1
|
Wu Z, Zhou L, Fu H, Xie Y, Sun L, Li Y, Xiao L, Zhang L, Su Y, Wang G. Maternal separation during lactation affects recognition memory, emotional behaviors, hippocampus and gut microbiota composition in C57BL6J adolescent female mice. Behav Brain Res 2025; 476:115249. [PMID: 39260583 DOI: 10.1016/j.bbr.2024.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Maternal separation (MS) in rodents is a paradigm of early life events that affects neurological development in depression. Adolescence is a time of dramatic increases in psychological vulnerability, and being female is a depression risk factor. However, data on whether different MS scenarios affect behavioral deficits and the potential mechanisms in adolescent female mice are limited. METHODS C57BL/6 J female pups were exposed to different MS (no MS, NMS; MS for 15 min/day, MS15; or 180 min/day, MS180) from postnatal day (PND)1 to PND21 and subjected for behavioral tests during adolescence. Behavioural tests, specifically the open field test (OFT), novel object recognition test (NOR) test and tail suspension test (TST), were performed. The expression of proinflammatory cytokines, hippocampal neurogenesis, neuroinflammation, and gut microbiota were also assessed. RESULTS The results showed that MS180 induced emotional behavioral deficits and object recognition memory impairment; however, MS15 promoted object recognition memory in adolescent females. MS180 decreased hippocampal neurogenesis of adolescent females, induced an increase in microgliosis, and increased certain inflammatory factors in the hippocampus, including TNF-α, IL-1β, and IL-6. Furthermore, different MS altered gut microbiota diversity, and alpha diversity in the Shannon index was negatively correlated with the peripheral inflammatory factors TNF-α, IL-1β, and IL-6. Species difference analysis showed that the gut microbiota composition of the phyla Desulfobacterota and Proteobacteria was affected by the MS. LIMITATIONS The sex differences in adolescent animal and causality of hippocampal neurogenesis and gut microbiota under different MS need to be further analyzed in depression. CONCLUSION This study indicates different MS affect recognition memory and emotional behaviors in adolescent females, and gut microbiota-neuroinflammation and hippocampal neurogenesis may be a potential site of early neurodevelopmental impairment in depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Huikang Fu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yumeng Xie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Gaohua Wang
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
2
|
Nordio R, Belachqer-El Attar S, Clagnan E, Sánchez-Zurano A, Pichel N, Viviano E, Adani F, Guzmán JL, Acién G. Exploring microbial growth dynamics in a pilot-scale microalgae raceway fed with urban wastewater: Insights into the effect of operational variables. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122385. [PMID: 39243421 DOI: 10.1016/j.jenvman.2024.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Microalgae-based wastewater treatment is a promising technology efficient for nutrient recycling and biomass production. Studies continuously optimize processes to reduce costs and increase productivity. However, changes in the operational conditions affect not only biomass productivity but the dynamics of the overall microbial community. This study characterizes a microalgae culture from an 80 m2 pilot-scale raceway reactor fed with untreated urban wastewater. Operational conditions such as pH, dissolved oxygen control strategies (On-off, PI, Event-based, no control), and culture height were varied to assess microbial population changes. Results demonstrate that increased culture height significantly promotes higher microalgal and bacterial diversity. pH, dissolved oxygen and culture height highly affects nitrifying bacteria activity and nitrogen accumulation. Furthermore, the system exhibited high disinfection capability with average Logarithmic Reduction Values (LRV) of 3.36 for E. coli and 2.57 for Clostridium perfringens. Finally, the fungi species detected included Chytridiomycota and Ascomycota, while purple photosynthetic bacteria were also found in significant abundance within the medium.
