1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Hata A, Meuchi Y, Liu M, Torii S, Katayama H. Surfactant Treatment for Efficient Gene Detection of Enteric Viruses and Indicators in Surface Water Concentrated by Ultrafiltration. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:8-20. [PMID: 36592278 DOI: 10.1007/s12560-022-09543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The hollow fiber ultrafiltration (HFUF)-based microbial concentration method is widely applied for monitoring pathogenic viruses and microbial indicators in environmental water samples. However, the HFUF-based method can co-concentrate substances that interfere with downstream molecular processes-nucleic acid extraction, reverse transcription (RT), and PCR. These inhibitory substances are assumed to be hydrophobic and, therefore, expected to be excluded by a simple surfactant treatment before the silica membrane-based RNA extraction process. In this study, the efficacy and limitations of the sodium deoxycholate (SD) treatment were assessed by quantifying a process control and indigenous viruses using 42 surface water samples concentrated with HFUF. With some exceptions, which tended to be seen in samples with high turbidity (> 4.0 NTU), virus recovery by the ultrafiltration method was sufficiently high (> 10%). RNA extraction-RT-quantitative PCR (RT-qPCR) efficiency of the process control was insufficient (10%) for 30 of the 42 HFUF concentrates without any pretreatments, but it was markedly improved for 21 of the 30 inhibitory concentrates by the SD treatment. Detection rates of indigenous viruses were also improved and no substantial loss of viral RNA was observed. The SD treatment was particularly effective in mitigating RT-qPCR inhibition, although it was not effective in improving RNA extraction efficiency. The methodology is simple and easily applied. These findings indicate that SD treatment can be a good alternative to sample dilution, which is widely applied to mitigate the effect of RT-qPCR inhibition, and can be compatible with other countermeasures.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yuno Meuchi
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miaomiao Liu
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- School of Architecture, Civil and Environmental Engineering (ENAC), École polytechnique fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
3
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
4
|
Desdouits M, Piquet JC, Wacrenier C, Le Mennec C, Parnaudeau S, Jousse S, Rocq S, Bigault L, Contrant M, Garry P, Chavanon F, Gabellec R, Lamort L, Lebrun L, Le Gall P, Meteigner C, Schmitt A, Seugnet JL, Serais O, Peltier C, Bressolette-Bodin C, Blanchard Y, Le Guyader FS. Can shellfish be used to monitor SARS-CoV-2 in the coastal environment? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146270. [PMID: 33714825 PMCID: PMC7938784 DOI: 10.1016/j.scitotenv.2021.146270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 05/21/2023]
Abstract
The emergence and worldwide spread of SARS-CoV-2 raises new concerns and challenges regarding possible environmental contamination by this virus through spillover of human sewage, where it has been detected. The coastal environment, under increasing anthropogenic pressure, is subjected to contamination by a large number of human viruses from sewage, most of them being non-enveloped viruses like norovirus. When reaching coastal waters, they can be bio-accumulated by filter-feeding shellfish species such as oysters. Methods to detect this viral contamination were set up for the detection of non-enveloped enteric viruses, and may need optimization to accommodate enveloped viruses like coronaviruses (CoV). Here, we aimed at assessing methods for the detection of CoV, including SARS-CoV-2, in the coastal environment and testing the possibility that SARS-CoV-2 can contaminate oysters, to monitor the contamination of French shores by SARS-CoV-2 using both seawater and shellfish. Using the porcine epidemic diarrhea virus (PEDV), a CoV, as surrogate for SARS-CoV-2, and Tulane virus, as surrogate for non-enveloped viruses such as norovirus, we assessed and selected methods to detect CoV in seawater and shellfish. Seawater-based methods showed variable and low yields for PEDV. In shellfish, the current norm for norovirus detection was applicable to CoV detection. Both PEDV and heat-inactivated SARS-CoV-2 could contaminate oysters in laboratory settings, with a lower efficiency than a calicivirus used as control. Finally, we applied our methods to seawater and shellfish samples collected from April to August 2020 in France, where we could detect the presence of human norovirus, a marker of human fecal contamination, but not SARS-CoV-2. Together, our results validate methods for the detection of CoV in the coastal environment, including the use of shellfish as sentinels of the microbial quality of their environment, and suggest that SARS-CoV-2 did not contaminate the French shores during the summer season.
