potential for application in the field of pollutant degradation. First, in this paper, a novel Fe0-doped three-dimensional porous Fe0@FeMn-NC-like peroxidase was synthesized by a simple one-step thermal reduction method. The doping of manganese was able to reduce part of the iron in Fe-Mn binary oxides to Fe0 at high temperatures. In addition, Fe0@FeMn-NC has excellent peroxidase-like mimetic activity, and thus, it was used for the rapid degradation of p-chlorophenol (4-CP). During the degradation process, Fe0 was able to rapidly replenish the constantly depleted Fe2+ in the reaction system and brought in a large number of additional electrons. The ineffective decomposition of H2O2 due to the use of H2O2 as an electron donor in the reduction reactions from Fe3+ to Fe2+ and from Mn3+ to Mn2+ was avoided. Finally, based on the experimental results of LC-MS and combined with theoretical calculations, the degradation process of 4-CP was rationally analyzed, in which the intermediates were mainly p-chloro-catechol, p-chloro resorcinol, and p-benzoquinone. Fe0@FeMn-NC nano-enzymes have excellent catalytic activity as well as structural stability and perform well in the treatment of simulated wastewater containing a variety of phenolic pollutants as well as real chemical wastewater. It provides some insights and methods for the application of peroxidase-like enzymes in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xinxin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Huilai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhihao Li
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Minshu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Kangping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhi Guo
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhengliang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing, 246002, People's Republic of China
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing, 246002, People's Republic of China
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
4
|
Min KJ, An HJ, Park KY. Cadmium-treatment efficiency and membrane fouling during electrodialysis of wastewater discharged from zinc smelting. CHEMOSPHERE 2023; 332:138881. [PMID: 37164203 DOI: 10.1016/j.chemosphere.2023.138881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Zinc smelting wastewater contains high concentrations of Cd. Here, the treatment efficiency of Cd using electrodialysis was evaluated. In addition, scale accumulation of ion-exchange membrane (IEM) was analyzed, and fouling control was studied. The results showed that spacers effectively improved the limiting current density but accelerated foulant accumulation. The Cd-treatment efficiency improved to 85.4% without a spacer. Dissolved organic carbon (DOC) and hydrophobic DOC levels in diluted water decreased by 0.65 mg L-1 and 2.1 mg L-1, respectively; in contrast, hydrophilic DOC level increased by 1.45 mg L-1. Some of the hydrophobic DOC in the diluted water was converted to hydrophilic DOC and subsequently to low-molecular-weight (LMW) DOC. DOC level in the concentrated water did not change substantially, but the LMW fraction of the hydrophilic DOC increased. In the cation-exchange membrane, a material composed of calcium sulfate accumulated in the bottom layer, and hydroxides of divalent and trivalent ions accumulated on top of it. In contrast, the anion-exchange membrane was fouled by humic substances. In terms of fouling control, physical and acid cleaning of IEMs was more effective than the reversal operation.
Collapse
Affiliation(s)
- Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Hyo Jin An
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, Neungdong-ro 120, Gwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Li B, Wang Z, Xia S, Zhang B, Li W, Qiu W, Ma J, Ding A, He X. CaO2-based tablet for effective and green membrane cleaning without additional catalysts. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Liu W, Liu B, Li X. UV/Fe(II) synergistically activated S(IV) per-treatment on HA-enhanced Ca 2+ scaling in NF filtration: Fouling mitigation, mechanisms and correlation analysis of membrane resistance in different filtration stage. CHEMOSPHERE 2022; 308:136302. [PMID: 36064030 DOI: 10.1016/j.chemosphere.2022.136302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to investigate the feasibility and fouling mitigation mechanisms of UV/Fe(II) synergistically activated sulfite (S(IV)) (UFS) pretreatment to alleviate membrane fouling caused by HA-enhanced Ca2+ scaling. After UFS treatment, hydrophobic substances and carboxyl groups structure were destroyed by the in-situ-generated SO•-4, resulted in a significant reduction of hydrophobic substances ratio and carboxyl group concentration. Due to the formation of more electropositive in-situ-generated Fe(III), the complexation between Ca2+ and carboxyl groups was weakened so that the bulk crystallization size on the membrane surface was greatly reduced. The filter cake enhanced osmotic pressure effect (CEOP) and concentration polarization effect were hence alleviated, as well as the surface roughness. At the microcosmic perspective, as the energy barrier between the membrane and foulants was increased significantly after pretreatment, the anti-foulants adsorption ability of the membrane was enhanced. Correlation analysis showed that the carboxyl concentration and density, HPO ratio, larger particle size (>100 nm) ratio, the Ca2+ concentration in the scaling layer and energy barrier all had a good correlation with the membrane resistance. This research not only provides an advanced oxidation technology that can effectively alleviate the synergistically-fouling effect of HA and Ca2+ of nanofiltration process, but also proposes a guidance for the UV/Fe(II) synergistically activated sulfite.
