1
|
Liu X, Zhang J, Wu Y, Yu Y, Sun J, Mao D, Zhang G. Intensified effect of nitrogen forms on dominant phytoplankton species succession by climate change. WATER RESEARCH 2024; 264:122214. [PMID: 39116610 DOI: 10.1016/j.watres.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Nutrient proportion, light intensity, and temperature affect the succession of dominant phytoplankton species. Despite these insights, this transformation mechanism in highly turbid lakes remains a research gap, especially in response to climate change. To fill this gap, we investigated the mechanism by which multi-environmental factors influence the succession of dominant phytoplankton species in Lake Chagan. This investigation deployed the structural equation model (SEM) and the hydrodynamic-water quality-water ecology mechanism model. Results demonstrated that the dominant phytoplankton species in Lake Chagan transformed from diatom to cyanobacteria during 2012 and 2022. Notably, Microcystis was detected in 2022. SEM revealed the primary environment variables for this succession, including water temperature (Tw), nutrients (total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4N)), and total suspended solids (TSS). Moreover, this event was not the consequence of zooplankton grazing. An integrated hydrodynamic-water quality-bloom mechanism model was built to explore the mechanism driving phytoplankton succession and its response to climate change. Nutrients determined the phytoplankton biomass and dominant species succession based on various proportions. High NH4N:NO3N ratios favored cyanobacteria and inhibited diatom under high TSS. Additionally, the biomass proportions of diatom (30.77 % vs. 22.28 %) and green (30.56 % vs. 23.30 %) decreased dramatically. In contrast, cyanobacteria abundance remarkably increased (35.78 % to 51.71 %) with the increasing NH4-N:NO3-N ratios. In addition, the proportion of non-nitrogen-fixing cyanobacteria was higher than that of the nitrogen-fixing cyanobacteria counterparts when TN:TP≥20 and NH4N:NO3N ≥ 10. Light-limitation phenotypes also experienced an increase with the rising NH4N:NO3N ratios. Notably, the cyanobacterial biomass reached 3-6 times that in the baseline scenario when the air temperature escalated by 3.0 °C until 2061 under the SSP585 scenario. We highlighted the effect of nitrogen forms on the succession of dominant phytoplankton species. Climate warming will increase nitrogen proportion, providing an insightful reference for controlling cyanobacterial blooms.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjie Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanfeng Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yexiang Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxuan Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Mao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guangxin Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Kim JH, Byeon S, Lee H, Lee DH, Lee MY, Shin JK, Chon K, Jeong DS, Park Y. Deep-learning and data-resampling: A novel approach to predict cyanobacterial alert levels in a reservoir. ENVIRONMENTAL RESEARCH 2024; 263:120135. [PMID: 39393456 DOI: 10.1016/j.envres.2024.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The proliferation of harmful algal blooms results in adverse impacts on aquatic ecosystems and public health. Early warning system monitors algal bloom occurrences and provides management strategies for promptly addressing high-concentration algal blooms following their occurrence. In this study, we aimed to develop a proactive prediction model for cyanobacterial alert levels to enable efficient decision-making in management practices. We utilized 11 years of water quality, hydrodynamic, and meteorological data from a reservoir that experiences frequent harmful cyanobacterial blooms in summer. We used these data to construct a deep-learning model, specifically a 1D convolution neural network (1D-CNN) model, to predict cyanobacterial alert levels one week in advance. However, the collected distribution of algal alert levels was imbalanced, leading to the biased training of data-driven models and performance degradation in model predictions. Therefore, an adaptive synthetic sampling method was applied to address the imbalance in the minority class data and improve the predictive performance of the 1D-CNN. The adaptive synthetic sampling method resolved the imbalance in the data during the training phase by incorporating an additional 156 and 196 data points for the caution and warning levels, respectively. The selected optimal 1D-CNN model with a filter size of 5 and comprising 16 filters achieved training and testing prediction accuracies of 97.3% and 85.0%, respectively. During the test phase, the prediction accuracies for each algal alert level (L-0, L-1, and L-2) were 89.9%, 79.2%, and 71.4%, respectively, indicating reasonably consistent predictive results for all three alert levels. Therefore, the use of synthetic data addressed data imbalances and enhanced the predictive performance of the data-driven model. The reliable forecasts produced by the improved model can support the development of management strategies to mitigate harmful algal blooms in reservoirs and can aid in building an early warning system to facilitate effective responses.