Collapse
Affiliation(s)
- Rebecca Nordio
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain.
| | - Solaima Belachqer-El Attar
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| | - Elisa Clagnan
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | | | - Natalia Pichel
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, Madrid, Spain
| | - Emanuele Viviano
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain
| | - Fabrizio Adani
- Gruppo Ricicla Labs, Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - José Luis Guzmán
- Department of Informatics, University of Almeria, 04120, Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, University of Almeria, 04120, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120, Almería, Spain
| |
Collapse
|
3
|
Rodero MDR, Magdalena JA, Steyer JP, Escudié R, Capson-Tojo G. Potential of enriched phototrophic purple bacteria for H 2 bioconversion into single cell protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168471. [PMID: 37951275 DOI: 10.1016/j.scitotenv.2023.168471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Single cell protein (SCP) has emerged as an alternative protein source, potentially based on the recovery of carbon and nutrients from waste-derived resources as part of the circular economy. From those resources, gaseous substrates have the advantage of an easy sterilization, allowing the production of pathogen-free SCP. Sterile gaseous substrates allow producing pathogen-free SCP. This study evaluated the use of an enriched phototrophic purple bacteria (PPB) consortium for SCP production using H2 and CO2 as electron and C sources. The influence of pH (6.0-8.5), temperature (15-50 °C) and light intensity (0-50 W·m-2) on the growth kinetics and biomass yields was investigated using batch tests. Optimal conditions were found at pH 7, 25 °C and light intensities over 30 W·m-2. High biomass and protein yields were achieved (~ 1 g CODbiomass·g CODH2consumed-1 and 3.9-4.4 g protein·g H2-1) regardless of the environmental conditions, being amongst the highest values reported from gaseous streams. These high yields were obtained thanks to the use of light as a sole energy source by the PPB consortium, allowing a total utilization of H2 for growth. Hydrogen uptake rates varied considerably, with values up to 61 ± 5 mg COD·d-1 for the overall H2 consumption rates and 2.00 ± 0.14 g COD·g COD-1·d-1 for the maximum specific uptake rates under optimal growth conditions. The latter value was estimated using a mechanistic model able to represent PPB growth on H2. The biomass exhibited high protein contents (>50 % w/w) and adequate amino acid profiles, showing its suitability as SCP for feed. PPB were the dominant bacteria during the experiments (relative abundance over 80 % in most tests), with a stable population dominated by Rhodobacter sp. and Rhodopseudomonas sp. This study demonstrates the potential of enriched PPB cultures for H2 bioconversion into SCP.
Collapse
Affiliation(s)
- María Del Rosario Rodero
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Jose Antonio Magdalena
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France; Vicerrectorado de Investigación y Transferencia de la Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Renaud Escudié
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | | |
Collapse
|
4
|
Alloul A, Moradvandi A, Puyol D, Molina R, Gardella G, Vlaeminck SE, De Schutter B, Abraham E, Lindeboom REF, Weissbrodt DG. A novel mechanistic modelling approach for microbial selection dynamics: Towards improved design and control of raceway reactors for purple bacteria. BIORESOURCE TECHNOLOGY 2023; 390:129844. [PMID: 37827201 DOI: 10.1016/j.biortech.2023.129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Purple phototrophic bacteria (PPB) show an underexplored potential for resource recovery from wastewater. Raceway reactors offer a more affordable full-scale solution on wastewater and enable useful additional aerobic processes. Current mathematical models of PPB systems provide useful mechanistic insights, but do not represent the full metabolic versatility of PPB and thus require further advancement to simulate the process for technology development and control. In this study, a new modelling approach for PPB that integrates the photoheterotrophic, and both anaerobic and aerobic chemoheterotrophic metabolic pathways through an empirical parallel metabolic growth constant was proposed. It aimed the modelling of microbial selection dynamics in competition with aerobic and anaerobic microbial community under different operational scenarios. A sensitivity analysis was carried out to identify the most influential parameters within the model and calibrate them based on experimental data. Process perturbation scenarios were simulated, which showed a good performance of the model.
