1
|
Wang Q, Du Y, Li W, Wang C, Zhang J, Yang M, Yu J. Treatability of odorous dioxanes/dioxolanes in source water: How does molecular flexibility and pre-oxidation affect odorant adsorption. WATER RESEARCH 2024; 266:122364. [PMID: 39276475 DOI: 10.1016/j.watres.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Odorous dioxanes and dioxolanes, a class of cyclic acetals often produced as byproducts in polyester resin manufacturing, are problematic in drinking water treatment due to their low odor thresholds and resistance to conventional treatment technology. Our research focuses on the removal of ten dioxane/dioxolane compounds through oxidation and adsorption processes, exploring the key molecular properties that govern the treatmentability. We discovered that both chlorination and permanganate oxidation were largely ineffective at degrading cyclic acetals, achieving less than 20% removal even at high applicable doses. Conversely, powdered activated carbon (PAC) adsorption proved to be a more effective method, with a removal of > 90% at a PAC dosage of 10 mg/L for seven out of ten compounds. The presence of natural organic matter (NOM) reduced PAC adsorbability for all odorants, but the deterioration level substantially varied and mostly affected by structural flexibility as indicated by the number of rotatable bonds. The results of both the experimental investigation and molecular simulation corroborated the hypothesis that more rotatable bonds (from one to three here) are indicative of greater structural flexibility, which in consequence determines the susceptibility of cyclic acetals to NOM competitive adsorption. Increased structural flexibility could facilitate greater entry into silt-like micropores or achieve preferential adsorption sites with more compatible morphology against NOM competition. When pre-oxidation (chlorination and permanganate oxidation) and adsorption were applied sequentially, additional low molecular weight NOM components produced by pre-oxidation resulted in intensified NOM competition and decreased odorant adsorbability. If this combination is inevitably required for algae and odorant control, it would be beneficial to utilize a wise screen for oxidants and a reduced oxidant dose (less than 2 mg/L) to mitigate the deterioration of odorant adsorption. This study elucidates the roles of structural flexibility in influencing the treatability of dioxanes and dioxolanes, extending beyond the solely well-established effects of hydrophobicity. It also presents rational practice guidelines for the combination of pre-oxidation and adsorption in addressing odor incidents associated with dioxane and dioxolane compounds.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Wu S, Zhang R, Fu X, Zhang H, Sun P. Reactivity of unactivated peroxymonosulfate and peroxyacetic acid with thioether micropollutants: Mechanisms and rate prediction. WATER RESEARCH 2024; 256:121601. [PMID: 38640566 DOI: 10.1016/j.watres.2024.121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Thioether compounds, prevalent in pharmaceuticals, are of growing environmental concern due to their prevalence and potential toxicity. Peroxy chemicals, including peroxymonosulfate (PMS) and peroxyacetic acid (PAA), hold promise for selectively attacking specific thioether moieties. Still, it has been unclear how chemical structures affect the interactions between thioethers and peroxy chemicals. This study addresses this knowledge gap by quantitatively assessing the relationship between the structure of thioethers and intrinsic reaction rates. First, the results highlighted the adverse impact of electron-withdrawing groups on reactivity. Theoretical calculations were employed to locate reactive sites and investigate structural characteristics, indicating a close relationship between thioether charge and reaction rate. Additionally, we established a SMILES-based model for rapidly predicting PMS reactivity with thioether compounds. With this model, we identified 147 thioether chemicals within the high production volume (HPV) and Food and Drug Administration (FDA) approved drug lists that PMS could effectively eliminate with the toxicity (-lg LC50) decreasing. These findings underscore the environmental significance of thioether compounds and the potential for their selective removal by peroxides.