Collapse
Affiliation(s)
- Jin Hwi Kim
- Future and Fusion Lab of Architectural Civil and Environmental Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seohyun Byeon
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hankyu Lee
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dong Hoon Lee
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Min-Yong Lee
- Division of Hazard Management, National Institute of Chemical Safety, Seogu, Incheon, 22689, Republic of Korea
| | - Jae-Ki Shin
- Limnoecological Science Research Institute Korea, THE HANGANG, Gyeongnam, 50440, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Gangwon-do, 24341, Republic of Korea
| | - Dae Seong Jeong
- Future and Fusion Lab of Architectural Civil and Environmental Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yongeun Park
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
3
|
Hosseini-Sadabadi SA, Rousseau AN, Laurion I, Behmel S, Sadeghian A, Foulon E, Wauthy M, Cantin AM. Spatiotemporal insights of phytoplankton dynamics in a northern, rural-urban lake using a 3D water quality model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122687. [PMID: 39383741 DOI: 10.1016/j.jenvman.2024.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Lake St. Charles, located north of Quebec City, Canada, is a shallow fluvial lake with two distinct basins bridging rural and urban landscapes. Mainly used as a source of drinking water for 300,000 residents, the lake has faced a steady degradation in water quality due to urbanization and the discharge of domestic wastewater. This study introduces a 3D hydrodynamics and water quality model using the Environmental Fluid Dynamics Code to enhance our understanding of algal bloom dynamics in Lake St. Charles. More specifically, we ran simulations for eight years (i.e., a three-year period for calibration, 2015 to 2017; and a five-year period for validation, 2018 to 2022) to reproduce the complex circulation patterns and dynamics of water quality within the system. The simulation results for chlorophyll-a demonstrate seasonal fluctuations in phytoplankton biomass, closely aligning with in situ observations and achieving Relative Root Mean Square Error (RRMSE) values below 50%. (i) In spring, runoff from snowmelt brought phosphorus into the lake, triggering primary production. Diatom growth was initially predominant in the shallow southern basin, then spread to the deeper northern basin due to favorable environmental conditions, including flow- and wind-induced currents, warmer water temperatures and nutrient availability. (ii) In summer, warm water temperatures stimulated biological activity, leading to the growth of cyanobacteria at the expense of diatoms, as well as a drop in phosphorus. (iii) The cyanobacteria persisted into the fall but began to decline in mid-November. (iv) Winter conditions, including the presence of an ice cover, limited the input of phosphorus and minimized phytoplankton production, but diatoms were observed in low concentrations near Des Hurons River inflow. Overall, during the open-water period, the lake-maintained chlorophyll-a concentrations indicative of mesotrophic conditions, with occasional periods when the biomass increased above the eutrophic threshold. Temperature, nutrient levels, and the fluvial dynamics of the lake are the primary factors influencing phytoplankton formation and distribution in lake St. Charles.