Collapse
Affiliation(s)
- Abbas Alloul
- Research GroEnergy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; Department of Biotechnology, Delft University of Technology, Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Ali Moradvandi
- Department of Water Management, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands; Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
| | - Daniel Puyol
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, 28933 Madrid, Spain
| | - Raúl Molina
- Group of Chemical and Environmental Engineering, University Rey Juan Carlos, 28933 Madrid, Spain
| | - Giorgio Gardella
- Department of Water Management, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
| | - Siegfried E Vlaeminck
- Research GroEnergy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Bart De Schutter
- Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Edo Abraham
- Department of Water Management, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
| | - Ralph E F Lindeboom
- Department of Water Management, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Maasweg 9, Delft 2629 HZ, The Netherlands; Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
5
|
Almeida JR, León ES, Corona EL, Fradinho JC, Oehmen A, Reis MAM. Ammonia impact on the selection of a phototrophic - chemotrophic consortium for polyhydroxyalkanoates production under light-feast / dark-aerated-famine conditions. WATER RESEARCH 2023; 244:120450. [PMID: 37574626 DOI: 10.1016/j.watres.2023.120450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Phototrophic polyhydroxyalkanoate (PHA) production is an emerging technology for recovering carbon and nutrients from diverse wastewater streams. However, reliable selection methods for the enrichment of PHA accumulating purple phototrophic bacteria (PPB) in phototrophic mixed cultures (PMC) are needed. This research evaluates the impact of ammonia on the selection of a PHA accumulating phototrophic-chemotrophic consortium, towards the enrichment of PHA accumulating PPB. The culture was operated under light-feast/dark-aerated-famine and winter simulated-outdoor conditions (13.2 ± 0.9 °C, transient light, 143.5 W/m2), using real fermented domestic wastewater with molasses as feedstock. Three ammonia supply strategies were assessed: 1) ammonia available only in the light phase, 2) ammonia always present and 3) ammonia available only during the dark-aerated-famine phase. Results showed that the PMC selected under 1) ammonia only in the light and 3) dark-famine ammonia conditions, presented the lowest PHA accumulation capacity during the light period (11.1 % g PHA/g VSS and 10.4 % g PHA/g VSS, respectively). In case 1), the absence of ammonia during the dark-aerated-famine phase did not promote the selection of PHA storing PPB, whereas in case 3) the absence of ammonia during the light period favoured cyanobacteria growth as well as purple sulphur bacteria with increased non-PHA inclusions, resulting in an overall decrease of phototrophic PHA accumulation capacity. The best PHA accumulation performance was obtained with selection under permanent presence of ammonia (case 2), which attained a PHA content of 21.6 % g PHA/g VSS (10.2 Cmmol PHA/L), at a production rate of 0.57 g PHA/L·day, during the light period in the selection reactor. Results in case 2 also showed that feedstock composition impacts the PMC performance, with feedstocks richer in more reduced volatile fatty acids (butyric and valeric acids) decreasing phototrophic performance and leading to acids entering the dark-aerated phase. Nevertheless, the presence of organic carbon in the aerated phase was not detrimental to the system. In fact, it led to the establishment of a phototrophic-chemotrophic consortium that could photosynthetically accumulate a PHA content of 13.2 % g PHA/g VSS (6.7 Cmmol PHA/L) at a production rate of 0.20 g PHA/L·day in the light phase, and was able to further increase that storage up to 18.5 % g PHA/g VSS (11.0 Cmmol PHA/L) at a production rate of 1.35 g PHA/L·day in the dark-aerated period. Furthermore, the light-feast/dark-aerated-famine operation was able to maintain the performance of the selection reactor under winter conditions, unlike non-aerated PMC systems operated under summer conditions, suggesting that night-time aeration coupled with the constant presence of ammonia can contribute to overcoming the seasonal constraints of outdoor operation of PMCs for PHA production.