Collapse
Affiliation(s)
- Shikang Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - XiaoLi Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Hao Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Zhao HX, Zhang S, Zhang TY, Zhu YP, Pan RJ, Xu MY, Zheng ZX, Hu CY, Tang YL, Xu B. Comparison of four pre-oxidants coupled powdered activated carbon adsorption for odor compounds and algae removal: Kinetics, process optimization, and formation of disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168920. [PMID: 38029977 DOI: 10.1016/j.scitotenv.2023.168920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/21/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Pre-oxidation and powdered activate carbon (PAC) are usually used to remove algae and odorants in drinking waterworks. However, the influence of interaction between oxidants and PAC on the treatment performance are scarcely known. This study systematically investigated the combination schemes of four oxidants (KMnO4, NaClO, ClO2, and O3) and PAC on the inactivation of Microcystis aeruginosa cells and removal of four frequently detected odorants in raw water (diethyl disulfide (DEDS), 2,2'-oxybis(1chloropropane) (DCIP), 2-methylisoborneol (2-MIB) and geosmin (GSM)). O3 showed highest pseudo-first-order removal rate for all four compounds and NaClO exhibited highest inactivation rates for the cell viability and Chlorophyll a (Chl-a). The Freundlich model fitted well for the adsorption of DEDS and DCIP by PAC. When treated by combined oxidation/PAC, the removal ratio of algae cells and odorants were lower (at least 1.6 times) than the sum of removal ratios obtained in oxidation or PAC adsorption alone. Among these four oxidants, the highest synchronous control efficiency of odorants (52 %) and algae (66 %) was achieved by NaClO/PAC. Prolonging the dosage time interval promoted the removal rates. The pre-PAC/post-oxidation processes possessed comparable efficiency for the removal of odorants and algae cells comparing with pre-oxidation/post-PAC process, but significantly inhibited formation of disinfection byproducts (DBPs), especially for the formation of C-DBPs (for NaClO and ClO2), bromate (for O3) and chlorate/chlorite (for ClO2). This study could provide a better understanding of improving in-situ operation of the combined pre-treatments of oxidation and PAC for source water.
Collapse
Affiliation(s)
- Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shuang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yi-Ping Zhu
- Shanghai Chengtou Raw Water Limited Company, Shanghai 200125, PR China
| | - Ren-Jie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zheng-Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yu-Lin Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
4
|
Chen X, Sun P, Zhuang Z, Ahmed I, Zhang L, Zhang B. Control of odorants in swine manure and food waste co-composting via zero-valent iron /H 2O 2 system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:390-399. [PMID: 38103349 DOI: 10.1016/j.wasman.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Odors have posed challenges to the advancement of aerobic composting. This work aims to identify the primary components responsible for odors and assess the effectiveness and mechanisms of the zero-valent iron/H2O2 system controlling various odorants in aerobic composting. Swine manure and food waste were used as composting materials, with the addition of zero-valent iron and hydrogen peroxide to mitigate odor emissions. Results revealed that odorants included ammonia, hydrogen sulfide, and 22 types of volatile organic compounds (VOCs), with ethyl acetate, heptane, and dimethyl disulfide being predominant. Among the odorants emitted, ammonia accounted for 75.43%, hydrogen sulfide for 0.09%, and identified VOCs for 24.48%. The ZVI/H2O2 system showed a significant reduction in ammonia and VOCs emission, with the reduction of 51% (ammonia) and 41.3% (VOCs) respectively, primarily observed during the thermophilic period. The occurrence of Fenton-like reactions and changes in key microbial populations were the main mechanisms accounting for odor control. The occurrence of Fenton-like reaction was confirmed by X-ray photoelectron spectroscopy and reactive oxygen detection, showing the oxidation of zero-valent iron by H2O2 to higher valence elemental iron, and the simultaneous production of ·OH. Microbial analysis indicated that an enrichment of specific microorganisms with Bacillus contributed to feammonx and Bacillaceae contributed to organic biodegradation. Redundancy analysis highlighted the role of key microbial species (Bacillaceae, Bacillus, and Ureibacillus) in effectively reducing the level of ammonia and volatile organic compounds. These novelty findings illustrated that the potential of this system is promising for controlling the emission of odorants and aerobic composting reinforcement.