Collapse
Affiliation(s)
- Seyed Abbas Hosseini-Sadabadi
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada.
| | - Alain N Rousseau
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Isabelle Laurion
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Sonja Behmel
- AGIRO, 433 Rue Delage, Québec City, Québec, G3G 1H4, Canada
| | - Amir Sadeghian
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Etienne Foulon
- Institut National de La Recherche Scientifique (INRS), Centre Eau Terre Environnement (ETE), 490 De La Couronne, Québec City, Québec, G1K 9A9, Canada
| | - Maxime Wauthy
- AGIRO, 433 Rue Delage, Québec City, Québec, G3G 1H4, Canada
| | - Anne-Marie Cantin
- Ville de Québec, Service de La Planification de L'aménagement et de L'environnement, 295 Boul, Québec City, Québec, G1K 3G8, Canada
| |
Collapse
|
4
|
Karlicki M, Bednarska A, Hałakuc P, Maciszewski K, Karnkowska A. Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning. FEMS Microbiol Ecol 2024; 100:fiae104. [PMID: 39039016 DOI: 10.1093/femsec/fiae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Collapse
Affiliation(s)
- Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Bednarska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
5
|
Wan Y, Kong Q, Du H, Yang W, Zha W, Li W. Effectiveness of artificial reefs in enhancing phytoplankton community dynamics: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174593. [PMID: 38997038 DOI: 10.1016/j.scitotenv.2024.174593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Artificial reefs (ARs) are widespread globally and play a positive role in enhancing fish communities and restoring habitat. However, the effect of ARs on phytoplankton, which are fundamental to the marine food chain, remains inconclusive. Conducting a literature review and meta-analysis, this study investigates how ARs influence phytoplankton community dynamics by comparing the biomass, density, and diversity of phytoplankton between ARs and natural water bodies across varying deployment durations, constituent materials, and climatic zones. The study findings suggest that, overall, ARs enhance the biomass, density, and diversity of phytoplankton communities, with no significant differences observed compared to natural water bodies. The enhancement effect of ARs on phytoplankton communities becomes progressively more pronounced with increasing deployment time, with the overall status of phytoplankton communities being optimal when artificial reefs are deployed for 5 years or longer. Concrete and stone ARs can significantly enhance the biomass and diversity of phytoplankton, respectively. The effect of ARs on phytoplankton diversity is unrelated to climatic zones. However, deploying ARs in temperate waters significantly enhances phytoplankton biomass, while in tropical waters, it significantly reduces phytoplankton density. The research findings provide practical implications for the formulation of artificial reef construction strategies tailored to the characteristics of different aquatic ecosystems, emphasizing the need for long-term deployment and appropriate material selection. This study offers a theoretical basis for optimizing AR design and deployment to achieve maximum ecological benefits.
Collapse
Affiliation(s)
- Yu Wan
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Qiaoling Kong
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Hongbo Du
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Yang
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wei Zha
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Wenjie Li
- Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, PR China; National Inland Waterway Regulation Engineering Technology Research Center, Chongqing Jiaotong University, Chongqing 400074, PR China.
| |
Collapse
|
6
|
Bayramova E, Petrova D, Marchenkov A, Morozov A, Galachyants Y, Zakharova Y, Bedoshvili Y, Likhoshway Y. Differential Expression of Stress Adaptation Genes in a Diatom Ulnaria acus under Different Culture Conditions. Int J Mol Sci 2024; 25:2314. [PMID: 38396992 PMCID: PMC10888605 DOI: 10.3390/ijms25042314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Diatoms are a group of unicellular eukaryotes that are essential primary producers in aquatic ecosystems. The dynamic nature of their habitat necessitates a quick and specific response to various stresses. However, the molecular mechanisms of their physiological adaptations are still underexplored. In this work, we study the response of the cosmopolitan freshwater diatom Ulnaria acus (Bacillariophyceae, Fragilariophycidae, Licmophorales, Ulnariaceae, Ulnaria) in relation to a range of stress factors, namely silica deficiency, prolonged cultivation, and interaction with an algicidal bacterium. Fluorescent staining and light microscopy were used to determine the physiological state of cells under these stresses. To explore molecular reactions, we studied the genes involved in the stress response-type III metacaspase (MC), metacaspase-like proteases (MCP), death-specific protein (DSP), delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH12), and glutathione synthetase (GSHS). We have described the structure of these genes, analyzed the predicted amino acid sequences, and measured their expression dynamics in vitro using qRT-PCR. We demonstrated that the expression of UaMC1, UaMC3, and UaDSP increased during the first five days of silicon starvation. On the seventh day, it was replaced with the expression of UaMC2, UaGSHS, and UaALDH. After 45 days of culture, cells stopped growing, and the expression of UaMC1, UaMC2, UaGSHS, and UaDSP increased. Exposure to an algicidal bacterial filtrate induced a higher expression of UaMC1 and UaGSHS. Thus, we can conclude that these proteins are involved in diatoms' adaptions to environmental changes. Further, these data show that the molecular adaptation mechanisms in diatoms depend on the nature and exposure duration of a stress factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yekaterina Bedoshvili
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (E.B.); (D.P.); (A.M.); (A.M.); (Y.G.); (Y.Z.); (Y.L.)