Collapse
Affiliation(s)
- J R Almeida
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - E Serrano León
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - E Lara Corona
- FCC Servicios Ciudadanos, Av. del Camino de Santiago, 40, edificio 3, 4ª planta, 28050 Madrid, Spain
| | - J C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
| | - A Oehmen
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - M A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Chacon-Aparicio S, Villamil JA, Martinez F, Melero JA, Molina R, Puyol D. Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures. Microorganisms 2023; 11:2324. [PMID: 37764168 PMCID: PMC10536668 DOI: 10.3390/microorganisms11092324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This work shows the potential of a new way of co-treatment of domestic wastewater (DWW) and a liquid stream coming from the thermal hydrolysis of the organic fraction of municipal solid waste (OFMSW) mediated by a mixed culture of purple phototrophic bacteria (PPB) capable of assimilating carbon and nutrients from the medium. The biological system is an open single-step process operated under microaerophilic conditions at an oxidative reduction potential (ORP) < 0 mV with a photoperiod of 12/24 h and fed during the light stage only so the results can be extrapolated to outdoor open pond operations by monitoring the ORP. The effluent mostly complies with the discharge values of the Spanish legislation in COD and p-values (<125 mg/L; <2 mg/L), respectively, and punctually on values in N (<15 mg/L). Applying an HRT of 3 d and a ratio of 100:7 (COD:N), the presence of PPB in the mixed culture surpassed 50% of 16S rRNA gene copies, removing 78% of COD, 53% of N, and 66% of P. Furthermore, by increasing the HRT to 5 d, removal efficiencies of 83% of COD, 65% of N, and 91% of P were achieved. In addition, the reactors were further operated in a membrane bioreactor, thus separating the HRT from the SRT to increase the specific loading rate. Very satisfactory removal efficiencies were achieved by applying an HRT and SRT of 2.3 and 3 d, respectively: 84% of COD, 49% of N, and 93% of P despite the low presence of PPB due to more oxidative conditions, which step-by-step re-colonized the mixed culture until reaching >20% of 16S rRNA gene copies after 49 d of operation. These results open the door to scaling up the process in open photobioreactors capable of treating urban wastewater and municipal solid waste in a single stage and under microaerophilic conditions by controlling the ORP of the system.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Puyol
- Chemical and Environmental Engineering Group, University Rey Juan Carlos, 28933 Madrid, Spain; (S.C.-A.); (F.M.); (J.A.M.); (R.M.)
| |
Collapse
|
7
|
Xia T, Chen A, Zi Y, Zhang Y, Xu Q, Gao Y, Li C. Performance of fish sludge solubilization and phototrophic bioconversion by purple phototrophic bacteria for nutrient recovery in aquaponic system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:105-115. [PMID: 37657283 DOI: 10.1016/j.wasman.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Nutrient recovery from fish sludge in aquaponics is crucial to improve the economic output of a system sustainably and hygienically. Currently, fish sludge is treated using conventional anaerobic and aerobic mineralization, which does not allow the recovery of valuable nutrients in fish wastes. In this study, a two-stage approach (named as solubilization process and phototrophic bioconversion) is proposed to convert fish sludge into mineral nutrients and biomass nutrients using purple phototrophic bacteria (PPB), thereby promoting the growth of plants and fish simultaneously in aquaponics. Anaerobic and aerobic solubilization methods are tested to pretreat the fish sludge, generating substrates for PPB. Anaerobic solubilization yields 2.1 times more soluble chemical oxygen demand (SCOD) and 3.7 times more total volatile fatty acid (t-VFA) from fish sludge compared with aerobic solubilization. The anaerobic solubilization effluent indicates a CODt-VFA/SCOD of 60% and a VFA comprising 13.3% acetate and 49.0% propionate for PPB. The phototrophic bioconversion using anaerobic solubilization effluent under the light-anaerobic condition results in the highest biomass yield (0.94 g CODbiomass/g CODremoved) and the highest PPB dominance (Ectothiorhodospira, 58.7%). The anaerobic solubilization and light-anaerobic phototrophic bioconversion achieves 54.1% of carbon recovery efficiency (CRE) (in terms of COD), as well as 44.8% and 91.3% of nutrient recovery efficiency (NRE) for N and P. A novel multiloop aquaponic system combined with PPB-based nutrient recovery is proposed for the reuse of mineral nutrients and PPB biomass generated from fish sludge.
Collapse
Affiliation(s)
- Tian Xia
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ang Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan 572025, China
| | - Yongxia Zi
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianzhi Xu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueshu Gao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Hainan 572025, China.