Collapse
Affiliation(s)
- Xuanbing Chen
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pengyu Sun
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixian Zhuang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| |
Collapse
|
5
|
Sun J, Xin X, Sun S, Du Z, Yao Z, Wang M, Jia R. Experimental and theoretical investigation on degradation of dimethyl trisulfide by ultraviolet/peroxymonosulfate: Reaction mechanism and influencing factors. J Environ Sci (China) 2023; 127:824-832. [PMID: 36522110 DOI: 10.1016/j.jes.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 06/17/2023]
Abstract
With a large amount of domestic sewage and industrial wastewater discharged into the water bodies, sulfur-containing organic matter in wastewater produced volatile organic sulfide, such as dimethyl trisulfide (DMTS) through microorganisms, caused the potential danger of drinking water safety and human health. At present, there is still a lack of technology on the removal of DMTS. In this study, the ultraviolet/peroxymonosulfate (UV/PMS) advanced oxidation processes was used to explore the degradation of DMTS. More than 90% of DMTS (30 µg/L) was removed under the conditions of the concentration ratio of DMTS to PMS was 3:40, the temperature (T) was 25 ± 2℃, and 10 min of irradiation by a 200 W mercury lamp (365 nm). The kinetics rate constant k of DMTS reacting with hydroxyl radical (HO·) was determined to be 0.2477 min-1. Mn2+, Cu2+ and NO3- promoted the degradation of DMTS, whereas humic acid and Cl- in high concentrations inhibited the degradation process. Gas chromatography-mass spectrometry was used to analyze the degradation products and the degradation intermediates were dimethyl disulfide and methanethiol. Density functional theory was used to predict the possible degradation mechanism according to the frontier orbital theory and the bond breaking mechanism of organic compounds. The results showed that the SS, CS and CH bonds in DMTS molecular structure were prone to fracture in the presence of free radicals, resulting in the formation of alkyl radicals and sulfur-containing radicals, which randomly combined to generate a variety of degradation products.
Collapse
Affiliation(s)
- Jianing Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodong Xin
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| | - Shaohua Sun
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| | - Zhenqi Du
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenxing Yao
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| | - Mingquan Wang
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China
| | - Ruibao Jia
- Shandong Province Water Supply and Drainage Monitoring Center, Jinan 250101, China.
| |
Collapse
|
6
|
Deng X, Ruan L, Ren R, Tao M, Zhang J, Wang L, Yan Y, Wen X, Yang X, Xie P. Phosphorus accelerate the sulfur cycle by promoting the release of malodorous volatile organic sulfur compounds from Microcystis in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157280. [PMID: 35835193 DOI: 10.1016/j.scitotenv.2022.157280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Volatile organic sulfur compounds (VSCs) released by algae are of great significance in sulfur cycle, climate regulation and biological information transmission, and they also caused taste and odor in freshwaters. However, the categories, sources, and environmental regulatory factors of VSCs in freshwaters were less known. Here, we show that eight common freshwater cyanobacterium Microcystis, which bloom in freshwaters over the world, are found to be important producers of VSCs. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and isopropyl methyl sulfide (IPMS) are the main VSCs with the highest concentrations 184.81 nmol/L, 162.01 nmol/L and 101.55 nmol/L, respectively. The amount of VSCs released from those Microcystis varied greatly, M. elabens, M. panniformis and M. flos-aquae released the largest amount of VSCs (1260.52 nmol S/L, 1154.75 nmol S/L and 670.58 nmol S/L), and M. wesenbergii had the smallest release amount. We also found for the first time that phosphorus (P) was one of the important factors for the regulation VSCs from most Microcystis. P can elevate the release of DMS by promoting the biomass and DMS yields of most Microcystis in the range 0.05 mg/L to 0.5 mg/L. Similar results were also found in 16 lakes at three different spatiotemporal scales. Overall, we revealed that the common freshwater Microcystis were able to release diverse thioethers, and the major VSCs were significantly influenced by water P concentrations. In the context of global freshwater eutrophication and Microcystis bloom, freshwater cyanobacteria driven sulfur cycle and water odor will probably be further strengthened.