Collapse
Affiliation(s)
- Wenkai Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China.
| | - Xin Li
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
7
|
Zeng B, Pan Z, Xu Y, Long Y, Lin H, Zhang J, Shen L, Li R, Hong H, Zhang H. Molecular insights into membrane fouling caused by polysaccharides with different structures in polyaluminum chloride coagulation-ultrafiltration process. CHEMOSPHERE 2022; 307:135849. [PMID: 35948096 DOI: 10.1016/j.chemosphere.2022.135849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, mechanisms of membrane fouling caused by polysaccharides with different molecular structures in polyaluminum chloride (PACl) coagulation-ultrafiltration (C-UF) process were explored. Carrageenan and xanthan gum were chosen for model foulants of straight chain and branched chain polysaccharides, respectively. Filtration experiments showed that, with PACl dosage of 0-5 mM, specific filtration resistance (SFR) of carrageenan and xanthan solution showed a unimodal pattern and a continuous decrease pattern, respectively. A series of experimental characterizations indicated that the different SFR pattern was closely related to structure of foulants layer. Density functional theory (DFT) calculation suggested that Al3+ preferentially coordinating with the terminal sulfonyl groups of carrageenan chains to promote gel layer formation at low PACl concentration (0.15 mM). There existed a chemical potential gap between bound water in gel layer and free water in the permeate, so that, filtration through gel layer corresponded to rather high SFR for overcoming this gap. In contrast, Al3+ coordinating with the non-terminal sulfonyl groups of carrageenan at high PACl concentration caused transition from gel layer to cake layer, leading to SFR decrease. However, xanthan gum itself can form a dense gel layer with a complex polymer network by virtue of the interlacing of main chains and branches. Al3+ coordinating with the carboxyl groups on branched chains of xanthan gum resulted in clusters of polymer chains and flocculation, corresponding to the reduced SFR. This proposed molecular-level mechanism well explained membrane fouling behaviors of polysaccharides with different molecular structure, and also facilitated to optimize C-UF process for water treatment.
Collapse
Affiliation(s)
- Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ying Long
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
8
|
Liu W, Zhao C, Zhou S, Liu B, Cheng X, Xue Z, Zhu T. Effects of UV/Fe(II)/sulfite pre-treatment on NOM-enhanced Ca 2+ scaling during nanofiltration treatment: Fouling mitigation, mechanisms, and correlation analysis of membrane resistance. WATER RESEARCH 2022; 223:119025. [PMID: 36058094 DOI: 10.1016/j.watres.2022.119025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
This study was aimed to evaluate the effects of a pre-treatment involving sulfite (S(IV)) synergistically activated by ultraviolet (UV)/Fe(II) on natural organic matter (NOM)-enhanced Ca2+ scaling during nanofiltration treatment. Based on the variations in the physicochemical properties and correlation analyses of irreversible resistance, the intrinsic fouling mechanisms were revealed from two aspects: bulk crystallization (interaction between NOM and inorganic ions) and surface crystallization (morphology of surface crystallization and a change in the Ca2+ concentration in the scaling layer). Furthermore, the degradation contribution rates of different free radicals during the UV/Fe(II)/S(IV) (UFS) treatment process were evaluated. During the reactions in the UFS, three free radicals (SO·-4, OH·- and e- aq) were generated, and in-situ Fe(III) was formed in-situ. The carboxyl groups of the NOM were attacked by the free radicals, resulting in decreased of carboxyl concentration and density. In addition, the bond between Ca2+ and NOM weakened, and hydrophobic (HPO) substances were mineralized. However, the Fe(III) formed in-situ was active and electropositive, competing with Ca2+ for the complexation active sites on the NOM. The synergy effect of bulk crystallization and surface crystallization led to a significant decrease in the particle size of feed solution. The crystal size and roughness of membrane surface also decreased, which was conducive to reducing the membrane irreversible resistance. Correlation analysis revealed that the HPO ratio, carboxyl density and particle size (> 100 nm) ratio were effective characterization parameters for predicting irreversible resistance. This study not only provides guidance for alleviating membrane fouling caused by NOM-enhanced Ca2+ scaling during the nanofiltration process, but also presents the rationality of irreversible resistance during nanofiltration process and various indicators with strong linear correlation.