| |
Collapse
|
8
|
Capson-Tojo G, Batstone DJ, Hülsen T. Expanding mechanistic models to represent purple phototrophic bacteria enriched cultures growing outdoors. WATER RESEARCH 2023; 229:119401. [PMID: 36450178 DOI: 10.1016/j.watres.2022.119401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The economic feasibility of purple phototrophic bacteria (PPB) for resource recovery relies on using enriched-mixed cultures and sunlight. This work presents an extended Photo-Anaerobic Model (ePAnM), considering: (i) the diverse metabolic capabilities of PPB, (ii) microbial clades interacting with PPB, and (iii) varying environmental conditions. Key kinetic and stoichiometric parameters were either determined experimentally (with dedicated tests), calculated, or gathered from literature. The model was calibrated and validated using different datasets from an outdoors demonstration-scale reactor, as well as results from aerobic and anaerobic batch tests. The ePAnM was able to predict the concentrations of key compounds/components (e.g., COD, volatile fatty acids, and nutrients), as well as microbial communities (with anaerobic systems dominated by fermenters and PPB). The results underlined the importance of considering other microbial clades and varying environmental conditions. The model predicted a minimum hydraulic retention time of 0.5 d-1. A maximum width of 10 cm in flat plate reactors should not be exceeded. Simulations showed the potential of a combined day-anaerobic/night-aerobic operational strategy to allow efficient continuous operation.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia 15782, Spain; INRAE, University Montpellier, LBE, 102 Avenue des Etangs, Narbonne 11100, France.
| | - Damien J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim Hülsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
9
|
Han F, Zhou W. Nitrogen recovery from wastewater by microbial assimilation - A review. BIORESOURCE TECHNOLOGY 2022; 363:127933. [PMID: 36100188 DOI: 10.1016/j.biortech.2022.127933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The increased nitrogen (N) input with low utilization rate in artificial N management has led to massive reactive N (Nr) flows, putting the Earth in a high-risk state. It is essential to recover and recycle Nr during or after Nr removal from wastewater to reduce N input while simultaneously mitigate Nr pollution in addressing the N stress. However, mechanisms for efficient Nr recovery during or after Nr removal remain unclear. Here, the occurrence of N risk and progress in wastewater treatment in recent years as well as challenges of the current technologies for N recovery from wastewater were reviewed. Through analyzing N conversion fluxes in biogeochemical N-cycling networks, microbial N assimilation through photosynthetic and heterotrophic microorganisms was highlighted as promising alternative for synergistic N removal and recovery in wastewater treatment. In addition, the prospects and gaps of Nr recovery from wastewater through microbial assimilation are discussed.
Collapse
Affiliation(s)
- Fei Han
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266000, China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong 250002, China.
| |
Collapse
|
10
|
Wang L, Hu Z, Hu M, Zhao J, Zhou P, Zhang Y, Zheng X, Zhang Y, Hu ZT, Pan Z. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: A new degradation pathway of 4-chlorophenol in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127670. [PMID: 35878775 DOI: 10.1016/j.biortech.2022.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.
Collapse
Affiliation(s)
- Liang Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Peijie Zhou
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
11
|
Silveira DD, Farooq AJ, Wallace SJ, Lapolli FR, Nivala J, Weber KP. Structural and functional spatial dynamics of microbial communities in aerated and non-aerated horizontal flow treatment wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156600. [PMID: 35691354 DOI: 10.1016/j.scitotenv.2022.156600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A multiphasic study using structural and functional analyses was employed to investigate the spatial dynamics of the microbial community within five horizontal subsurface flow treatment wetlands (TWs) of differing designs in Germany. The TWs differed in terms of the depth of media saturation, presence of plants (Phragmites australis), and aeration. In addition to influent and effluent water samples, internal samples were taken at different locations (12.5 %, 25 %, 50 %, and 75 % of the fractional distance along the flow path) within each system. 16S rRNA sequencing was used for the investigation of microbial community structure and was compared to microbial community function and enumeration data. The microbial community structure in the unaerated systems was similar, but different from the aerated TW profiles. Spatial positioning along the flow path explained the majority of microbial community dynamics/differences within this study. This was mainly attributed to the availability of nutrients closer to the inlet which also regulated the fixed biofilm/biomass densities. As the amount of fixed biofilm decreased from the inlet to the TW outlets, structural diversity increased, suggesting different microbial communities were present to handle the more easily utilized/degraded pollutants near the inlet vs. the more difficult to degrade and recalcitrant pollutants closer to the outlets. This study also confirmed that effluent water samples do not accurately describe the microbial communities responsible for water treatment inside a TW, highlighting the importance of using internal samples for investigating microbial communities in TWs. The results of this study reinforce an existing knowledge gap regarding the potential for TW design modifications which incorporate microbial community spatial dynamics (heterogeneity). It is suggested that utilizing step-feeding could allow for improved water treatment within the same areal footprint, and modifications enhancing co-metabolic processes could assist in improving the treatment of more difficult to degrade or recalcitrant compounds such as micropollutants.