Collapse
Affiliation(s)
- Marion Desdouits
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Jean-Côme Piquet
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Candice Wacrenier
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Cécile Le Mennec
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sylvain Parnaudeau
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sarah Jousse
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Sophie Rocq
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Lionel Bigault
- ANSES, Génétique Virale et Biosécurité, Ploufragan, France
| | - Maud Contrant
- ANSES, Génétique Virale et Biosécurité, Ploufragan, France
| | - Pascal Garry
- Ifremer, laboratoire de Microbiologie, SG2M/LSEM, BP 21105, 44311 Nantes, France
| | - Fabienne Chavanon
- Ifremer, Laboratoire Environnement Ressource Provence-Azur-Corse, la Seyne sur Mer, France
| | - Raoul Gabellec
- Ifremer, Laboratoire Environnement Ressource Morbihan Pays de la Loire, Lorient, France
| | - Laure Lamort
- Ifremer, Laboratoire Environnement Ressource Normandie, Port en Bessin, France
| | - Luc Lebrun
- Ifremer, Laboratoire Environnement Ressource Bretagne Occidentale, Concarneau, France
| | - Patrik Le Gall
- Ifremer, Laboratoire Environnement Ressource Bretagne Nord, Dinard, France
| | - Claire Meteigner
- Ifremer, Laboratoire Environnement Ressource Arcachon, Arcachon, France
| | - Anne Schmitt
- Ifremer, Laboratoire Environnement Ressource Morbihan Pays de la Loire, Lorient, France
| | - Jean Luc Seugnet
- Ifremer, Laboratoire Environnement Ressource Pertuis-Charentais, la Tremblade, France
| | - Ophélie Serais
- Ifremer, Laboratoire Environnement Ressource Languedoc Roussillon, Sète, France
| | - Cécile Peltier
- Nantes Université, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Céline Bressolette-Bodin
- Nantes Université, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | | |
Collapse
|
5
|
Canh VD, Torii S, Furumai H, Katayama H. Application of Capsid Integrity (RT-)qPCR to Assessing Occurrence of Intact Viruses in Surface Water and Tap Water in Japan. WATER RESEARCH 2021; 189:116674. [PMID: 33279831 DOI: 10.1016/j.watres.2020.116674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
Capsid integrity (RT-)qPCR has recently been developed to discriminate between intact forms from inactivated forms of viruses, but its applicability to identifying integrity of viruses in drinking water has remained limited. In this study, we investigated the application of capsid integrity (RT-)qPCR using cis-dichlorodiammineplatinum (CDDP) with sodium deoxycholate (SD) pretreatment (SD-CDDP-(RT-)qPCR) to detect intact viruses in surface water and tap water. A total of 63 water samples (surface water, n = 20; tap water, n = 43) were collected in the Kanto region in Japan and quantified by conventional (RT)-qPCR and SD-CDDP-(RT-)qPCR for pepper mild mottle virus (PMMoV) and seven other viruses pathogenic to humans (Aichivirus (AiV), noroviruses of genotypes I and II, enterovirus, adenovirus type 40 and 41, and JC and BK polyomaviruses). In surface water, PMMoV (100%) was more frequently detected than other human pathogenic viruses (30%-60%), as determined by conventional (RT-)qPCR. SD-CDDP-(RT-)qPCR also revealed that intact PMMoV (95%) was more common than intact human pathogenic viruses (20%-45%). In the tap water samples, most of the target viruses were not detected by conventional (RT-)qPCR, except for PMMoV (9%) and AiV (5%). PMMoV remained positive (5%), whereas no AiV was detected when tested by SD-CDDP-(RT-)qPCR, indicating that some PMMoV had an intact capsid, whereas AiV had damaged capsids. The presence of AiV in the absence of PMMoV in tap water produced from groundwater may demonstrate the limitation of PMMoV as a viral indicator in groundwater. In addition to being abundant in surface water, PMMoV was detected in tap water, including PMMoV with intact capsids. Thus, the absence of intact PMMoV may be used to guarantee the viral safety of tap water produced from surface water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shotaro Torii
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|