Collapse
Affiliation(s)
- Wenkai Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Shiqing Zhou
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Zhihao Xue
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Li S, Meng H, Wang H, Vrouwenvelder JS, Li Z. A sacrificial protective layer as fouling control strategy for nanofiltration in water treatment. WATER RESEARCH 2022; 219:118554. [PMID: 35576758 DOI: 10.1016/j.watres.2022.118554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
High-performance nanofiltration (NF) membrane with super antifouling capability as well as reusability is highly desired in water treatment. A new antifouling strategy by a coating-decoating-recoating cycle was investigated for effective removal of fouling and restoring the original membrane performance. The functional membrane surface was fabricated by in-situ coating a 'green' and biodegradable carboxymethyl chitosan (CMCS) layer as physical barrier. The CMCS layer can be decoated and re-coated by simple procedures. Results showed that (i) the CMCS layer enhanced surface hydrophilicity, surface smoothness and fouling resistance of NF membrane, (ii) both the unfouled and fouled CMCS layer were easily decoated by the strong acid solution, (iii) the CMCS layer was easily re-coated by facile recoating and (iv) the water flux recovery ratio of membrane with coating layer was maintained more than 88.8% during fouling testing by natural organic matter (NOM) after four sequential cycles of coating, decoating and recoating process. The re-coated membrane exhibited stable, improved membrane operational and antifouling performance. The coating-decoating-recoating approach is proven to be low-cost and eco-friendly strategy for NOM fouling control on NF membrane in water treatment applications.
Collapse
Affiliation(s)
- Sihang Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huanna Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haihua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zhenyu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Zhang D, Zhang K, Chen K, Xue Y, Liang J, Cai Y. Mitigation of organic fouling of ultrafiltration membrane by high-temperature crayfish shell biochar: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153183. [PMID: 35051453 DOI: 10.1016/j.scitotenv.2022.153183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 05/09/2023]
Abstract
The paper applied crayfish shell (CFS) biochar to the mitigation of ultrafiltration (UF) membrane fouling induced by humic acid (HA) and sodium alginate (SA). Results indicated that the high adsorption capacity of CFS800 to HA made it effective in alleviating the irreversible membrane fouling induced by HA, and the cross-linking reaction between the hydroxyl calcium components on CFS800 and SA reduced the reversible membrane fouling induced by SA rapidly. Further analysis showed that the "hydrogel flocs" generated by the cross-linking reaction would accumulate on the surface of the substrate membrane and form an amorphous hydrogel layer to intercept the subsequent foulant and purify the water quality further. Meanwhile, the mitigation performance of CFS800 was twice more than that of commercial powder activated carbon (PAC), and the dosage was the main factor affecting its practical application performance and thus could be considered as a promising material in alleviating membrane fouling induced by HA and SA. More importantly, the findings of the present study gave a new sight towards the application of biochar.
Collapse
Affiliation(s)
- Dawei Zhang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Kejing Zhang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Keyan Chen
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Jiatong Liang
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Yu Cai
- School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
11
|
Wang Q, Jiang J, Gao L. Catalytic antimicrobial therapy using nanozymes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1769. [PMID: 34939348 DOI: 10.1002/wnan.1769] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 12/18/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which catalyze the conversion of enzyme substrates and follow enzymatic kinetics under physiological conditions. As a new generation of artificial enzymes, nanozymes provide alternative approaches for those upon enzymatic catalysis. Compared with natural enzymes, nanozymes have the advantages of simple preparation, good stability and low cost, which makes nanozymes promising for application in many fields, such as antimicrobial infection treatment. Many studies have reported that nanozymes are capable of killing a number of pathogenic bacteria with resistance, fungi as well as viruses, and have shown great curative effects for diseases caused by these pathogens. Herein, we summarize the application of nanozymes for antibacterial, antiviral, and antifungal therapies and outline the issues needing resolution in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Graduate School of University of Chinese Academy of Sciences, Beijing, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Hu JI, Ma W, Pan Y, Chen Z, Zhang Z, Wan C, Sun Y, Qiu C. Resolving the Tribo-catalytic reaction mechanism for biochar regulated Zinc Oxide and its application in protein transformation. J Colloid Interface Sci 2021; 607:1908-1918. [PMID: 34798707 DOI: 10.1016/j.jcis.2021.09.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/15/2022]
Abstract
The utilization of mechanical energy to control water pollutants under dark conditions is currently a point of study focus. Herein, biochar -zinc oxide (BC-ZnO) composites with various structures were synthesized by co-pyrolysis of cotton and ZnO at different temperature and used for tribo-catalytic reaction. The introduction of BC can improve charge transmission and separation efficiency. Ultraviolet photoelectron spectra (UPS) and density functional theory (DFT) calculation prove the addition of BC can reduce work function of ZnO, and enhance its electron-donating ability. Specially, suitable adsorption amount is the key factor to improve the tribo-catalytic performance. When the pyrolysis temperature is 600 °C, BC-ZnO has the best degradation efficiency, which can degrade 90% Rhodamine B (RhB) in 75 min, while ZnO can degrade only 38%. On this basis, using bovine serum albumin (BSA) as a model, the effect of tribo-catalytic reaction on controlling proteins in water was studied by fluorescence excitation-emission matrix spectroscopy (3D EEM) and infrared microscope, and the transformation of proteins was further analyzed. This study provides a new strategy to improve the tribo-catalytic performance of ZnO, and explores its application prospects of biological wastewater control.