Collapse
Affiliation(s)
- Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Linwei Ruan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Ren Ren
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Min Tao
- School of Life Sciences, Neijiang Normal University, Neijiang 641112, China
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment of the People's Republic of China, Wuhan 430010, China
| | - Lantian Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunzhi Yan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xinli Wen
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Xi Yang
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| |
Collapse
|
7
|
Zhang J, Chen Y, Liao Y, Wang Q, Yu J. Studies on the degradation of trace phenol and indole odorants by chlorine and permanganate in drinking water treatment. CHEMOSPHERE 2022; 286:131551. [PMID: 34303909 DOI: 10.1016/j.chemosphere.2021.131551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The frequent detection of phenols and indoles in source water gives rise to concern about the taste and odor problems mainly caused by some chemicals. Exploration for the efficient removal of trace amounts of phenols and indoles in source water is imperative. This study investigated the removals and oxidation kinetics of 3-methylphenol (3-MP), 2,6-dichlorophenol (2,6-DCP), indole and 3-methylindole (3-MI) by NaClO and KMnO4. The results showed that the selected chemical odorants could be removed by NaClO and KMnO4. Meanwhile, the oxidation processes could be well described by the second-order kinetics model, in which kinetics constants of chemical odorants were from 1.44 × 104 to 1.45 × 106 L·mol-1·min-1 and followed the order 3-MI > indole> 3-MP> 2,6-DCP by NaClO. However, the kinetics constants for the selected chemical odorants were also determined from 1.10 × 103 to 2.25 × 104 L·mol-1·min-1 and in the order 2,6-DCP> 3-MI> 3-MP > indole by KMnO4. The phenols degradation mechanisms by NaClO are chlorine substitution, and the products generated are 3,4,6-trichloro-2-methylphenol, 2,4,6-trichlorophenol, etc. And that of indoles are chlorine substitution and hydroxylation by NaClO, which generated 6-chloroindole, 2,6-dichloroaniline, etc. The phenols degradation pathways are oxidative coupling reactions by KMnO4, and that of indoles are hydroxylation reactions by KMnO4. This study provides a further basis for NaClO and KMnO4 oxidation to remove trace phenols and indoles in drinking water pre-treatments.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yisi Chen
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yu Liao
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Qi Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianwei Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
8
|
Yang W, Li J, Ren D, Cao W, Lin H, Qin X, Wu L, Zheng H. Construction of a water‐in‐oil‐in‐water (W/O/W) double emulsion system based on oyster peptides and characterisation of freeze‐dried products. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen Yang
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
| | - Jinzhen Li
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
| | - Dingding Ren
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
| | - Wenhong Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
- Shenzhen Institute of Guangdong Ocean University Shenzhen 518108 China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety 524088 China
| | - Haisheng Lin
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
- Shenzhen Institute of Guangdong Ocean University Shenzhen 518108 China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety 524088 China
| | - Xiaoming Qin
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
- Shenzhen Institute of Guangdong Ocean University Shenzhen 518108 China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety 524088 China
| | - Leiyan Wu
- College of Food Science and Engineering Jiangxi Agricultural University Jiangxi 330045 China
| | - Huina Zheng
- College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China
- Shenzhen Institute of Guangdong Ocean University Shenzhen 518108 China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety 524088 China
| |
Collapse
|
9
|
Effect of Pre-Oxidation on Coagulation/Ceramic Membrane Treatment of Yangtze River Water. MEMBRANES 2021; 11:membranes11050369. [PMID: 34069324 PMCID: PMC8158716 DOI: 10.3390/membranes11050369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.
Collapse
|