Collapse
Affiliation(s)
- D D Silveira
- Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP 88040-900 Florianópolis, SC, Brazil
| | - A J Farooq
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - S J Wallace
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - F R Lapolli
- Federal University of Santa Catarina (UFSC), Campus Universitário, Trindade, CEP 88040-900 Florianópolis, SC, Brazil
| | - J Nivala
- INRAE, UR REVERSAAL, 5 rue de la Doua, CS 20244, 69625 Villeurbanne, France.
| | - K P Weber
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| |
Collapse
|
12
|
Hülsen T, Barnes AC, Batstone DJ, Capson-Tojo G. Creating value from purple phototrophic bacteria via single-cell protein production. Curr Opin Biotechnol 2022; 76:102726. [DOI: 10.1016/j.copbio.2022.102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
|
13
|
Capson-Tojo G, Batstone DJ, Grassino M, Hülsen T. Light attenuation in enriched purple phototrophic bacteria cultures: Implications for modelling and reactor design. WATER RESEARCH 2022; 219:118572. [PMID: 35569276 DOI: 10.1016/j.watres.2022.118572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/08/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Light attenuation in enriched purple phototrophic bacteria (PPB) cultures has not been studied, and its understanding is critical for proper process modelling and reactor design, especially for scaled systems. This work evaluated the effect of different biomass concentrations, reactor configurations, wastewater matrices, and growth conditions, on the attenuation extent of near infra-red (NIR) and ultraviolet-visible (UV-VIS) light spectra. The results show that increased biomass concentrations lead to higher light attenuation, and that PPB absorb both VIS and NIR wavelengths, with both fractions of the spectrum being equally absorbed at biomass concentrations above 1,000 g COD·m-3. A flat plate configuration showed less attenuation compared with cylindrical reactors illuminated from the top, representative for open ponds. Neither a complex wastewater matrix nor the presence of polyhydroxyalkanoates (under nutrient limited conditions) affected light attenuation significantly. The pigment concentration (both bacteriochlorophyll and carotenoids) however, had a strong effect, with significant attenuation in the presence of pigments. Attenuation predictions using the Lambert-Beer law (excluding scattering) and the Schuster model (including scattering) indicated that light scattering had a minimal effect. A proposed mathematical model, based on the Lambert-Beer law and a Monod function for light requirements, allowed effective prediction of the kinetics of photoheterotrophic growth. This resulted in a half saturation coefficient of 4.6 W·m-2. Finally, the results showed that in dense outdoor PPB cultures (≥1,000 g COD·m-3), effective light penetration is only 5 cm, which biases design away from horizontal lagoons, and towards non-incident multi-panel systems such as flat plate reactors.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - Damien J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maria Grassino
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Tim Hülsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
14
|
Hülsen T, Züger C, Gan ZM, Batstone DJ, Solley D, Ochre P, Porter B, Capson-Tojo G. Outdoor demonstration-scale flat plate photobioreactor for resource recovery with purple phototrophic bacteria. WATER RESEARCH 2022; 216:118327. [PMID: 35339970 DOI: 10.1016/j.watres.2022.118327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