Collapse
Affiliation(s)
- JIng Hu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Ma
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yuzhen Pan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhen Chen
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Zhe Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chunxiang Wan
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Yanwen Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Chenxi Qiu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
13
|
Yan M, Shen X, Gao B, Guo K, Yue Q. Coagulation-ultrafiltration integrated process for membrane fouling control: Influence of Al species and SUVA values of water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148517. [PMID: 34174605 DOI: 10.1016/j.scitotenv.2021.148517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 05/09/2023]
Abstract
Natural organic matter (NOM) pollution is a great challenge for the ultrafiltration (UF) process owing to the inevitable membrane fouling. In this study, three Al species coagulants (Ala/Alb/Alc) and their composites in combination with Poly dimethyl ammonium chloride (PolyDMDAAC) were used as a pretreatment strategy for the UF process. Then, test waters with different NOM fractions (i.e., humic acid, fulvic acid, protein, and polysaccharide) were prepared to analyze the effects of NOM characteristics on membrane fouling behaviors. The results indicated that compared with Alb and Alc, Ala showed higher removal efficiencies for hydrophobic NOM, aromatic organic matters, and suspended particles, but a limited effect on removing dissolved organic carbon (DOC). Ala or Ala-PolyDMDAAC effectively mitigated membrane fouling by removing the hydrophobic NOM in the coagulation process and forming the porous cake layer in the UF process. The test waters with higher specific ultraviolet absorbance (SUVA) resulted in more severe total and reversible membrane fouling but lighter irreversible fouling. After pretreatment by Ala or Ala-PolyDMDAAC, water samples with the medium SUVA value exhibited remarkable alleviation of membrane fouling due to the formation of large, compact, and robust flocs, as well as the construction of loose and poriferous cake layer on the membrane surface. Although hydrophilic NOM was challenging to be removed by coagulation, the interception and re-adsorption of porous cake layers contributed to the alleviation of irreversible fouling.
Collapse
Affiliation(s)
- Mengjiao Yan
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| | - Xue Shen
- Resources and Environment Innovation institute, Shandong Jianzhu University, Jinan 250101, China
| | - Baoyu Gao
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China.
| | - Kangying Guo
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China.
| | - Qinyan Yue
- Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, Shandong, PR China
| |
Collapse
|
14
|
Amiri Z, Moussavi G, Mohammadi S, Giannakis S. Development of a VUV-UVC/peroxymonosulfate, continuous-flow Advanced Oxidation Process for surface water disinfection and Natural Organic Matter elimination: Application and mechanistic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124634. [PMID: 33261977 DOI: 10.1016/j.jhazmat.2020.124634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Surface waters are often charged with high amounts of natural organic matter (NOM), organic contaminants and pathogens. In this work, a Vacuum UV/PMS process (VUV-UVC/PMS) was employed for treating river water, assessing the simultaneous NOM mineralization and bacterial disinfection. The VUV-UVC process (without PMS) decreased TOC concentration from 3.83 to 0.15 mg/L within 20 min, achieving complete disinfection. Adding 5 mg/L PMS increased the rate of TOC removal by 80%; complete removal of TOC was achieved in 15 min and disinfection was attained twice as fast. The mechanism of NOM mineralization was scrutinized; aeration played a considerable role due to oxygen supply, mixing, and inducing in-situ H2O2 production. HO• and SO4•- were the main radical species involved, alongside an important contribution of the matrix; sulfate enhanced TOC removal, due to the formation of additional radicals, underlining its importance. Furthermore, over 99% TOC reduction and complete disinfection was achieved in the VUV-UVC/PMS process operated under continuous-flow mode with a 2-min hydraulic retention time. Finally, the use of Atrazine (ATZ) as a probe compound and a series of scavenging tests led to an integrated proposal for the mineralization of NOM. Accordingly, the VUV-UVC/PMS process is evaluated as an efficient and promising technology for surface water treatment.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Samira Mohammadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain.
| |
Collapse
|