| | | |
Collapse
|
7
|
Zepernick BN, Chase EE, Denison ER, Gilbert NE, Truchon AR, Frenken T, Cody WR, Martin RM, Chaffin JD, Bullerjahn GS, McKay RML, Wilhelm SW. Declines in ice cover are accompanied by light limitation responses and community change in freshwater diatoms. THE ISME JOURNAL 2024; 18:wrad015. [PMID: 38366077 PMCID: PMC10939406 DOI: 10.1093/ismejo/wrad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
The rediscovery of diatom blooms embedded within and beneath the Lake Erie ice cover (2007-2012) ignited interest in psychrophilic adaptations and winter limnology. Subsequent studies determined the vital role ice plays in winter diatom ecophysiology as diatoms partition to the underside of ice, thereby fixing their location within the photic zone. Yet, climate change has led to widespread ice decline across the Great Lakes, with Lake Erie presenting a nearly "ice-free" state in several recent winters. It has been hypothesized that the resultant turbid, isothermal water column induces light limitation amongst winter diatoms and thus serves as a competitive disadvantage. To investigate this hypothesis, we conducted a physiochemical and metatranscriptomic survey that spanned spatial, temporal, and climatic gradients of the winter Lake Erie water column (2019-2020). Our results suggest that ice-free conditions decreased planktonic diatom bloom magnitude and altered diatom community composition. Diatoms increased their expression of various photosynthetic genes and iron transporters, which suggests that the diatoms are attempting to increase their quantity of photosystems and light-harvesting components (a well-defined indicator of light limitation). We identified two gene families which serve to increase diatom fitness in the turbid ice-free water column: proton-pumping rhodopsins (a potential second means of light-driven energy acquisition) and fasciclins (a means to "raft" together to increase buoyancy and co-locate to the surface to optimize light acquisition). With large-scale climatic changes already underway, our observations provide insight into how diatoms respond to the dynamic ice conditions of today and shed light on how they will fare in a climatically altered tomorrow.
Collapse
Affiliation(s)
- Brittany N Zepernick
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Emily E Chase
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Elizabeth R Denison
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Naomi E Gilbert
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
- Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Alexander R Truchon
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Thijs Frenken
- HAS University of Applied Sciences, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - William R Cody
- Aquatic Taxonomy Specialists, Malinta, OH 43535, United States
| | - Robbie M Martin
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| | - Justin D Chaffin
- Stone Laboratory and Ohio Sea Grant, The Ohio State University, Put-In-Bay, OH 43456, United States
| | - George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, United States
| | - R Michael L McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9C 1A2, Canada
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
8
|
Yin H, Yin P, Yang Z. Seasonal sediment phosphorus release across sediment-water interface and its potential role in supporting algal blooms in a large shallow eutrophic Lake (Lake Taihu, China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165252. [PMID: 37400027 DOI: 10.1016/j.scitotenv.2023.165252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Seasonal sediment internal phosphorus (P) release is known to affect annual algal blooms in eutrophic lakes. In this study, a year-long field investigation and laboratory sediment core incubation were conducted to study the relationship between sediment internal P cycling and algal growth in Lake Taihu. The results indicated that the concentrations of water total phosphorus (TP) and chlorophyll-a (Chla) correlated with seasonal temperature and were assumed to be caused by internal P release. From cold winter to warm seasons, sediment internal P (porewater P concentration and P flux) exhibits dynamic changes. Sediment porewater soluble reactive phosphorus (SRP) and its flux in the summer were approximately five times and eight times those during winter, respectively. The release of sediment mobile P in the summer decreases its concentration and can supply SRP for algal blooms. Laboratory core incubation indicated that Chla and phycocyanin concentrations in the overlying water showed similar changes to sediment porewater P and P flux when cores were incubated from low to high temperature. The results of this study indicated that warmer conditions could increase the sediment porewater P concentration and sediment P flux into the bottom waters and consequently enhance sediment P availability to algae. This study provides new insights into the relationship between internal sediment P cycling and algal blooms in Lake Taihu.