To make purple phototrophic bacteria (PPB)-based technologies a reality for resource recovery, research must be demonstrated outdoors, using scaled reactors. In this study, a 10 m long PPB-enriched flat plate photobioreactor (FPPBR) with a volume of 0.95 m3 was operated for 253 days, fed with poultry processing wastewater. Different operational strategies were tested, including varying influent types, retention times, feeding strategies, and anaerobic/aerobic conditions in a novel mixed metabolic mode concept. The overall results show that regardless of the fermented wastewater fed (raw or after solid removal via dissolved air flotation) and the varying environmental conditions (e.g., light exposure and temperatures), the FPPBR provided effective volatile fatty acids (VFAs), N, and P removals (average efficiencies of >90%, 34-77%, and 28-45%, respectively). The removal of N and P was limited by the availability of biodegradable COD. Biomass (C, N and P) could be harvested at ∼90% VS/TS ratio, 58% crude protein content and a suitable amino acid profile for potential feed applications. During fully anaerobic operation with semicontinuous/day-only feeding, the FPPBR showed biomass productivities between 25 and 84 g VS m-2 d-1 (high due to solid influx; the productivities estimated from COD removal rates were 6.0-24 g VS•m-2•d-1 (conservative values)), and soluble COD removal rates of up to 1.0 g•L-1•d-1 (overall average of 0.34 ± 0.16 g•L-1•d-1). Under these conditions, the relative abundance of PPB in the harvested biomass was up to 56%. A minimum overall HRT of 2-2.4 d (1.0-1.2 d when only fed during the day) is recommended to avoid PPB washout, assuming no biomass retention. A combined daily-illuminated-anaerobic/night-aerobic operation (supplying air during night-time) exploiting photoheterotrophy during the day and aerobic chemoheterotrophy of the same bacteria at night improved the overall removal performance, avoiding VFA accumulation during the night. However, while enabling enhanced treatment, this resulted in a lower relative abundance of PPB and reduced biomass productivities, highlighting the need to balance resource recovery and treatment goals.
Collapse
Affiliation(s)
- Tim Hülsen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christian Züger
- Eidgenössische Technische Hochschule Zürich (ETH), Zürich 8092, Switzerland
| | - Zuo Meng Gan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Damien J Batstone
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | - Brett Porter
- Inghams Enterprises, Murarrie, QLD 4172, Australia
| | - Gabriel Capson-Tojo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
15
|
Yu S, Xu Y, Liang C, Lou W, Peng L. Spectral bands of incandescent lamp leading to variable productivity of purple bacteria biomass and microbial protein: Full is better than segmented. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153736. [PMID: 35143796 DOI: 10.1016/j.scitotenv.2022.153736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) are competent microorganisms capable of producing value-added products from waste streams. Light source is one of the most influential factors determining the efficiency of this process. Previous studies mostly focused on optimizing light intensity, while the impact of spectral bands on PNSB growth is still unknown. To fill the knowledge gap, this study investigated the responses of PNSB (i.e., Rhodobacter sphaeroides) growth, protein content and enzyme activity to various spectral bands of an incandescent lamp for the first time. It was found that the full spectrum of the incandescent lamp was propitious to cultivate PNSB than segmented spectral bands, as demonstrated by the maximum biomass yield of 1.05 g biomass g-1 CODremoved, specific growth rate of 0.53 d-1 and protein concentration of 0.48 g L-1. The production of biomass and protein under infrared (IR) spectral band were slightly lower than those under full spectrum, but 3.2 and 1.7 times higher than the average values (0.14 g L-1 and 0.07 g L-1) under visible spectral bands, respectively. The variation trends of enzymatic activities, such as fructose-1,6-bisphosphatase (FBP) and photopigments were consistent with that of PNSB biomass upon varying spectral bands, suggesting that the spectral bands might induce a variable PNSB biomass via affecting the Calvin cycle and photophosphorylation process. These results provide a new perspective that spectrum bands of light sources should be considered in the process optimization.