Collapse
Affiliation(s)
- Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, China.
| | - Peng Yin
- Water Resource Service Center of Jiangsu Province, Nanjing 210029, China
| | - Zhen Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
9
|
Park H, Shabarova T, Salcher MM, Kosová L, Rychtecký P, Mukherjee I, Šimek K, Porcal P, Seďa J, Znachor P, Kasalický V. In the right place, at the right time: the integration of bacteria into the Plankton Ecology Group model. MICROBIOME 2023; 11:112. [PMID: 37210505 DOI: 10.1186/s40168-023-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Planktonic microbial communities have critical impacts on the pelagic food web and water quality status in freshwater ecosystems, yet no general model of bacterial community assembly linked to higher trophic levels and hydrodynamics has been assessed. In this study, we utilized a 2-year survey of planktonic communities from bacteria to zooplankton in three freshwater reservoirs to investigate their spatiotemporal dynamics. RESULTS We observed site-specific occurrence and microdiversification of bacteria in lacustrine and riverine environments, as well as in deep hypolimnia. Moreover, we determined recurrent bacterial seasonal patterns driven by both biotic and abiotic conditions, which could be integrated into the well-known Plankton Ecology Group (PEG) model describing primarily the seasonalities of larger plankton groups. Importantly, bacteria with different ecological potentials showed finely coordinated successions affiliated with four seasonal phases, including the spring bloom dominated by fast-growing opportunists, the clear-water phase associated with oligotrophic ultramicrobacteria, the summer phase characterized by phytoplankton bloom-associated bacteria, and the fall/winter phase driven by decay-specialists. CONCLUSIONS Our findings elucidate the major principles driving the spatiotemporal microbial community distribution in freshwater ecosystems. We suggest an extension to the original PEG model by integrating new findings on recurrent bacterial seasonal trends. Video Abstract.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- CZ.02.1.01/0.0/0.0/16_025/0007417 Ministerstvo Školství, Mládeže a Tělovýchovy
- 20-12496X Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 19-23469S Grantová Agentura České Republiky
- 19-00113S Grantová Agentura České Republiky
- 22-33245S Grantová Agentura České Republiky
- 20-12496X Grantová Agentura České Republiky
Collapse
Affiliation(s)
- Hongjae Park
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Kosová
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Petr Porcal
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jaromír Seďa
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Dadi T, Schultze M, Kong X, Seewald M, Rinke K, Friese K. Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy. WATER RESEARCH 2023; 235:119824. [PMID: 36913811 DOI: 10.1016/j.watres.2023.119824] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Aluminum salts are widely used to immobilize phosphorus (P) in lakes suffering from internal loading. However, longevity of treatments varies among lakes; some lakes eutrophy faster than others. We conducted biogeochemical investigations of sediments of a closed artificial Lake Barleber, Germany that was successfully remediated with aluminum sulfate in 1986. The lake became mesotrophic for almost 30 years; a rather rapid re-eutrophication took place in 2016 leading to massive cyanobacterial blooms. We quantified internal loading from sediment and analyzed two environmental factors that might have contributed to the sudden shift in trophic state. Increase in lake P concentration started in 2016, reaching 0.3 mg L-1, and remained elevated into the spring of 2018. Reducible P fraction in the sediment was 37 - 58% of total P, indicating a high potential for mobilization of benthic P during anoxia. Estimated P release from sediments for 2017 was approximately 600 kg for the whole lake. This is consistent with sediment incubation results; higher temperature (20°C) and anoxia contributed to release of P (27.9 ± 7.1 mg m-2 d-1, 0.94 ± 0.23 mmol m-2 d-1) to the lake, triggering re-eutrophication. Loss of aluminum P adsorption capacity together with anoxia and high water temperatures (organic matter mineralization) are major drivers of re-eutrophication. Accordingly, treated lakes at some time require a repeated aluminum treatment for sustaining acceptable water quality and we recommend regular sediment monitoring in treated lakes. This is crucial given the effects of climate warming on duration of stratification in lakes which may result in the need for treatment of many lakes.
Collapse
Affiliation(s)
- Tallent Dadi
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany.
| | - Martin Schultze
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Xiangzhen Kong
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Michael Seewald
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Karsten Rinke
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Kurt Friese
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| |
Collapse
|
11
|
Theng V, Sith R, Uk S, Yoshimura C. Phytoplankton productivity in a tropical lake-floodplain system revealed by a process-based primary production model. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
12
|
Zhang Y, Whalen JK, Cai C, Shan K, Zhou H. Harmful cyanobacteria-diatom/dinoflagellate blooms and their cyanotoxins in freshwaters: A nonnegligible chronic health and ecological hazard. WATER RESEARCH 2023; 233:119807. [PMID: 36871382 DOI: 10.1016/j.watres.2023.119807] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Human and ecological health depends on the vitality of freshwater systems, but these are increasingly threatened by cyanotoxins released from harmful algal blooms (HABs). Periodic cyanotoxin production, although undesirable, may be tolerable when there is enough time for cyanotoxins to degrade and dissipate in the environment, but the year-round presence of these toxins will be a chronic health for humans and ecosystems. The purpose of this critical review is to document the seasonal shifts of algal species and their ecophysiological acclimatation to dynamic environmental conditions. We discuss how these conditions will create successive occurrences of algal blooms and the release of cyanotoxins into freshwater. We first review the most common cyanotoxins, and evaluate the multiple ecological roles and physiological functions of these toxins for algae. Then, the annual recurring patterns HABs are considered in the context of global change, which demonstrates the capacity for algal blooms to shift from seasonal to year-round growth regimes that are driven by abiotic and biotic factors, leading to chronic loading of freshwaters with cyanotoxins. At last, we illustrate the impacts of HABs on the environment by compiling four health issues and four ecology issues emanating from their presence in the that covers atmosphere, aquatic ecosystems and terrestrial ecosystems. Our study highlights the annual patterns of algal blooms, and proposes that a "perfect storm" of events is lurking that will cause the 'seasonal toxicity' to become a full-blown, 'chronic toxicity' in the context of the deterioration of HABs, highlighting a non-negligible chronic health and ecological hazard.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, China.