Collapse
Affiliation(s)
- Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
16
|
Hülsen T, Stegman S, Batstone DJ, Capson-Tojo G. Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria. WATER RESEARCH 2022; 214:118194. [PMID: 35196622 DOI: 10.1016/j.watres.2022.118194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Resource recovery from wastewater, preferably as high value products, has become an integral part of modern wastewater treatment. This work presents the potential to produce single cell protein (SCP) from pre-settled piggery wastewater (PWW) and meat chicken processing wastewater (CWW), utilising anaerobic purple phototrophic bacteria (PPB). PPB were grown as biofilm in outdoors 60 L, 80 L and 100 L flat-plate reactors, operated in sequential batch mode. PPB biofilm was recovered from reactor walls at a total solid (TS) content ∼90 g•L - 1, and the harvested biomass (depending on the wastewater) had a consistent quality, with high protein contents (50-65%) and low ash, potentially applicable as SCP. The COD, N and P removal efficiencies were 71±5.3%, 22±6.6%, 65±5.6% for PWW and 78±1.8%, 67±2.7% and 37±4.0% for CWW, respectively, with biofilm areal productivities up to 14 g TS•m - 2•d - 1. This was achieved at ammonium-N concentrations over 1.0 g•L - 1 and temperatures up to 55 °C and down to 6 °C (daily fluctuations of 20-30 °C). The removal performances and biomass productivities were mostly dependent on the bioavailable COD in the form of volatile fatty acids (VFA). At sufficient VFA availability, the irradiance became limiting, capping biofilm formation. Harvesting of the suspended fraction resulted in increased productivities and recovery efficiencies, but lowered the product quality (e.g., containing undesired inerts). The optimum between quantity and quality of product is dependent on the wastewater characteristics (i.e., organic degradable fraction) and potential pre-treatment. This study shows the potential to utilise sunlight to treat agri-industrial wastewaters while generating protein-rich PPB biomass to be used as a feed, feed additive or feed supplement.
Collapse
Affiliation(s)
- Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Samuel Stegman
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Damien J Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gabriel Capson-Tojo
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
17
|
Li Z, Li L, Sun H, Wang W, Yang Y, Qi Z, Liu X. Ammonia assimilation: A double-edged sword influencing denitrification of Rhodobacter azotoformans and for nitrogen removal of aquaculture wastewater. BIORESOURCE TECHNOLOGY 2022; 345:126495. [PMID: 34883195 DOI: 10.1016/j.biortech.2021.126495] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
NO3--N and NH4+-N are two prevalent nitrogenous pollutants in aquaculture wastewater posing a significant health risk to aquatic animals. R. azotoformans ATCC17025 can rapidly denitrify to remove NO3--N, assimilating NH4+-N. The study investigated the influence of ammonia assimilation on bacterial denitrification. Results revealed that low concentration of NH4+-N (≤0.3 mM) accelerated denitrification, whereas high concentration inhibited it. RT-qPCR indicated that the inhibition of NO reduction under high concentration of NH4+-N was the primary cause of denitrification depression, whereas low concentration of NH4+-N enhanced the synthesis of practically all enzymes involved in denitrification. Finally, nitrogen-rich aquaculture effluent was effectively treated in lab-scale using a semi-continuous operation that provided an appropriate NH4+-N concentration for denitrification. This semi-continuous operation treated wastewater 2 times faster than the batch operation and the content of nitrogen decreased to effluent standard. The study can provide guidance for nitrogen removal of aquaculture wastewater with bioaugmentation.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Lu Li
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Haoyu Sun
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Wenjuan Wang
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Yuying Yang
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| | - Zhengliang Qi
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
| | - Xinli Liu
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China; State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
| |
Collapse
|
18
|
Vethathirri RS, Santillan E, Wuertz S. Microbial community-based protein production from wastewater for animal feed applications. BIORESOURCE TECHNOLOGY 2021; 341:125723. [PMID: 34411939 DOI: 10.1016/j.biortech.2021.125723] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Single cell protein (SCP) derived from microbial biomass represents a promising source of protein for animal feed additives. While microbial community-based approaches to SCP production using nutrient-rich wastewaters incur lower costs than traditional single organism-based approaches, they have received little attention. This review focuses on SCP production using wastewaters with an emphasis on food-processing wastewaters. An elemental carbon-to-nitrogen ratio ranging from 10 to 20 is recommended to promote a high microbial biomass protein yield. Proteobacteria was identified as the most prevalent phylum within SCP-producing microbial communities. More research is needed to determine the composition of the microbial community best suited for SCP production, as well as its relationship with the microbial community in influent food-processing wastewaters. Remaining challenges are target protein and essential amino acids content, protein quantification and biomass yield assessment. The review presents bioreactor design considerations towards defining suitable operating conditions for SCP production through microbial community-based fermentation.
Collapse
Affiliation(s)
- Ramanujam Srinivasan Vethathirri
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|