| | - Joann K Whalen
- Department of Natural Resource Science, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste-Anne-de Bellevue, QC H9×3V9, Canada
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China, CAS Key Lab on Reservoir Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongxu Zhou
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
13
|
Kong X, Determann M, Andersen TK, Barbosa CC, Dadi T, Janssen AB, Paule-Mercado MC, Pujoni DG, Schultze M, Rinke K. Synergistic Effects of Warming and Internal Nutrient Loading Interfere with the Long-Term Stability of Lake Restoration and Induce Sudden Re-eutrophication. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4003-4013. [PMID: 36802563 PMCID: PMC9997485 DOI: 10.1021/acs.est.2c07181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring data set covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State
Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of
Sciences, 210008 Nanjing, China
- Department
of Lake Research, Helmholtz Centre for Environmental
Research - UFZ, 39114 Magdeburg, Germany
| | - Maria Determann
- Department
of Lake Research, Helmholtz Centre for Environmental
Research - UFZ, 39114 Magdeburg, Germany
| | | | | | - Tallent Dadi
- Department
of Lake Research, Helmholtz Centre for Environmental
Research - UFZ, 39114 Magdeburg, Germany
| | - Annette B.G. Janssen
- Water
Systems and Global Change Group, Wageningen
University & Research, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands
| | - Ma. Cristina Paule-Mercado
- Institute
of Hydrobiology, Biology Centre, Czech Academy
of Sciences, Na Sádkách 7, České
Budějovice 37005, Czech Republic
| | - Diego Guimarães
Florencio Pujoni
- Laboratório
de Limnologia, Ecotoxicologia e Ecologia Aquática, Instituto
de Ciências Biológicas, Universidade
Federal de Minas Gerais, Avenida Antônio Carlos 6627, Cep 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Martin Schultze
- Department
of Lake Research, Helmholtz Centre for Environmental
Research - UFZ, 39114 Magdeburg, Germany
| | - Karsten Rinke
- Department
of Lake Research, Helmholtz Centre for Environmental
Research - UFZ, 39114 Magdeburg, Germany
| |
Collapse
|
14
|
Zhang C, Kong X, Xue B, Zhao C, Yang X, Cheng L, Lin Q, Zhang K, Shen J. Synergistic effects of climate warming and atmospheric nutrient deposition on the alpine lake ecosystem in the south-eastern Tibetan Plateau during the Anthropocene. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1119840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alpine lakes on the Tibetan Plateau are highly sensitive to global change and have been recognized as the sentinel of climate warming. However, anthropogenic impacts in populated area are migrating to these remote areas via transporting particulate nutrients by atmospheric deposition. Whether warming and nutrient deposition would impose additive or synergistic effects on the lake ecosystem remains largely unknown. Here, we present multi-proxy (sediment pigment and geochemistry) records during the past two centuries at the Cuoqia Lake in the southeast Tibetan Plateau. We found that the lake exhibited rapid ecological changes since 1980 AD characterized by an increase in primary productivity due to algal proliferation, with more rapid growth of green algae and diatoms. These findings are in concert with many other lakes (e.g., Moon Lake and Shade Co) in the same area, suggesting a consistent pattern of ecosystem evolution at the region scale. Statistical analyses suggested that nutrient deposition and climate warming were strongly associated with the variations in primary productivity and algae composition, exerting both individual and interactive effects. In addition, scenario analyses with a well-established process-based ecosystem model further revealed that the two factors not only individually, but also synergistically promoted the algal proliferation and community succession. Such synergy is evident in that the effect of lake warming would be more pronounced under higher nutrient deposition scenario, which is potentially due to higher temperature-driven mineralization in warmer conditions, and higher efficiency of nutrient utilization under enhanced light availability attributing to declining ice thickness and duration in cold seasons. Overall, our study proposes the existence and quantifies the synergistic impacts of climate warming and anthropogenic activities in driving the ecological changes in remote alpine lakes on the Tibetan Plateau. The lake ecological consequences driven by individual factor would be worsen by such synergy, so that we cannot predict the lake ecosystem trajectory in the future based on each factor separately, and more efforts than previously expected would be needed for the lake restoration and management.
Collapse
|
15
|
Zhang X, Xu W, Ren P, Li W, Yang X, Zhou J, Li J, Li Z, Wang D. Effective removal of diatoms (Synedra sp.) by pilot-scale UV/chlorine-flocculation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Kong X, Ghaffar S, Determann M, Friese K, Jomaa S, Mi C, Shatwell T, Rinke K, Rode M. Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change. WATER RESEARCH 2022; 221:118721. [PMID: 35717709 DOI: 10.1016/j.watres.2022.118721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 06/05/2022] [Indexed: 05/06/2023]
Abstract
Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso‑ and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China; Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany.
| | - Salman Ghaffar
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany; Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maria Determann
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Kurt Friese
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Seifeddine Jomaa
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Chenxi Mi
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Karsten Rinke
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Michael Rode
- Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| |
Collapse
|
17
|
Liu X, Li Y, Shen R, Zhang M, Chen F. Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China-Do the ammonium concentration and nitrate to ammonium ratio play a role? WATER RESEARCH 2022; 218:118493. [PMID: 35489153 DOI: 10.1016/j.watres.2022.118493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Response of aquatic organisms to eutrophication have been well reported, while less studies are available for the recovery of eutrophic lakes following a reduction in the external loading, especially for systems where nitrogen is reduced but the phosphorus concentration is maintained high due to internal loading. Diatoms are nitrate (NO3-N) opportunists but can also use ammonium (NH4-N). They may, therefore, be more sensitive to nitrogen reduction than other algae that typically prefer NH4-N. We document the variations of nutrients and diatoms in subtropical, eutrophic Lake Taihu over 28 yr during which a reduction of the external loading resulted from lake management. According to the results of change point analysis, data on environmental variables were divided into two periods (P1: 1992-2006; P2: 2007-2019) with two different seasons (WS: Winter-Spring; SA: Summer-Autumn), respectively. Compared with P1-WS, the concentration of NH4-N decreased significantly whereas NO3-N showed no significant change in P2-WS. In contrast, NH4-N concentrations were low and showed no significant changes in P1-SA and P2-SA and NO3-N decreased significantly in the latter period. Accordingly, NO3-N: NH4-N mass ratios in P1-SA and P2-WS were all significantly higher than those in P2-SA and P1-WS, respectively. The biomass of WS diatom increased significantly and the timing of the peak biomass shifted from P1-SA to P2-WS since 2007. The SEM analysis showed that NO3-N was retained as a statistically significant predictor for diatom biomass in P1-SA and significant effects of windspeed, zooplankton and NH4-N on diatom biomass in P2-WS. Windspeed and zooplankton have further changed the biomass of diatoms in the case of declining inorganic nitrogen. We conclude that the magnitude of vernal suppression or stimulation of diatom assemblages has increased, concomitant with the variations of NH4-N and NO3-N: NH4-N mass ratios. Diatoms response to NH4-N or NO3-N is apparently changing in response to water temperature in this eutrophic shallow lake. Thus, parallel reductions in external nitrogen loading, along with variations in dominant inorganic nitrogen, will stimulate the growth of diatom and therefore increase the total biomass of phytoplankton in still high internal phosphorus loading, which is should be regarded as a good sign of restoration measures.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China.
| | - Yun Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Ruijie Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Min Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|
18
|
Abstract
Dissolved gases produce a gas pressure. This gas pressure is the appropriate physical quantity for judging the possibility of bubble formation and hence it is central for understanding exchange of climate-relevant gases between (limnic) water and the atmosphere. The contribution of ebullition has widely been neglected in numerical simulations. We present measurements from six lacustrine waterbodies in Central Germany: including a natural lake, a drinking water reservoir, a mine pit lake, a sand excavation lake, a flooded quarry, and a small flooded lignite opencast, which has been heavily polluted. Seasonal changes of oxygen and temperature are complemented by numerical simulations of nitrogen and calculations of vapor pressure to quantify the contributions and their dynamics in lacustrine waters. In addition, accumulation of gases in monimolimnetic waters is demonstrated. We sum the partial pressures of the gases to yield a quantitative value for total gas pressure to reason which processes can force ebullition at which locations. In conclusion, only a small number of gases contribute decisively to gas pressure and hence can be crucial for bubble formation.
Collapse
|